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ABSTRACT

We introduce and study a class of operators of stochastic differentiation and
integration for non-Gaussian processes. As an application, we establish an analog
of the It6 formula.
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1. Introduction

Operators of stochastic differentiation D and an extended integration I = D* play an impor-
tant role in stochastic calculus. In the Gaussian case and for certain special martingales, D and I
can be defined with the aid of an orthogonal expansion (cf., T. Sekiguchi, Y. Shiota [3]). Also, D
and I can be defined by means of the usual differentiation with respect to the admissible transla-
tion of the probability measure (A.A. Dorogovtsev [2]). In all these situations there are some com-
mon features. In this article we consider a general scheme in which the operators D and I are con-
structed for a non-Gaussian case. Since I plays the role of stochastic integration, an analog of the
It6 formula is also established.

2. Stochastic Derivative and the Logarithmic Process

Let {£(t);t € [0,1]} be a random process defined on a probability space (Q,%F, P). A subset K
of R™ is said to have the conic property if for every z € K, there exists a cone, C,, with the non-
empty interior and a neighborhood, U, of z such that t € U, NC_ C K.

Suppose that the support of any finite-dimensional distribution of £ has the conic property.
Let A be the Lebesgue measure on the Borel o-algebra %B([0,1]).

Definition 1: A family of the random elements {{(t);t € [0,1]} from L,(Q2x[0,1],Px]}) is
called a differentiation rule if
1) VtG[O,l]:C(t)-X(t’I]ZO (mOdP),
2) for every tuple t,,...,t, €[0,1], a,...,a,, €R, n>1, G € ¥, such that

(0€(t;) +... +az8(tn))xg =0 (mod P),
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the following equality holds

(al<(t1) +...+ an((tn))XG =0 (IIlOd Px A)'

Definition 2: Let ¢:R™—R be bounded, continuously differentiable and have a bounded deri-
vative. For a random variable

o = @(E(ty), . E(L,)), tyeet, €10,1],

()pi(g(tl)’ ey g(tn))C(tl) +...+ ()O’n(ﬁ(tl)’ (AR &(tn)) ° C(tn)

is called a stochastic derivative of o and denoted by Da (so DE(t) = {(t)).

the sum

In the sequel, denote the set of all random variables from Definition 2 by M. b is a linear
subset of L, (Q,%F, P). Also for t €[0,1], denote by M, the subset of M which is only from
{&(s), 0 < s <t}. Obviously, Moy = M.

Lemma 1: D is well-defined on .

Proof: Consider ¢,%:R"—R which satisfy the conditions in Definition 2, and let t,,...,?, be
such that

P(&(ty)s-- - €(tn)) = Y(&(2y),- - &(1,,)) (mod P).

Then, it follows from the assumption about ¢ that for all : = 1,...,n,

PHE(L)y- - E(1,)) = Yi(E(ty),. - €(E,,))(mod P).

Thus, the corresponding sums in Definition 2 are equal. The lemma, is proved.

Definition 3: A random process £ is said to have a logarithmic derivative with respect to a dif-
ferentiation rule { if there exist a random process {p,,A € B} indexed by the Borel subsets of
[0,1] such that

1) VAE‘.B,Mp2A< + o0
2) Va € M and VA € B;

M/Da(‘r)d'r =Ma:py.
A

In the sequel, suppose that the process ¢ satisfies the conditions in Definition 3.
Definition 4: Denote for t € [0, 1],
m(t) = Po, .y
The process {m(t);t € [0,1]} is called the logarithmic process.

Let for t € [0,1], ¥, = 0({£(s);s < t}). Note, that analogous processes were considered in dif-
ferent situation in A. Benassi [1].

Lemma 2: For0<s<t<l1,

M(m(t) —m(s)/F,) =0 (modP).

Proof: For a € M, consider

M(m(t)—m(s)) - a= Mp[o’t]-a——Mp[O’s]»a
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t s
= M/ Da(T)dT—M/ Da(r)dr
0 0

=M / Da(r)dr
(s,t]
=M [ e 8 G ) = O(mod )
(s,t]
Since the set b, is dense in Ly(Q2, F,, P) then the statement of the lemma follows.
For further considerations the following result will be useful.

Lemma 3: The operator D can be closed as a linear operator from M C L,(Q,%F,P) to
Ly(S2x [0,1], P x ).

Proof: Consider a sequence {a,;n > 1} C M, such that there exists v € Ly(2x[0,1],P x })
for
Maf;»(), n—0o0,

1
M/ (Da, (1) = v(1))2X\(dT)—0, n—co.
0
Then, for every A € B and § € M,

A

MB- [ v(r)dr =lim MB- [ Da,(r)dr
| /
:nlLIIgO(M D(a,,B)(r)dr — Ma,, | DB(7)dr
[ l
=lim (Ma,f-pp— Man/Dﬂ(‘r)dr
A

=lim Ma, (8- pp— /Dﬂ(r)dr) =0 (modP).
A

So,
/V(T)dT =0 (modP).

A
Since A was arbitrary,

v=0 (modP xA).
The lemma is proved.

Denote the closure of D by the same symbol. The domain of D is denoted by W*.

3. Integral with Respect to the Logarithmic Process and the Procedure of
Approximation

Definition 5: The adjoint operator

I = D*: Ly(2x[0,1]; P x \)—Ly(Q,F, P)
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is called a stochastic integration with respect to the process m. The domain of I is dented by <.
In the following, suppose that
VA€ B:pyp € wl,

and, that the correspondence Arp, can be extended by the bounded linear operator A:
Ly([0,1],A\)—W? (the inner product in W' is defined in the usual way, as a sum of Ly-products of
random variables and their stochastic derivatives). Note that under this assumption, each ¢ €
L,y([0,1]) also belongs to D and

I(p = A(p).
To have I act on random elements of L,([0,1]), i.e., to define an extended stochastic integral with
respect to the process m, we need the following.

Let {K,_;n > 1} be a sequence of symmetric kernels defined on [0,1]? such that
1) Kn € LZ([O, 1]2’ AX ’\),
2) Ve € L2([0a 1], 2),
K (p)—p, n—oo,

where K is an integral operator in L,([0,1],A) with the kernel K. Denote for n > 1,

1

h,(s,r) = D(/ K . (s,7)dm(7))(r).

0

It follows form the existence of the operator A that
Yn > 15k, € Ly([0,1]%,Ax )) (mod P).
Consider the following sequences of integral operators with random kernels:

Vo € Ly([0,1],A) and Vn > 1;

1 1
BUo)) = [ 906) [ hols,r)K (t7)drds,
0

0

t 1

C,.(p)t)= / go(s)/ h,(s,7)K,(t,T)drds.
0 0

Suppose that for the every ¢ there exist

Ly~ Jim B, (¢) = B(y) and L, ~Jim C,(¢) = C(¢).
Then the operators B and C' are strong random linear operators (A.V. Skorokhod [4]) which are
continuous in L,-sense.

Definition 6: A random element z from L,([0,1],}) is said to belong to the domain of B (or
C) if the sequence {B, (z);n > 1} converges in Ly-sense ({C,(z);n > 1} respectively).

The following statement can be verified.

Lemma 4: Let H be a separable real Hilbert space embedded into Ly([0;1],)) by the Hilbert-
Schmidt operator, and let z be an essentially bounded random element of H. Then, x € V(B) and
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z € D(C).

Now, consider the stochastic integration. Suppose that the differentiation rule is such that
the highest derivatives are symmetric, i.e.,

D2C¥(T1, T2) = D2a(7-2, Tl) (mOdP X A X A).

The space of random variables which have kth stochastic derivative will be denoted by wk.

Lemma 5: For every bounded ay,...,qa, € W? and for every PPy, € L%([0;1],)), the

sum n
= Z op; € D
and 1=1
n n 1
I(z)= Y oI(p)— ) / Da,(1)p;(r)dr,
1=1 1=1 0
MI(z) =0,

1

MI(z)? = M{ / (Bz)(7)z(7)dT + tr(Dz - D:c)}
0

Proof: First consider z = a- . For every § € b,

1 1
M[D,B(‘r)-:c(r)dr: Ma{ Dp(r)p(r)dr
1
=11 [ (D(@f)(r) - pDa()p(r)dr
0

1
= MapI(p)— Mﬂ/ Da(r)p(r)dr
0

1

= MpBlal(p)— / Da(r)p(r)dT].

0
So, - €D and

1

Ia-g)=a-1(p)- [ Da(r)p(r)ir.

0
Consequently, 1
1Y e = Yaillp) - 3 / Da(r)ei(r)ir
i=1 1= i=1
Z o I(p;) = tr(DY ;).
= 1i=1

To prove that MI(z) =0 it is sufficient to see that D1 =0 and use the equation I = D*.
Now, consider the following chain of equalities:

MI(z)? = > o Il 1e) =23 o 1) / Dot ()ey(r)dr

1112 =1 1112_1
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1 1
+Z /Dail(T)SDil(T)dT'[ Dai2(7)<pi2(r)dr]

ilz2=1 ()

[ > g, / DU(p: )(r)- @i (N7 + D o ;) / Do (r)pi; (r)dr

'1 9= 1112 =1

1
+Z o; I(<p‘ )/ Do; (‘r)go, (r)dr — 22 a; I((p‘ )/ Dai2(7')<pz-2(1')d1'
0

12-—-1 1132 1

+Z /DO‘ ("')‘P, (r)dr- / Da; (T)(,oI (r)dr]

112_1

! 1
=M [ Z ailaiz/ D(I((Pil))(r)(’oiz(r)der /Da (T)es, ( T)dT'/ Dail(T)SDi2(T)dr

=1 0 i1y 0

1 1
n
+ E O‘i2/ /D2a1~1(7'1,T2)¢ii1(rl)<pi2(72)drldr2
0

iliz =1 0

“Z / Da; (r)p; (T)dr - / Day; (7)p; (T)dT

1112 =1

1 1
n
—Z a‘l/ /D2C"12(71,Tz)‘Pil(T1)<Pi2("'2)dT1d7'2
o o

i1i2 =1

/Da () P, (r)dr- / Do (1')<pz (T)(p, (r)dr
=1

1

[ > ae / DUI(p; )i (dr+ 3 / Do, (r)p; ()dr / Do, (), (r)dr]
ipig=1

i z2=1

1
=M w0, [ DI )i (r)dr + tr(D2)

1112 =1 0

Note that, due to the previous lemma, z € 9(B), and

. /go,(s/ (/lKn(s,r)dm(r))(T)Kn(-,‘r)dsdr, n>1.
= 0

So, from the assumption about the operator A, it follows that
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1 1
B(z) .—_nli_)rgoz:ai/ K.(-,7)-D / /(p,;(s)Kn(s,r)ds m(r) | (v)dr
=1 9 o\
= Yo D).
Consequently, 1=t
1 1
S wy, [ D) = [ B
1% = 0 0

The lemma is proved.

From this lemma and from the fact that I is a closed operator, it follows that every random
element z that satisfies the conditions of Lemma 4 and has a stochastic derivative belongs to 9D,
and the equalities from Lemma 5 are valid.

The famous particular case of this situation is as follows. Let H be a Sobolev space of the
first order on [0,1]. Then elements of H have usual derivatives with respect to parameters from

[0,1]). Suppose that z satisfies the conditions of Lemma 4 and that Dz is a.s. a nuclear operator.
Then,

1
I(z) = z(1)m(1) — / m(t)z'(t)dt — tr Dz.
0

Note also that in this case,

1 1 1 1
I(z) = P - lim_ /:c(t)/ Kn(t,r)dm(r)dt—/ / Dz (t)(T)K ,(t,7)drdt ». (1)
0 0 0 O

This expansion enables one to establish the Ito formula.

Theorem (The 1t formula): Let a function F:[0,1]x R—R have a continuous bounded deriva-
tive of the first and second order, and let the random process x satisfy the conditions:

1) z has the second stochastic derivative;
2) for every 7 €[0,1], © and Dz(-)(r) satisfy all integrability conditions (considered
above);

3)  Dz(-)(-)€C([0,1) (mod P);
4) ¢, Dz and D%z are bounded.

Then, the following random process
t

)= [ar)im(r), teo,1]
0
1s well-defined and it holds true that
t

F(t,z(t)) = F(0,0) + / Fi(s,z(s))ds

0

t t

+ [ Fs s(e))e(s)dm(s) +

0

2(5)F2q(s,2(5))C(2)(s)ds

oS~

t

+/x(s)Fg2(s,z(s))-[ Dz(r)(s)dm(r)ds.

0
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The proof follows directly from the expansion (1) and approximation arguments.

4. Examples

Example 1: (Wiener case) Let £(t) = w(t), t€[0,1] be a Wiener process. Consider the
differentiation rule of the form ((t) = X[o,¢pt € [0,1]. Then the stochastic derivative D which is

obtained from this rule is a well-known stochastic derivative of L,-integrable Wiener functionals
(T. Sekiguchi, Y. Shiota [3]) and m(t) = w(t), t €[0,1].

Now the operator B is the identity operator and C = —;—B. Then, from the previous theorem
we can obtain the ItG formula for the extended stochastic integral in the Gaussian case:

t
F(t,2(t)) = F(0,0) + / Fi(s,2(s))ds + / Fiy(s,2(s))dw(s)
0

0

t t

+3 [ Piafo,2(0)-a(sds + / 2(5)Fgy(s,2(6))- / D(r)(s)du(r)ds.

0

Example 2: Let the distribution of the process £ in the space C([0,1]) be absolutely contin-
uous with respect to the Wiener measure with the density p. Suppose, that
1) 0 <infp <supp < + oo,
2) p has a bounded continuous derivative on C([0,1]).
Consider the differentiation rule from Example 1: ((t) = x 0,4 L€ [0,1]. Then the stochastic
derivative of the random variable « from the family JM (M) is of type

Do = Dp(&(ty),...,€(t,)) = E ‘Pﬁxlo,ti]'

1=1
Hence, for the Borel subset

> ey [ xalridn)

M / Da(r)dr =M
A i=1 0
Here 6, is Dirac é-function with respect to the point t. Denote by u, the function

S

up(s) = /XA(T)dT, s €[0,1],
0

by v the distribution of &, and by p the Wiener measure. Also, denote by & the following func-
tion on C([0,1]):

Vo € (0, 11),8(v) = @(v(t), .. o(1,,)):

Then,

M [ Darir = [(@@iuahlan) = [ (@)ualpon(an
A

= [(GOR0)uahitdn) - [ (#@ua) 2@utn = [ @) [ dvtriatan)
A
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- [emp)suadpntin) = [ 2 { [ @)~ (mptoy; m] Vo).
A

Here the symbol of integration is used for the integration through all C([0,1]), and the integral

/dv(r)

A

is a measurable linear functional on C([0,1]) with respect to the measure v ~ u. Note also that
the function

/dv(r) —{((Inp(v))';up)

A

is square-integrable with respect to the measure v. Consequently, £ has a logarithmic derivative,
and

pa= [ dE(r) = (np(©);un)

A

So, the operator D is closed, and for every bounded functional v, which has a bounded continuous
derivative on C([0,1]), the random variable %(¢) belongs to W'; in particular, In p(¢) € W' and

[ dinp(@yir = ((np©)sua)
A

Hence, the logarithmic process is of the form

¢
m(t) = €&(t) — /Dln p(€)(r)dr.
0

Now the second stochastic derivatives are symmetric. So to estimate the second moment of the
extended stochastic integral only the operator B is essential. To describe the operators B and C
let us find the stochastic derivative of the integral

1 1 1
[ t@yamn = [ yag- [ rnpinpe) .
0 0 0

Using the approximation by step functions, it can be verified that

1 1
D 4 f(r)dm(r))(s):f(s)+ [ f(r)- D! p(€)(r,s)dr, s€[0,1].

Consequently, for the n > 1,

1 1 1

B, (¢)(t) = /(p(s)/ K, (s,7)+ / K, (s,r)D2Inp(€)(r,7)dr |- K ,(t,7)dTds.
0 0 0

Hence,

1
Bo)(®) = () + [ Dnp(e)(t,s)o(s)ds.
0
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In a similar way,
t

Cle)O) =de(t)+ [ Dnp(e)(s,t)e(s)ds.
0

Now the second moment of the extended stochastic integral and the It6 formula have the form

1 2 1 1
= . A S r xr 2
M( / :c(t)dm(t)) M Z 22()dt + M [ / D2n p(€)(t, s)o(t)z(s)dtds + M(tr(Dz)?,

0

t

t
F(t,2(t)) = F(0,0) + / Fi(s,z(s))ds + / Fiy(s,z(s))x(s)dm(s)
0

0

t

t 8
+%/ F‘2'2(s,z(s)):c2(s)d3+/F’z’z(s,z(s))m(s)/ Dn p(€)(r,s)x(r)dTds
0 0 0

t

+/:c(s)F'2’2(s,z(s))- Z Dz(r)(s)dm(r)ds.

0
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