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ABSTRACT

We consider the transient analysis of the M/G/1/0 queue, for which P (t)
denotes the probability that there are no customers in the system at time ¢, given
that there are n (n =0,1) customers in the system at time 0. The analysis,
which is based upon coupling theory, leads to simple bounds on P,(t) for the
M/G/1/0 and M/PH/1/0 queues and improved bounds for the special case
M/E,/1/0. Numerical results are presented for various values of the mean ar-
rival rate A to demonstrate the increasing accuracy of approximations based upon
the above bounds in light traffic, i.e., as A—0. An important area of application
for the M/G/1/0 queue is as a reliability model for a single repairable compo-
nent. Since most practical reliability problems have A values that are small rela-
tive to the mean service rate, the approximations are potentially useful in that
context. A duality relation between the M/G/1/0 and GI/M/1/0 queues is also
described.
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1. Introduction

In this paper, we consider the transient analysis of the M/G/1/0 queue; i.e., the single-server
queue with a Poisson arrival process, a general distribution of service times and no buffer. We
denote by P_(t) the probability that there are no customers in the system at time ¢, given that
there are n (n = 0,1) customers in the system at time 0. Additionally, let

A~ ! = mean interarrival time of customers (0 < A < o0),
p~ ! = mean service time of customers (0 < p < 00),
B(t) = Pr(service time < t),

B(t) =1- B(t).

We also assume that the residual service time of a customer in service at time 0 has a Radon-
Nikodym derivative. It is clearly of the form pB(t), t > 0.

It is well-known [5] that, for the M/G/1/0 queue:

Printed in the U.S.A. ©1995 by North Atlantic Science Publishing Company 347



348 J. BEN ATKINSON

Po(t)m2m/ A+ 1), Pyt /(A + ), 1)

t—o0

and, for the M/M/1/0 queue,
Po(t) = u/(v+ 1) + M (A+ pe - A+, )

and

Py(t) = p/(A+ i) — s/ (A e~ AH (3)

Closed-form solutions, such as (2) and (3), are difficult to obtain for any but the simplest
transient queueing models. Much of the early work in this area concentrated on the derivation of
exact analytical results [3, 10] while, more recently, there has been an increased emphasis on the
use of approximate or exact numerical techniques (8] and the calculation of bounds. For the
M/G/1/0 queue, it has been shown [7] that, in the case of service times having the property of
increasing failure rate, the rate of convergence of Py(t) and P,(t) to their common limit

1/ (A + p) is O(exp( — (A + p)t)).

An important application of the M/G/1/0 queue is as a reliability model, involving a
repairable component that can be in one of two states, either “working” (n = 0) or “under repair”
(n=1). Such a system can also be described by an alternating renewal process [4]. In the
analysis below, we obtain approximations for Py(t) and P,(t) that become more exact as A—0.
Since many practical reliability problems have A values that are small relative to p, the results
are potentially useful in that context. Alternatively, they can be viewed as a contribution to the
study of queueing loss systems under conditions of light traffic.

In the next section, we use coupling theory to obtain simple bounds on the probabilities P(t)
and P,(t) for the M/PH/1/0 and M/G/1/0 queues; in the former case, the service time has a
phase-type distribution, which can be used as a general model for approximating a wide variety of
empirical distributions [6]. This is followed by a method to improve the bounds, which is
illustrated for the special case of an Erlang distribution of service times. We then give a duality
relation between the M/G/1/0 and GI/M/1/0 queues in terms of the method of analysis
employed in this paper. Finally, some numerical results are presented for the M/E,/1/0 queue to
demonstrate the accuracy of approximations based upon the derived bounds for small values of .

2. The M/PH/1/0 and M/G/1/0 Queues

Our model will make use of coupling theory [1, 12]. By a coupling of two stochastic processes
{X,} and {X}} with the same state space and the same time parameter set, we understand a
realization of {X,}, {X}} on a common probability space with an associated random time
7(7 < 00) and the property that X, = X} on {r <t¢}. We now consider the coupled processes to
be two M/G/1/0 queueing systems, as described in Section 1. The servers will be referred to as
server 1 and server 2 and, at time 0, we assume that server 1 is busy and server 2 is idle. After
some finite time 7, the two servers will both be idle for the first time. It then follows from
coupling theory [1, 12] that, for the M/G/1/0 queue:

| Po(t) = Py(t) | < Pr(r > t).
Hence, using the steady-state probabilities (1) it can easily be shown that

| Po(t) = p/(A+p)| <A/ (A+ p)Pr(r > ), (4)
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and
| Py(t) = p/(A+p)| <p/(A+p)Pr(r >1). (5)

For most of this section, we will assume that the service time distribution B(t) is of the phase
type: i.e.,

B(t) = i": z': PiBE(t B k),

i=1 k=1
where

o0
Bp(t;Bik) =Y (B;t)Texp(— B;t)/ !,
i=k
and B; >0, B, distinct (i = 1,2,...,m). The maximum number of service phases is r, and so, for
at least one ¢ (i = 1,2,...,m), p,. > 0. A service can be considered to be in state (7, k) when there
are k (k =1,...,r) residual, exponentially distributed service phases, each having a mean duration
,Bi_l (:1=1,2,...,m). When a server is idle, we denote its state by (0,0), and when a service
commences, it enters state (i,k) with probability p,,. Therefore, at time 0 server 1 is in state
(7, k) with probability ¢,;, where

ik = (/"/ﬂi)i: Pijs (6)
=k

while server 2 is in state (0,0). In general, when server 1 is in state (¢, j) and server 2 is in state
(k,1), the combined system state is denoted by (i, j,k,!) and the probability that the system is in
this state at time ¢ is denoted by P,(i, j,k,1). The coupling time 7 is thus the time at which the
system of queues first enters the state (0,0,0,0). We will assume in our analysis, that this is an
absorbing state, and hence we have:

Pr(t >t)=1-P,0,0,0,0). (7)
Our strategy will be to obtain a lower bound for P,(0,0,0,0) and hence an upper bound for
Pr(r >t) to use in (4) and (5). The basis of our analysis will be the following state equations, in
which P’(-) denotes the derivative with respect to . When no confusion can arise, for brevity we
omit the parameter ¢t from the probabilities.

0<yj,l<r:

P/(iajak,l) = _(ﬂ,+;Bk)P(z,Jak,l)+;B,P(laJ+l,k»l)"}'ﬂkp(z’],kil'*'l)

+ /\pijP(0,0, k1) + Apy, P(4, 4,0,0), (8)
O<i<r:
P'(i,r k1) = —(B; + B)P(i,r k1) + B P(i,r, k, 1 + 1)
+ Ap; P(0,0,k,1) + Apy, P(3,7,0,0), 9)
O<j<r:

P'(i,5,k,r) = = (B;+ Bi)P(i, j, kyr) + B;P(3,5 + 1,k,7)
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+Ap; iP(0,0,k,r) + Apy,P(3,5,0,0),
P'(i,r,k,v) = —(B; + Br)P(iyr, kyr) + Ap,, P(0,0,k,7) + Apy, P(i,7,0,0),
O<li<r:

m
P'(0,0,k,0) = — (A+ B)P(0,0,k,1) + B P(0,0,k, 1 + 1)+ Y B;P(i,1,k,1),

1=1

m
P'(0,0,k,7) = — (A+ B)P(0,0,k,7) + Y _ B;P(i, 1,k,7),
i=1

0<j<m

m
Pl(i,j,0,0) = —(/\—}-ﬂt)P(z,],0,0)+,3’P(z,]+ 1,0’0)+ Z :BkP(i’jak91),
k=1
m
P'(i,r,0,0) = — (A + B;)P(i,r,0,0)+ Y _ B P(i,r, k,1),
k=1

m m
P'(0,0,0,0) = Y B;P(3,1,0,0) + Y _ BP(0,0,k,1),
i=1 k=1

j > 0 (initial conditions):
Po(l, ],0,0) = q!]'
We now introduce Laplace transforms as follows:

o0
L(i, j, k1) = / e~ P(i, ,k,1)dt, R(s)>0.

0
In addition, let

bip=(s+8;+8,) 7Y, and ¢, = (s +A+8,) "L

Hence, equations (8) to (17) become:

0<j,l<r:
b7 1L(3, §, k,0) = B,L(3, 5 + 1,k, 1) + B L(3, j, k,1 + 1)
+ Ap;;L(0,0,k,1) + Apy, L(3, 5,0,0),
0<li<r:
b7 L(i,r, ky 1) = B L(iyr, ky 1+ 1) + Ap;, L(0,0, k,1) + Apg, L(3,7,0,0),
O<g<m

bk lL(i,j, k,r)=B;L(i,j + 1,k,r)+ /\p'-jL(O, 0,k,7)+ Apy,.L(4, 5,0,0),

biTc IL(i’r’ k’r) = ApirL(OvO? ]C,'I') + /\per(i,r,O, 0)’

(10)
(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)
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et e LL(0,0,k,1) = B, L(0,0,k, 1 + 1) + f: B,L(i, 1,k,1), (22)
i=1
i 1L(0,0,k,7) = f: B;L(i,1,k,7), (23)
1=1
dea<r ¢ L3, §,0,0) — ¢;; = B;L(i, j + 1,0,0) +§:lﬂkL(i, Ji k, 1), (24)
¢ 1L(4,7,0,0) —¢;, = f: BiL(i,r k1), (25)
k=1
sL(0,0,0,0) = f: B;L(i,1,0,0) + f: B L(0,0,k,1). (26)
i=1 k=1

Now, let z,,,y;,,2;; and h(i,5), =1,2,...,m; j=1,2,...,7) be defined as follows:

T = L(i, 3,0,0), Yij = L(0,0,1, j), 25 =Tt Yig

h(i,j) = Zm: BIL(v, 1,4, 5) + L(3, §,v,1)].

v=1
Hence equations (22) to (25) give for 0 < j < r:

¢ 12.']' =Bz j+1+h(,5) + 45 (27)
and

c; lzir = h(i,r) + q;,. (28)

Solving (27) and (28) for z;; we get:

2 =B (eiB)* T I T RG ) + 5. (29)
k=3
From (26) we have m
$L(0,0,0,0) = Y Biz;y. (30)
i=1
We can then write
L£(0,0,0,0) = go(s) + g1(s)s (31)
where m r
go(s) =571 Z Z (ciB) i (32)
1i=1 k=1
and m T
g1(8)=s71> 0 ) (e;8,)%h(, k). (33)
i=1 k=1

Clearly, the functions gg(s) and g,(s) are Laplace transforms of bounded, nonnegative
functions of A and t, for which we shall use the notation O (1). Hence, inverting g,(s) in (31), we
get

Pt(OaO’Ovo) Z fo(’\,t) (34)
where
m T ,8 k
Fa0 =32 3 el 5 ) B8+ 0. (39)
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Therefore, using (4), (5), (7) and (34), Py(t) and P,(t) can be bounded as follows:
| Po(t) = /(A + ) | <A (A+ w1 = fo(X D)), (36)

| Py(t) = /A4 p) | < /(A4 )1 = fo(A 1)) 37)

and

We can give the following probabilistic interpretation of (35). Consider the more general
system in which two M/G/1/0 queues are coupled as above. Let t* be the departure time of the
customer that was in service at time 0; let n(t) be the number of customer arrivals during the
interval (0,t); and let p(A,t) be the probability Pr(0 <t* <tnNn(t*) =0). By assumption, the
residual service time of the customer in service at time 0 has the density uB(t), and so

t

p(\t) = / pexp( — At)dB(t).
0

For the particular case of a phase-type distribution of service time, calculation shows that
p(At) = fo(Mt). Clearly, for the M/G/1/0 queue, Pr(t >t) <1—p(),t), and so, in this case,
the bounds (36) and (37) apply if fy(A,t) is replaced by p(A,t).

Returning to the M/PH/1/0 queue, we clearly expect f((),t) to be a good approximation for
P,(0,0,0,0) only when X is small. Evidently, the error introduced as a consequence of using
bounds (36) and (37) to approximate Py(t) and P,(t) respectively, instead of using the tighter
bounds (4) and (5), tends to zero as A—0. We can show that fy(A,t) converges uniformly to
f0(0,t) by showing that the function g,(s) in (33) can be written in the form

91(s) = 20,(1). (38)

In establishing such a form for g,(s), we shall also obtain the basis for calculating improved
bounds for Py(t) and P,(t) to be described in the next section.

We now examine the function h(i,k). To this end, we partially solve equations (18)-(21) to
obtain L(%,j,k,1) in terms of the simpler transforms ¢ and y . First, using (19) and (21) and
induction on [/, we obtain

O<l<r:
N !
LG, by 1) = Ao > (Bibir)” ™ [Piv¥iy + Prouir): (39)
v=I

Similarly, by using (20) and (21) and induction on j, or by applying an obvious symmetry
argument to (39), we obtain

0<y<r:

r .
L(iy j,kyr) = M Y (Bibin)” ™ I[Pieiy, + PiyYis - (40)

v=j
We can then use (18) and induction on j to obtain

0<jl<r:
r—j-1 ,
L(i, j, k,1) = ﬁkbikz (B ) L(G, j+ v,k I+ 1) + (8;5;) ™ I L(i,r, k, 1)

v=0
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r—j3—1
+ b Y (Bdin)’1pi j 4 Y+ PrTi, 4 ) (41)

v=20

Inspection of (21) and (39)-(41) shows that, for 0 < j, I <r, we have L(4, j, k,1) = AO,(1), and
so, recalling the definitions of h(i,k) and g,(s), it is clear that (38) is also established: i.e.,
91(8) = A0,(1). We thus expect the simple bounds (36) and (37) to approximate Py(t) and P,(t)
more closely as A is reduced towards zero. However, before checking this numerically, we will
make use of the above analysis to obtain improved bounds for Py(t) and P,(t), illustrating the
approach for the particular case in which the service time has an Erlang-r distribution.

3. Improved Bounds for the M/E_/1/0 Queue

For an Erlang-r distribution of service times, we can simplify our notation as follows:
m=1,0; =p,b;; =b,c; =c¢;
Pir=Lpp =0 (k#r);
G =1/r (k=1,..,r);
Tj=E5 Y1 =Yg 4= 2 (F=1,..,7)
L(1,7,1,k)=L(j,k) (7=1,..,m5 k=1,..,r);
L(0,0,0,0) = L(0,0), P,(0,0,0,0) = P,(0,0);
h(1,5) =h(7) (G=1...,7)

Equations (39)-(41) become:

O<i<m
L(r,0) = Ab{(bﬁ)’ —lz 4+ Z (bB) ~ lyu}, (42)
0<j<m "
L(j,r) = Ab{(bﬂ)’ “y, + i.(bﬁ)" . jxy}, (43)
0<jl<r: ’ o
L(5,D) :r;i;l(bﬂ)" LG+ v, 04+ 1)+ (bB)" ~IL(r,1). (44)

Using (42)-(44) and induction on I, we can obtain the following partial solution for L(j,!) in
terms of the simpler transforms z and y,:

0<gl<r:

r—1 .
L(j,l):% Z<2r——1—!—k)(bﬁ)zr—j—l—k+1yr_k

k=0 r=J
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%Z( Earial) C Ca e (45)

From (31)-(33) it is clear that

L(0,0) = E (cA)¥[h(k) +1), (46)
where o
h(k) = BLL(L, k) + L(k, 1)]. (47)
Using (45) and (47), and defining the function Qy(z,) as follows:
Qurlz,) :pik (r + f: f - 1>(bﬂ)r tpek, +pz::1<r + f:llcc - 1)(bﬂ)r tpoky (48)

we can easily show that

h(k) = MQpp(,)- (49)
Hence (29) and (46) become
2= 871 ()T Qy(z,) +1], (50)
and =
0.0 = 3 () (5) + 1 (51)

Then, using (50) and (51), we obtain

k=1

510,00 =13 (c) [1 +(3)ows (UZp(cﬂ)"‘”“)+(%)203(1)}- (52)

Our improved bound for P,(0,0) is, therefore,

Py(0,0) 2 fo(M )+ (A/B)f1 (A1), (53)

where f,(A,t) can be found by inverting the following Laplace transform:

A3 (€00 (VZP(Cﬂ)”“”“)- (54)

Using (48) and carrying the inversion, we obtain, for the case 3 # A:

r - 2r—p+1 2r—k -1 2r—p+1
=13 [z(,_l) TR M (S > R(p,n} )

k=1 = v=1+4k p=r+1-k v=1+k

where
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+,./z_:1(u+p—2—i)P*(i,(/\+ﬂ)t)(_1),,_,~(A_;_ﬂ)—i—l(ég_/\>—u—p+1+i 56

1=0 p—l
P (vt p=2=1\pu, k—ijoy—i—1f A=B TvopELH
+i2=:0( P2 st (252 ,
and
P*(i,t) = I 1.-’@". (57)
i=o”
Thus we can write:
| Po(t) = /(A + 1) | S XA+ )L = fo(At) = (A/B)f1(A1)] (58)
and
[ P1(t) —p/(A+ ) | <p/(A+p)[L—Fo(At) = (A/B)f1(A1)]. (59)

4. The Dual Queue GI/M/1/0

We can mention a duality relation between the M/G/1/0 and GI/M/1/0 queues. Consider
the following changes to the two coupled queues described above: (i) interchange the
distributions of interarrival time and service time so that the interarrival time now has the
distribution B(t) with mean ;! and the service time has an exponential distribution with mean
A~ and (i) let the coupling time 7 now be the first time at which both servers are busy. Under
these changed conditions, it is nevertheless clear that the distribution of 7 remains unchanged.
Using steady-state results for the GI/M/1/0 queue [11] and coupling theory, the following bounds
(analogues of (4) and (5)) apply for the GI/M/1/0 queue,

| Py(t) = K| < (1—K)Pr(r>t), (60)
and
| P,(t)= K| <K Pr(r > t), (61)
where
K =1—(u/N(1 - / ooexp( —~ M)dB(1)).
5

Here, K is the steady-state probability that the server is idle. We could also write down
analogues of the bounds (36)-(37) and (58)-(59) since f,(),t) and f,(A,t) are also unchanged in
going over to the dual system. With the roles of A and u reversed, clearly the bounds will now be
asymptotically exact under conditions of heavy traffic, i.e., as A—0. Approximations based upon
such bounds are unlikely to have practical application in the reliability context.
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5. Some Numerical Results

A FORTRAN program was written, using double-precision arithmetic, to test the use of
upper bounds based upon (36) and (58) to calculate approximate values of Py(t) for small values
of A in the M/E,/1/0 queue. Taking y=1 and X values in the range [0.001,0.5], the following
estimates of P((t) were obtained for a sufficiently large set of regularly-spaced, discrete time-
points ¢, starting at ¢t = 0.

() Numerically exact values were obtained by solving the appropriate state equations for the
M/E,/1/0 queue, using standard numerical software [9]. These values are referred to as EXACT.

(%) Simple upper bounds were calculated using (36) and referred to as APPROX 1.
(747) Improved upper bounds were calculated using (58) and referred to as APPROX 2.

(iv) Numerically exact values of Pr(r > t) were obtained by solving the state equations (8)-
(17) using standard numerical software [9], leading to calculation of an upper bound based upon
(4), and this was referred to as APPROX 3.

(v) Exact values were calculated for the corresponding M/M/1/0 queue, using equation (2),
and referred to as MM1.

It is clear that, for any value of ¢(¢ > 0), the first four estimates above are ordered as follows:
EXACT < APPROX 3 < APPROX 2 < APPROX 1.

We are interested in how well the simple bound APPROX 1 performs, and how much
improvement can be obtained by using the more complex bound APPROX 2. The estimate
APPROX 3 gives an upper limit to the accuracy that could be obtained by using the basic
inequality (4) and the particular method of analysis employed in this paper, for example by
including higher order terms in (53). Finally, MM1 is an easily computed approximation which
can serve as a benchmark for our comparisons. For all of the M/E_/1/0 systems studied
numerically, MM1 was also found to be an upper bound for Pg(t).

An example of the above results is presented graphically in Figure 1, which shows the
estimates of Py(t) for the case r =5 (i.e., the M/E,/1/0 queue) with A=0.1 and g =1. For
comparative purposes, it is useful to define an overall measure of accuracy that does not depend
upon the time parameter ¢, and then to investigate numerically how this accuracy depends on .
To do this, we use the maximum absolute error MAE, given by

MAE = MAX(e(t) - EXACT(1)),

where e(t) represents the estimate under consideration (e.g., APPROX 1). MAE values, correct
to five decimal places, are given in Table 1 for a range of r and A values. As expected, the MAE
values fall sharply as A is reduced. For A < 0.1, we see that APPROX 2 and APPROX 3 are, to
the prescribed accuracy, almost equal in value, and so the benefit of trying to improve APPROX
2 by including additional terms of the form f;(A,t) (i > 1) in equation (53) would be negligible.
In addition, for A < 0.1, the MAE values for APPROX 1 and APPROX 2 are considerably better
than the benchmark estimate MM1, the relative improvement increasing as A decreases.
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0.994
0.984
0.97
0.964
0.95-
0.94
0.931
0.924

0.914

EXACT

MM1

APPROX 2,3

APPROX 1

0.9

Figure 1.

1

Approximate results for the M/E,/1/0 queue with A = 0.1, u = 1.0.

-

Table 1. MAE values for some M/E,_/1/0 queues.

r A APPROX 1| APPROX 2| APPROX 3 MM1

1 0.500 0.11111 0.06963 0.06876 -
0.100 0.00826 0.00446 0.00444 -
0.010 0.00010 0.00005 0.00005 -
0.001 0.00000 0.00000 0.00000 -

2 0.500 0.09831 0.07671 0.07645 0.03212
0.100 0.00682 0.00494 0.00494 0.00916
0.010 0.00008 0.00006 0.00006 0.00101
0.001 0.00000 0.00000 0.00000 0.00010

5 0.500 0.10020 0.08879 0.08874 0.06405
0.100 0.00675 0.00575 0.00575 0.01793
0.010 0.00008 0.00007 0.00007 0.00196
0.001 0.00000 0.00000 0.00000 0.00020

A more detailed analysis of the above results is given in reference [2].

357
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6. Concluding Remarks

In this paper, we have presented some bounds for the state probabilities in the transient
M/G/1/0 queue. We have obtained simple bounds on P,(t) for the M/G/1/0 and M/PH/1/0
queues and improved bounds for the special case M/E,_/1/0. Numerical results have been
presented for various values of the mean arrival rate A to demonstrate the increasing accuracy of
approximations based upon the above bounds as A—0. Such approximations are likely to be of
practical use when the traffic intensity (A/p) is sufficiently small; i.e., less than 0.1. Our results
are, therefore, applicable to the modelling of the reliability of a single repairable component, and
to queueing loss systems under conditions of light traffic. In addition, the existence of
comparable bounds for the dual system GI/M/1/0 was also noted.

Some possible extensions of the research described here could include the following:

(7) Obtain improved bounds of the form of (58) and (59) for other widely-used service-time
distributions, such as the hyperexponential distribution.

(17) Modify the model so that the coupling time 7 becomes the first time that both servers
occupy identical states; i.e., allowing all states of the form (%, j,%,j) to become absorbing states.
This would, in principle, give rise to tighter bounds on P, (t), but the analysis is likely to be more
complicated.

(747) Carry out numerical comparisons of the bounds obtained here with similar bounds
derived elsewhere (e.g., in reference [7]).
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