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ABSTRACT

The Feynman-Kac formula and its connections with classical analysis were
initiated in the now celebrated paper [6] of M. Kac. It soon became obvious that
the formula provides a powerful tool for solving partial differential equations by
running the Brownian motion process. K.L. Chung and K.M. Rao in [4] used it
to characterize solutions of the Schrodinger equation. In this paper we study
some properties of the Feynman-Kac functional using the Brownian motion pro-
cess. In particular, we are going to use it in connection with the gauge function
in order to obtain an energy formula similar to one obtained by G. Dal Maso and
U. Mosco in [5].
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1. Introduction

In [5], G. Dal Maso and U. Mosco studied a relazed Dirichlet problem in an open region 2 of
Rd, d > 2, which can formally be written as:

—Au+ pu=01in Q, (1.1)
where A is the Laplace operator and p is an arbitrary non-negative Borel measure not charging

polar sets in R, The measure u may take the value + oo. Special cases of (1.1) are Dirichlet
problems of the type

~Au=0inQ—-FE, u=0onE, (1.2)
(E denotes the closure of E), as well as the stationary Schrédinger equation:

—Au+gq(z)u=0in £,
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where ¢ is a non-negative potential. The main result in [5] is an approximation of equation (1.1)
by a sequence of Dirichlet problems of the form (1.2). In order to carry out this procedure, one
needs to study the behavior of an arbitrary local weak solution u of (1.1) such that u €
f}{;}oc(Q) NL? (€, p) and having finite local u-energy given by:

loc

/ | Vul|2de + /uzdu, Q' c Q. (1.3)

Q/ Ql
The methods in [5] are variational in nature. In this paper, we study the Feynman-Kac func-
tional, directly using the Brownian motion process. Using the gauge function, we obtain an ener-
gy formula in part 5 similar to formula (1.3). Section 3 deals with the characterization of the
null set of gy For example, in Proposition 3.3, it is shown that the set {g, = 0} is a polar set.
Section 4 deals with continuity properties of the gauge function 9q Specifically, Theorem 4.2
shows that if g  is nonvanishing and continuous in €2, then ¢ is in local Kato class in €. Finally,
Section 5 deals with the energy as introduced in [7]. In addition, it is shown that if s is an exces-

sive function, then its corresponding gauge function satisfies the equation Ag, = %gs.

2. Notations and Preliminaries

Throughout this paper, X = {X,;t > 0} denotes the Brownian Motion process in Rd, d>2;Q
t
denotes a domain in R%. Let ¢>0 be measurable. Let e,(t) = exp[ — {q(Xs)ds], 9,(z) =

E%e (7)], where 7 =exit time from Q. Using strong Markov property, we see that 94 <

E‘x[gq(XTB)], where 7p =exit time from a ball with a center z. Also, it is seen that if ¢ is

bounded, then 9q is continuous; hence, in general, 9q is upper semi-continuous. It follows that 9q
is subharmonic in .

Throughout this paper we deal with a topology on RY that is finer than the Euclidean metric
topology. Namely, the fine topology on R? is the smallest topology on R? for which all superhar-
monic functions are continuous in the extended sense. It is easily seen that the fine topology is
larger than the Euclidean metric topology on R%. So we speak of fine interior, finely continuous,
etc.

Another concept which is used in the paper and which is related to the behavior of the
Brownian motion process is that of a regular point of a set. Namely, given a set D denote by T
the exit time for the Brownian motion from D. (Which is the same as the hitting time of the
complement of D.) Then, a point a € 8D is called regular for D¢ if P{T =0} = 1. In other
words, starting at a regular point the Brownian motion hits the complement of a set in question
immediately.

3. The Null Set of g,

In this section we study the set on which function 9q vanishes.
Proposition 3.1: ¢ < oo a.e. on the set {gq >0}.
Proof: Suppose ¢ is bounded. Then, assuming the domain 2 is bounded,
T
T - fs a(X )do

1-e(n) = [ax)e

0

ds. (3.1)
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Therefore if ¢ is bounded,

1—g,(z) = Glag,] (3.2)

which is a consequence of (3.1) and Markov property.

For general ¢, let a, = ¢ An. Using (3.2), one gets,

=g, (2) = Glay 94 12 Gla,9,)

Let n tend to infinity in the above inequality. We get

1=g,>Glag,),

where qg, is defined to be zero if g, = 0. Thus, ¢g, < 00 a.e.
A more precise result is the following:

Proposition 3.2: Suppose gq(ﬁ) =0 and that & is regular for the set {gq >0}. Then, £ is an
“explosion point” for q, 1.e.,
t

vt >0, Pt / g(X,)ds = cop=1.
0
Proof: Let ¢ >0, F' = {gq > ¢} and let T be the hitting time of F. Then,

0=g4(6) 2 E*[ey(T)go(X1): T <]

implying e,(7') = 0 on the set {T'< 7}. As €|0, the hitting times decrease to the hitting time to
{gq > 0} which is zero Pé-a.s. by assumption. This completes the proof.

Remark 3.1: If gq(f) =0 and £ is not regular for {gq > 0}, then £ must be in the fine interior
of {gq =0}. Thus,

{gq = 0} = {finely open set} U {the set of explosion points of g¢}.

Remark 3.2: Suppose 9q % 0. Then {gq > 0} is a finely open non-empty set. So, some point
of {gq = 0} must be a regular point for {gq > 0}. However, such a point is an explosion point for
q. Thus, we can say if ¢ has no explosion points, then g, cannot vanish unless 9= 0.

Let us show that some point for which g, = 0 is regular for {g, > 0}. Let g ,(§)=0and T =
hitting time to {g, > 0}. Since g (X,) is continuous in ¢ for ¢ >0, we see that g (X7) =0 if
T < oo and X is regular for {g, > 0}, almost surely. Hence, there are points for which 9= 0,
and which are regular for {g, > 0}.

,
Proposition 3.3:  Suppose that for some &, Pe{f q(X,)ds < oo} =1. This implies that
{9, =0} is a Polar set. Furthermore, 0

1-g,=Glag,) (3:3)

Proof: Indeed, g, is finely continuous so that set A = {gq: 0} is finely closed. If T =
hitting time of A, we have , T

Efe 0 :T<r]=Ee © g (Xp):T<r]=0
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T

because g,(Xp) =0 on the set (T'< 7). Thus, Pée O lp . =0]=1. However, it is given

T

thate 0 >0 with Pf—probability 1. Hence, we conclude that A is a Polar set.
Remark 3.3: The proof of formula (3.3) is as follows.
T
We have Pf[fq <oo] =1. Therefore the following arguments are valid: Let ¢,Tq with
0

G(q,,) bounded. Then we know that (3.3) holds with ¢ replaced by ¢,,. By taking limits, we get
G(ng) <1-g, By definition, we have always gg, = 0 on the set {gq =0}. At & we have

Glag)(€) = B [ [ a(X,)g,(X,)ds]
0

r
q(X,)du

=E¢ [/ X)e s ds)

T

=FE{l-¢ © q] =1-g,(8)
Now we can claim that 1 —g, - G(ng) is excessive. Indeed, if ¢,1¢,
1 =94 = Glagy) = lim[l — g, —G(gn9,)]
= lim([G(q,9, ) — G(gn9,)]
= imGla,(9, —9,)]

and each is excessive. Thus, since (3.3) holds at &, it holds everywhere

Remark 3.4: Under the assumption that for some &, Pe f q < o0o] =1, we can show that the
only zeros of g, are the explosion points of g.

Indeed, if g (z) = 0 we have :

0= g,(2)> Bfe 0g,(X)t<7)
Since gq(Xt) >0, eq(t) = 0 for every t, which means that z is an explosion point.

Example: Let ¢(z) = |z | ~ B 2 < B <3in R® Then, using scaling for Brownian motion we
see that for any ¢t > 0,

t t
PO{/|XS|’Bds<a}:PO / |ex/2|-f’ds<a
s/€
0 0

t/e:2
= PO 52"ﬁ/ |XS|_ﬂds<a.
0
t
The last inequality holds for every ¢ > 0. It follows that [ |X,| ~Bds = oo, Vt >0, P'—a.s.,

0
i.e., 0 is an explosion point for ¢ and, of course, gq(()) = 0. Note that ¢ is locally integrable. If
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{¢;} is a dense countable set, let ¢; = [z —¢;| =8, Then q; is locally integrable. For suitable
t

constants 7;, ¢ = Y.7,9; € L}, and V¢ > 0 and Vi, PE"[fq(Xs)ds = o0o] = 1. Thus, it is possible
that 9= 0 on a dense set with q integrable. 0

4. Continuity Properties of g,

The following remark will be helpful in the proof of Proposition 4.1.
Remark: The function

G(x,t) = Pr < ]+ E[g,(X,):t < 7]

decreases as t decreases and tends to ggast tends to zero for each fixed z.

Indeed, if s < t, we may compute

G(z,t) — G(z,s) = P?[s < 7 < t]+ E*[{exp( - / q(X,)du) — exp(— / q(X,)du)}:t < 7]
t ]

— E¥lexp(— / q(X)du):s <7 <t]>0.
S
Also, G(-,t) is continuous for each t. Thus, if 9q is continuous, G( -,t) tends to 9q uniformly on

compacts by Dini’s theorem. We conclude that g, is continuous if and only if et )[gq(Xt):t < 7]
tends to 9q uniformly on compacts as t tends to zero.

Proposition 4.1: Let g. = g be continuous. Then g = is also continuous.
PO ? q; gql + q9

Proof: If h is any of g,,g, or g and r any of ¢, + ¢, ¢; or g, we have by Markov property
for any t,

- ftr(Xs)ds
E¥[h(X,):t <T]—h(z) = E*[A(X,)(1—¢ O )it < 7]
- }r(Xs)ds
—E%le © 1T < 1)

The last term above clearly tends to zero uniformly on compacts because P*{r < t} does this as
t—0. From the last sentence of the above remark, the continuity of h is equivalent to

ECR(X ) (1= e (t)):t < 7] (4.1)

to tend to zero uniformly as t—0. If h =g, and r =g¢;, ¢ = 1,2, this is the case because g; are
continuous. We have with h = g and r = q; + ¢,, that

gt )[g(Xt)(l —e (1)t <]
= BU)g(X (1 =g (1) +eq (1) e ():t < 7).
Since g < g,

EC)g(X,)(1 - cq, ()it <7]< EC)g,(X,)(1 - ¢g, (D)t <),
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using the conclusion stated in the last sentence of the previous remark, it follows that the left-
hand side of this inequality tends to zero uniformly as t]0, because the right-hand side does it,
since g, is continuous. Likewise,

BUg(X )(eg (1) = e, (D)t < 7] < B gy(X,)(1 - ey (D):t < 7],

where again the left-hand side of this inequality tends to zero uniformly as ¢]0, because the right-
hand side does it, since g, is continuous. This concludes the proof showing that 9q. 44 is also
continuous. 1

Proposition 4.2: If g 18 continuous, so is gy for all X > 0.
q
Proof: Because of Proposition 4.1, it suffices to prove Proposition 4.2 for 0 < A < 1.

As in the proof of Proposition 4.1, we need only to show that if g, = g, ,
q

E*gA(X)(1 ey (1):t <7] (4.2)

tends to zero uniformly on compacts. By Hoélder’s inequality, the expression in (4.2) is less-than
or equal to

—-1 -1
{E°lgy (X)(1- e,\q(i))A i< TP (4.3)
Now we use Holder’s inequality again to obtain g, < g;‘ and clearly,
-1
(1—ey (1) <l—ey <l—eyt).

q q

Thus, it follows from (4.3) that the expression in (4.2) is less than or equal to
E%[g (X )(1 - ey(8)):t < 7

and the result follows.

Theorem 4.1: Suppose Gq is locally bounded. Then 9q 1s continuous if and only if Gq s
continuous.

Proof: Step 1. Suppose Gq is bounded. Then 9q is continuous if and only if Gq is contin-
uous. To see this, write

K, f= E’[/ e (t)f(X,)dt]
and compute: °
9q=1-Kgq
Gq = K g+ K [¢Gq].

The first equation shows that 9q is continuous if and only if K ¢ is continuous, and from the
second equation, we see that under the condition that (Ggq is bounded, the continuity of Gq is
equivalent to that of qu.

Step 2. Now suppose D is a relatively compact subset of Q. Then, G g < Ggg and Ggg
bounded on D implies that G g is bounded. Suppose 9q is continuous. We have

9, = E*eg(Tp)gg(X - D) (4.4)

D
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Now by Jensen’s inequality, gq(:r:) >e” Ga(=)

gq(XTD) > ¢. Then, one can write

9q(2) = eE%[eg(T )]+ E¥[eg(Tp)(94(X ) = €)]-

, so that g q is bounded from below on compacts, say,

Both terms on the right-hand side of this equation are upper-semi-continuous functions on D.
However, the left-hand side is continuous on D implying that the both terms on the right-hand
side are continuous. This implies that E*[e ()] is continuous on D. This fact and the result
from Step 1, imply that GG pq is continuous. However, on D, Gq=Gpq+ a harmonic function.
This implies that Gg¢ is continuous on D.

Suppose now Ggq is continuous. Then, for each relatively compact open subset D, G pq is
bounded and continuous. Hence, from Step 1, () [e,(Tp)] is continuous and, from (4.4), so is
9 This completes the proof.

Theorem 4.2: Let 9q be nonvanishing and continuous in Q. Then q is in local Kato class in
Q, i.e., Gqlp is continuous and bounded in Q for each relatively compact set F.

Proof: Step 1. First, suppose that g 1is bounded from below and continuous in €. Say,
9dq 2 € Then, we claim that G¢ is bounded and continuous in €. To see this, note that

1—g,>Glag,] > Gy,

giving Gq < <l=¢ie., Gqis bounded. Then, by Theorem 4.1, Gq is continuous.

Step 2. Again, we localize the problem. Let D be a relatively compact subset of Q. We have

9= B7leq(7 D)oy (X, )

Since 9q is nonvanishing and continuous, it is bounded from below on D. So, as in Theorem 4.1,
we see that Ew[eq(TD)] is continu?us D. Moreover, E’[eq(TD)]qu25, say, (beca.use 9q is
bounded from below on compacts), implying from Step 1 that G ¢ is bounded and continuous on
D. This completes the proof.

Finally, we have:

Theorem 4.3: Suppose Gq # oo. If 9q ts continuous, then Gq is extended continuous and
{g =0} ={Gg=o0}. If Gq is extended continuous, then gq s continuous at every point at
whzch Gq(z) < 0.

Proof: Suppose 9q is continuous. Then the set Dy = {gq >0} is an open subset of Q. Also,

the set {Gq(z) < oo} is contained in Dj. Indeed, if Gg¢(z) < oo, then Pz{f q(X,)ds < oo} =1,
implying that gq(:ﬂ) > 0.

We will show that Gq is continuous on Dj. Gyq is necessarily continuous at each z, such that
Gq(z) = oo, and this set contains Dj. Let D be a relatively compact open subset of D and set
7y =7p. Then,

14(2) = Ble,(r)a,(X )]
Since g, is continuous and strictly positive on D, E¥ [e,(T1)] is continuous and bounded from
below on D (it dominates gq On D). Hence, by Theorem 4.1, GDq is continuous and bounded in
D. Since Gg=Gpg+ a harmomc function in D, we see that Gq is continuous on D. Thus, Ggq
is continuous and finite on D,. Suppose now (g is extended continuous. Let U = {Gg< N} U
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is an open set. We need only show that g_is continuous on U. Now, on U, G{;q is bounded and
continuous. So, from Theorem 4.1, B’ [eq(TU)] is continuous. Hence, so is 9 This completes
the proof.

Lemma 4.1: Let fy, 0 <A <1, be a family of lower semi-continuous functions on X. Sup-
pose 0 < fy <1 and that f,(z) is increasing in X. Let

1
f(z) = / Fa(z)dA.
0
Then, f continuous at x, implies fy(-) is continuous at x, for every A which is a continuity
point of A—fy(zq).

Proof: Suppose f is continuous at , and yu is a continuity point of A—f,(z,). Since f,(zy)
is increasing in A, we see that

u+h
L @i (45)
m
u+h
is increasing in h. Also, function [ F(z)dX and hence, the function in (4.7), is continuous at
"

zo. As h|0 these functions decrease to fu(:c) Thus, at z, f“ is upper semi-continuous function.
Since f/t is lower semi-continuous by assumption, the proof is complete.

Corollary 4.1: g, is continuous if and only if a—P*{A,, > A} is continuous for all A >0,
T
where A= [ ¢(X,)ds.
0

Proof: We have
1

9,(z) = E"[e A°°] = / P*{e” Aoo 5 t}dt

0
1 1

_ / p{ls footar =1 - / P4, > logdlat.

0 0

The family f,(z) = P*{A,, > logl} satisfies the conditions of Lemma 4.1. Thus, 2—P%{A_, > u}

is continuous at z; provided A—»PxO{Aoo > A} is continuous at p. It is easy to see that for any z,
P*{A,_=A}=0. In other words, A»P®{A_ > A} is continuous in A for each z. Thus, the
continuity of g implies that of z—P*{A_ > A} for each A > 0. Conversely, if z—P*{A_ > A} is
continuous, then so is z—P%{e ~°° > A}. Finally, by bounded convergence theorem, it follows

1 -
that [ P*{e Aoo 5, A}dA is also continuous.
0

5. Miscellaneous Results

Some simple facts: The following inequalities will be used in the sequel.
e %4e b>14e72"b g b>0, (5.1)
so that if c <aAb,

o=(a=0) | == <14 ~(a=)=(b=0)
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or
e e b<e et 4 b>0, c<aAb. (5.2)
¢ ¢ ¢
Thus, if ¢;,¢; >0 and a= [q, b= [qy c= [(g9Aqy) (X,)ds we get from (5.2) since a+b—
t 0 0 0
C:f(I]VQQa
0
oy (1) 60, (D) < g v () + 4, ngnl0) 6.3

In particular,
gql + g‘12 S gql v a9 + gql A Q2.

Consider 1 — ¢ ¢ We know that this function is excessive. Let

Clg) = L[1-g,]

where £ is the mass-functional. (See [7].)

C(q) has the following properties:

(A) ¢ < ¢,=>C(q;) <C(gy). Indeed, 9, < gqlél ~9q, >1- 9q,"
(B) C(g) <oo=1—g, is a potential. (A harmonic function has infinite mass functional.)
(C) C(0) =0. This property is clear.

(D) C is strongly subadditive, i.e., C(q; V q5) + C(q; Aqy) < C(q) + C(gy). This follows im-
mediately from (5.3).

" flqul2 /ng C(q)-

Proof: First, suppose that ¢ is integrable and Gq¢ bounded. Then

holds. Thus C(q) = fqgl. Also, the potential G(ng) has finite energy because fng ng) <

fqg < [g<oo. The energy is f|Vquq)l2 f|V1—gq|2 f|ng|2 After
multlplylng (5.4) by 99, integrating and using the above expression for C(q), one gets

/Ing|2+/qg§=/ng=C(q)-

Let ¢, satisfy fqn < oo and let Ggq, be bounded and let it increase to g. Then, l—g,
increases to 1—g, So, C(q,,) increases to C(q). If C(q)= oo, the statement holds. Supposé
C(g) <oo. Then £[1—g, ]is bounded. Now, 1—g, € 365(2) and it is a bounded sequence in

n n

365(€). This sequence tends to 1 — 9, Hencel—g € 365(%), and

[1va-g)?<iim [190-g,)1"

Now ¢, 1q, gqnlgq, so that li_m(qn,gqn) > qg,, where the last is defined to be zero if g, =0. So the
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result follows from Fatou’s Lemma.

Theorem 5.1: If s is excessive, then G % oco.

Proof: Let zy € D and B(zy,r) C D. For y ¢ B(zy,r), G(2g, - ) is harmonic in D\B(z,,r)

and continuous. So, for some M, G(z4,y) < Ms(y) for all y € 0B(zy,r). Hence, G(zg,y) <
Ms(y) for all y € D\B(zg,r). So,

G(zo, y)ﬁdy < M - X(D\B(zy,r)).
D\B(xo,r)

Here, A denotes the Lebesgue measure. In B(zg,r), s is bounded from below. So,

which completes the proof.

Thus,

/ G(mO’ y)iq'jdy < OO,
B(zo,r)

T
- d
‘(])'S(Xt) !

g, = E%e 1>0

everywhere and satisfies Ag, = %gs.
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