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ABSTILCT

The Feynman-Kac formula and its connections with classical analysis were
initiated in the now celebrated paper [6] of M. Kac. It soon became obvious that
the tbrmula provides a powerful tool for solving partial differential equations by
running the Brownian motion process. K.L. Chung and K.M. Rao in [4] used it
to characterize solutions of the SchrSdinger equation. In this paper we study
some properties of the Feynman-Kac functional using the Brownian motion pro-
cess. In particular, we are going to use it in connection with the gauge function
in order to obtain an energy formula similar to one obtained by G. Dal Maso and
U. Mosco in [5].
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1. Introduction

In [5], G. Dal Maso and U. Mosco studied a relaxed Dirichlet problem in an open region f of
Rd d > 2 which can formally be written as:

Au + u 0 in (1.1)

where A is the Laplace operator and # is an arbitrary non-negative Borel measure not charging
polar sets in Rd. The measure # may take the value + o. Special cases of (1.1) are Dirichlet
problems of the type

-Au-0inf-, u-0onE, (1.2)

(E denotes the closure of E), as well as the stationary SchrSdinger equation"

Au -t-- q(x)u 0 in
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where q is a non-negative potential. The main result in [5] is an approximation of equation (1.1)
by a sequence of Dirichlet problems of the form (1.2). In order to carry out this procedure, one
needs to study the behavior of an arbitrary local weak solution u of (1.1) such that u E
oc() V Loc( #) and having finite local g-energy given by:

/ Vu]2dx+ j’u2d#, a’ca. (1.3)

The methods in [5] are variational in nature. In this paper, we study the Feynman-Kac func-
tional, directly using the Brownian motion process. Using the gauge function, we obtain an ener-

gy formula in part 5 similar to formula (1.3). Section 3 deals with the characterization of the
null set of gq. For example, in Proposition 3.3, it is shown that the set {gq- 0} is a polar set.
Section 4 deals with continuity properties of the gauge function gq. Specifically, Theorem 4.2
shows that if gq is nonvanishing and continuous in , then q is in local Kato class in . Finally,
Section 5 deals with the energy as introduced in [7]. In addition, it is shown that if s is an exces-

sive function, then its corresponding gauge function satisfies the equation Ags gs"

2. Notations and Preliminaries

Throughout this paper, X {Xt; >_ 0} denotes the Brownian Motion process in Rd, d >_ 2;

denotes a domain in Rd. Let q >_ 0 be measurable. Let q(t)- exp[-fq(Xs)ds], gq(X)-
0

EXe[q(V)], where v- exit time from f. Using strong Markov property, we see that gq <_
EX[gq(XrB)], where rB -exit time from a ball with a center x. Also, it is seen that if q is

bounded, then gq is continuous; hence, in general, q is upper semi-continuous. It follows that 9q
is subharmonic in f.

Throughout this paper we deal with a topology on Rd that is finer than the Euclidean metric
topology. Namely, the fine opoloy on Rd is the smallest topology on Rd for which all superhar-
monic functions are continuous in the extended sense. It is easily seen that the fine topology is
larger than the Euclidean metric topology on Rd. So we speak of fine interior, finely continuous,
etc.

Another concept which is used in the paper and which is related to the behavior of the
Brownian motion process is that of a regular point of a set. Namely, given a set D denote by T
the exit time for the Brownian motion from D. (Which is the same as the hitting time of the
complement of D.) Then, a point a E OD is called regular for Dc if pa{T 0) 1. In other
words, starting at a regular point the Brownian motion hits the complement of a set in question
immediately.

3. The Null Set of gq

In this section we study the set on which function gq vanishes.

Proposition 3.1: q < c a.e. on the set {gq > 0}.
Prf: Suppose q is bounded. Then, assuming the domain f is bounded,

f q(Xo)O
1 -eq(V) q(Xs)e s ds.

0

(3.1)
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Therefore if q is bounded,

1 gq(X) G[qgq] (3.2)

which is a consequence of (3.1) and Markov property.

For general q, let an q An. Using (3.2), one gets,

1 gqn(X) G[qn, gqn 2> G[qngq].

Let n tend to infinity in the above inequality. We get

1 gq >_ G[qgq],

where qgq is defined to be zero if gq 0. Thus, qgq < oo a.e.

A more precise result is the following:

Proposition 3.2: Suppose gq()- 0 and that is regular for the set {gq
"explosion point" for q, i.e.,

Vt > O, P q(Xs)ds oo 1.

o

Proof: Let > O, F {gq >_ g} and let T be the hitting time of F. Then,

>0}. Then, is an

0 gq() >_ EX[eq(T)gq(XT) T < r]

implying eq(T)- 0 on the set {T < r}. As 0, the hitting times decrease to the hitting time to

{9q > 0} which is zero P-a.s. by assumption. This completes the proof.

Pmark a.l" f gq(g)-0 and { is not regular for {gq
of {gq 0}. Thus,

> 0}, then must be in the fine interior

{gq 0} {finely open set} U {the set of explosion points of q).

l{emark a.2: Suppose gq O. Then {gq > O} is a finely open non-empty set. So, some point
of {gq- 0} must be a regular point for {gq > 0}. However, such a point is an explosion point for
q. Thus, we can say if q has no explosion points, then gq cannot vanish unless gq =_ O.

Let us show that some point for which gq 0 is regular for {gq > 0}. Let gq() 0 and T
hitting time to {gq > 0}. Since gq(Xt) is continuous in for > 0, we see that gq(XT)- 0 if
T < oe and XT is regular for {gq > 0}, almost surely. Hence, there are points for which gq- O,
and which are regular for {gq > 0}.

7"

Proposition 3.3: Suppose that for some , P{ f q(Xs)ds < oc}- 1. This implies that

{gq- 0} iS a Polar set. Furthermore, o

1 gq G(qgq). (a.a)
If T=Proofi Indeed, gq is finely continuous so that set A- {gq- 0} is finely closed.

hitting time of A, we have r T

o < o <
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-f
because gq(XT)--0 on the set (T < r). Thus, PS[e 0 1T < 7-- 0]- 1. However, it is given

-f
that e 0 > 0 with P-probability 1. Hence, we conclude that A is a Polar set.

ltemark 3.3: The proof of formula (3.3) is as follows.

We have P[fq < oo]- 1. Therefore the following arguments are valid: Let qnTq with
0

G(qn) bounded. Then we know that (3.3) holds with q replaced by qn" By taking limits, we get
G(qgq) <_ 1 gq. By definition, we have always qgq 0 on the set {gq 0}. At ( we have

a(q)() E [] q(X)(X)d]
0

" f q(X=)e=
E q(Xs)e s ds]

0

=ES[1-e o ]- l_gq().

Now we can claim that 1- gq- G(qgq) is excessive. Indeed, if qnTq,

1 gq G(qgq) linm[1 gqn G(qngq)]

linmG[qn(gqn- gq)]

and each is excessive. Thus, since (3.3) holds at (, it holds everywhere.

Remark 3.4." Under the assumption that for some t[, P[ f q < oo]- 1, we can show that the
only zeros of gq are the explosion points of q. 0

Indeed, if gq(X)-0 we have

0 gq(X)

_
EX[e o gq(Xt): < v].

Since gq(Xt) > O, eq(t) 0 for every t, which means that x is an explosion point.

Example: Let q(x) Ix -3, 2 </ < 3 in R3. Then, using scaling for Brownian motion we

see that for any > 0,

pO Xs -ds < a P Xs/e2 -ds < a

o

I /
te2

p e2- Xsl -ds < a

0

The last inequality holds for every > 0. It follows that

i.e., 0 is an explosion point for q and, of course, gq(O)- O.

f Xs -Ods oe, Vt > O, P-a.s.,
0
Note that q is locally integrable. If
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{i} is a dense countable set, let qi- x-i[- " Then qi is locally integrable. For suitable

constants i, q rliq E Ltoc, and Vt > 0 and Vi, pi[ f q(Xs)ds c] 1. Thus, it is possible
that 9q 0 on a dense set with q integrable, o

4. Continuity Properties of gq

The following remark will be helpful in the proof of Proposition 4.1.

Remark: The function

G(x, t)- PZ[v < t] + EX[gq(Xt) < v]

decreases as t decreases and tends to gq as t tends to zero for each fixed x.

Indeed, if s < t, we may compute

G(x,t)-G(x,s) PX[s < 7" < t] + EX[{exp(- / q(Xu)du)- exp(- / q(Xu)du)}’t <
s

EX[exp(- / q(Xu)du):s < v < t] >_ O.
$

Also, G(., t) is continuous for each t. Thus, if gq is continuous, G(., t) tends to gq uniformly on

compacts by Dini’s theorem. We conclude that 9q is continuous if and only if E(’)[gq(Xt):
tends to gq uniformly on compacts as tends to zero.

Proposition 4.1: Let gi- gqi be continuous. Then g- gql + q2
is also continuous.

If h is any of 91,92 or g and r any of ql + q2, ql or q2, we have by Markov propertyProof:
for any t,

EX[h(Xt) t < r] h(x) EX[h(Xt)(1 e

f(x)
_Ex[ o . < t].

f (x)e
0 ).t<,]

The last term above clearly tends to zero uniformly on compacts because Px{r < t} does this as

t0. From the last sentence of the above remark, the continuity of h is equivalent to

E()[h(Xt)(1 e(t)): < r] (4.1)

to tend to zero uniformly as t--0. If h- gi and r- qi, i- 1,2, this is the case because gi are

continuous. We have with h- g and r- ql + q2, that

E()[g(Xt)(1 er(t))" < r]

E(’)[g(Xt)(1 eql (t) -- eql (t) er(t)): < T].

Since g _< gl,

E()[g(Xt)(1 eql (t)): < 7] _< E(")[gl(Xt)(1 -eql (t)): < 7-],
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using the conclusion stated in the last sentence of the previous remark, it follows that the left-
hand side of this inequality tends to zero uniformly as t0, because the right-hand side does it,
since gl is continuous. Likewise,

E(")[g(Xt)(eql(t)-er(t)):t < 7]

_
E(’)[g2(Xt)(1-eq2(t))’t < ’],

where again the left-hand side of this inequality tends to zero uniformly as t0, because the right-
hand side does it, since g2 is continuous. This concludes the proof showing that gql + q2

is also
continuous.

Proposition 4.2: If gq is continuous, so is g for all > O.
q

Proof: Because of Proposition 4.1, it suffices to prove Proposition 4.2 for 0 < < 1.

As in the proof of Proposition 4.1, we need only to show that if g,x g,x
q

EX[g(Xt)(1 e (t))" t < r]
q

tends to zero uniformly on compacts.
or equal to

(4.2)

By HSlder’s inequality, the expression in (4.2) is less-than

{EX[g-(Xt)(1-% (t))A-l"t <: T]}A. (4.3)
q

,X and clearly,Now we use HSlder’s inequality again to obtain g <_ gq

(1 e,x (t)),k- <_l-e <_l-eq(t).
q q

Thus, it follows from (4.3) that the expression in (4.2)is less than or equal to

EX[gq(Xt)(1 eq(t)): < r]

and the result follows.

Theorem 4.1: Suppose Gq is locally bounded. Then gq
continuous.

is continuous if and only if Gq is

Proof." Step 1. Suppose Gq is bounded. Then gq is continuous if and only if Gq is contin-
uous. To see this, write

Kqf EX[ ] eq(t)f(Xt)dt
0

and compute"

gq-- 1-Kqq

Gq Kqq + Kq[qGq].

The first equation shows that gq is continuous if and only if Kqq is continuous, and from the
second equation, we see that under the condition that Gq is bounded, the continuity of Gq is
equivalent to that of Kqq.

Step 2. Now suppose D is a relatively compact subset of Q. Then, GDq <_ Gq and Gq
bounded on D implies that GDq is bounded. Suppose gq is continuous. We have

gq- EX[eq(rD)gq(XrD)]. (4.4)
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Now by Jensen’s inequality, gq(X)

_
e

gq(XrD >-- C. Then, one can write
-Gq(x), so that gq is bounded from below on compacts, say,

gq(X) cEX[eq(7"D)] + EX[eq(7"D)(gq(X.rD )].

Both terms on the right-hand side of this equation are upper-semi-continuous functions on D.
However, the left-hand side is continuous on D implying that the both terms on the right-hand
side are continuous. This implies that EX[eq(VD)] is continuous on D. This fact and the result
from Step 1, imply that GDq is continuous. However, on D, Gq- GDq + a harmonic function.
This implies that Gq is continuous on D.

Suppose now Gq is continuous. Then, for each relatively compact open subset D, GDq is
bounded and continuous. Hence, from Step 1, E(’)[eq(vD) is continuous and, from (4.4), so is

gq. This completes the proof.

Theorem 4.2: Let gq be nonvanishing and continuous in f. Then q is in local Kato class in, i.e., GqlF is continuous and bounded in for each relatively compact set F.

Proof: Step 1. First, suppose that gq is bounded from below and continuous in . Say,
gq > . Then, we claim that Gq is bounded and continuous in . To see this, note that

1 -gq >_ G[qgq] > Gq,

giving Gq < L_, i.e., Gq is bounded. Then, by Theorem 4.1, Gq is continuous.

Step 2. Again, we localize the problem. Let D be a relatively compact subset of . We have

gq- EX[eq(VD)gq(XrD)].
Since gq is nonvanishing and continuous, it is bounded from below on D. So, as in Theorem 4.1,
we see that EX[eq(VD)] is continuous D. Moreover, EZ[eq(VD)] > gq > , say, (because gq is
bounded from below on compacts), implying from Step 1 that GDq is bounded and continuous on

D. This completes the proof.

Finally, we have:

Theorem 4.3: Suppose Gq c. If gq is continuous, then Gq is extended continuous and

{gq- 0}- {Gq- c}. If Gq is extended continuous, then gq is continuous at every point at
which Gq(x) < oc.

Proof: Suppose gq is continuous. Then the set Do {gq > 0} is an open subset of . Also,

the set {Gq(x)< c} is contained in D0. Indeed, if Gq(x)< cx, then px{ f q(Xs)ds < c} 1,
implying that gq(X) > O. o

We will show that Gq is continuous on Do. Gq is necessarily continuous at each x, such that
Gq(x)- cx, and this set contains D). Let D be a relatively compact open subset of Do and set
r1=yD. Then,

gq(X)- EX[eq(Vl)gq(Xrl)].
Since gq is continuous and strictly positive on D, EX[eq(rl)] is continuous and bounded from
below on D (it dominates gq on D). Hence, by Theorem 4.1, GDq is continuous and bounded in
D. Since Gq- GDq + a harmonic function in D, we see that Gq is continuous on D. Thus, Gq
is continuous and finite on D0. Suppose now Gq is extended continuous. Let U- {Gq < N}. U
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is an open set. We need only show that gq__iscontinuous on U. Now, on U, Guq is bounded and
continuous. So, from Theorem 4.1, E(’)[eq(VU)]_ is continuous. Hence, so is gq. This completes
the proof.

Lemma 4.1: Let f),, 0 <_ A <_ 1, be a family of lower semi-continuous functions on X.
pose 0 <_ f <_ 1 and that f(x) is increasing in . Let

1

f(x)- I f’x(x)dA"
0

Then, f continuous at xo implies f,x(’) is continuous at xo for every which is a continuity
point of A--fA(xo).

Proof: Suppose f is continuous at x0 and # is a continuity point of Af,x(Xo). Since fA(xo)
is increasing in A, we see that

p+h

1/- f,x(x)dA (4.5)

p+h
is increasing in h. Also, function f f,x(x)dA and hence, the function in (4.7), is continuous at

x0. As h0 these functions decrease to fp(x). Thus, at x0, f is upper semi-continuous function.
Since ft is lower semi-continuous by assumption, the proof is complete.

Corollary 4.1"

where Ao f q(Xs)ds.
0

Proof: We have

gq is continuous if and only if x---,PX(Aoo > ,} is continuous for all > O,

Acx / px Aocgq(X)- EZ[e ]- {e > t}dt
0

1

/ PZ(>eA}dt-1- / PZ{Aoo>log}dt.
0 0

The family ft(x) PX{Ao > log} satisfies the conditions of Lemma 4.1. Thus, x--,PZ{Aoo > #}
is continuous at x0 provided A--,PX{Aoo > ,} is continuous at #. It is easy to see that for any x,
pX{A-,}- 0. In other words, A--,px{Aoo >,} is continuous in A for each x. Thus, the
continuity of g implies that of xPZ{A > A} for each A > 0. Conversely if x---px{Ao > ,} is

--24 OlD

continuous, then so is xpX{e oo> ,}. Finally, by bounded convergence theorem, it follows
-A

that f PX{e oo > A}dA is also continuous.
0

5. Miscellaneous Results

Some simple facts: The following inequalities will be used in the sequel.

e -a+e -b>_l+e -a-b a,b>_O, (5.1)

so that if c _< a A b,

-(b-c)e (a-c)+e <l+e (a-c)- (b- c)
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or

e-a+e-b<e-c-t-e-a-b+c_ a, b>O_ c<aAb._ (5.2)

Thus, if ql, q2 -> 0 and a f ql, b f q2, c f (ql A q2) (Xs)ds we get from (5.2) since a + b
0 0 0

c f ql V q2,
0

eql(t) - eq2(t --< eql V q2(t) + eql A q2(t)" (5.3)

In particular,

< +gql + gq2 gql v q2 gql A q2

Consider 1- gq. We know that this function is excessive. Let

C(q) [1 gq]

where is the mass-functional. (See [7].)
C(q) has the following properties:

(A) ql < q2=C(ql) < C(q2) Indeed < :=1- > 1-gq2 gql gq2 gql"
(B) C(q) < cx::>l- gq is a potential. (A harmonic function has infinite mass functional.)

(C) C(0) 0. This property is clear.

(D) C is strongly subadditive, i.e., C(q V q2) + C(ql A q2) -< C(ql) + C(q2)" This follows im-
mediately from (5.3).

/1 V gq12 + / qg2q <_ C(q)

Proof." First, suppose that q is integrable and Gq bounded. Then

1 gq G(qgq) (5.4)

holds. Thus C(q)- fqgl. Also, the potential G(qgq) has finite energy because fqgqG(qgq)<_
f qgq _< f q < oc. The energy is f V G(qgq)] f V (1 gq) 2 f V gq 2. After
multiplying (5.4) by qgq, integrating and using the above expression for C(q), one gets

/
Let qn satisfy f qn < oo and let Gqn be bounded and let it increase to q. Then, 1- gqn

increases to 1- gq. So, C(qn) increases to C(q). If C(q)- ec, the statement holds. Suppose
C(q) < oc. Then [1 gqn is bounded. Now, 1 gq, e (a) and it is a bounded sequence in

(a). This sequence tends to 1-gq. Hence 1-gq e 3g(a), and

V (1 gq) 2 < lim / V (1 gqn) 2.

Now qnTq, gq [gq so that lim(qn, gqn > qgq, where the last is defined to be zero if gq- O. So the
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result follows from Fatou’s Lemma.

Theorem 5.1: If s is excessive, then Gl-g
Proof: Let x0 C D and B(xo, r C n. For y B(xo, r), G(xo,.) is harmonic in D\B(xo, r

and continuous. So, for some M, G(xo, y <_ Ms(y) for all y OB(xo, r ). Hence, G(xo, y <_
Ms(y) for all y D\B(xo, r ). So,

f a( 0, _<
n\B(xo, r)

Here, A denotes the Lebesgue measure. In B(x0, r), s is bounded from below. So,

J G(Zo, y)s@y)dy<
B(xo, r)

which completes the proof.

Thus, 7"

f, )dr
1>0

everywhere and satisfies Ags ---gs"
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