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ABSTRACT

A non-compact deterministic variational inequality which is used to prove an
existence theorem for saddle points in the setting of topological vector spaces and
a random variational inequality. The latter result is then applied to obtain the
random version of the Fan’s best approximation theorem. Several random fixed
point theorems are obtained as applications of the random best approximation
theorem.
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1. Imntroduction

As an application of the generalized Knaster-Kuratowski-Mazurkiewicz (KKM) principle, we
first establish non-compact deterministic variational inequalities. This result is then used to
derive an existence theorem for saddle points in the setting of topological vector spaces. By em-
ploying a measurable selection theorem due to Himmelberg [5], a random variational inequality is
presented which in turn is applied to derive the random version of th best approximation theorem
of Fan [4, Theorem 2]. Finally, as applications of our random best approximation theorem, sever-
al random fixed point theorems are given. These results improve and unify corresponding results
in the literature.

In this paper, all topological spaces are assumed to be Hausdorff, unless otherwise
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specified. Let X be a non-empty set. We denote by ¥F(X) the family of all non-empty finite
subsets of X and by P(X), the family of all non-empty subsets of X. If X is a non-empty subset
of topological space Y, the notations 0y X (in short, 0X) and inty X (in short, intY’) denote the
boundary and the relative interior of X in Y, respectively and X¢:={z€Y:z ¢ X}. ff Aisa
subset of a vector space F, the convex hull of A in F is denoted by coA. We denote by N and R
the set of all positive integers and the real line, respectively.

A measurable space (Q2,X) is a pair, where Q is a set and X is a o-algebra of subsets of Q. If
X is a topological space, the Borel o-algebra f(X) is the smallest o-algebra containing all open
subsets of X. If (Q,,%;) and (©,,%,) are two measurable spaces, the space (2, xQ,, %, ® &,)
denotes the smallest o-algebra which contains all the sets of Ax B, where A € X, B€X,. We
note that the Borel o-algebra B(X; x X,) contains B(X;)® B(X,) in general. A mapping
f:9Q,—Q, is said to be (X,,,)-measurable if for any B € Z,, f ~1(B): = {x € Q;: f(z) € B} € &,.
Let X be a topological space and F:(Q2,X)—%P(X) a correspondence (mapping). Then F is said to
be (a) measurable if F~Y(B): = {w € % F(w)N B # 0} € for each closed subset B of X and
(b) have a measurable graph if GraphF: = {(w,y) € ¥xX:y € F(w)} €L ® B(X). A single-
valued mapping f:Q—X is said to be a measurable selection of the mapping F if f is a
measurable mapping such that f(w) € F(w) for all w € Q.

If (X;,%,) and (X,,X,) are measurable spaces and Y is topological space, a mapping F: X,
x X,—P(Y) is said to be jointly (resp., jointly weakly) measurable if f~iBe ¥, ® X, for each
closed (resp., open) subset B of Y. When X is a topological space, it is understood that ¥ is the
Borel o-algebra §(X). Let X and Y be two topological spaces, (2,X) a measurable space, and
F:Qx X—>%®(Y). Then F is said to be (i) a random operator (mapping) if for each fixed z € X,
the mapping F(-,z):Q2—%P(Y) is measurable and (i7) random continuous if for each fixed w € Q,
F(w, -): X—>%®(Y) is continuous and for each fixed z € X, F(-,z):Q—%P(Y) is measurable. Let
F:Qx X—%(X) be a mapping. Then a single-valued mapping ¢:Q—X is said to be a random
fized point of F if ¢ is a measurable mapping and ¢(w) € F(w, ¢(w)) for all w € Q. We observe
that if F:Qx X—%(X) has a random fixed point then for each fixed w € Q, F(w,-) has a
(deterministic) fixed point in X, but the converse does not hold true (e.g., see the example of Tan
and Yuan [11]).

It is well-known in the study of convex analysis and its applications that the convex condition
plays an essential role (e.g., see the book of Lin and Simons [7] and the references therein).
Recently, the concept of convexity was generalized in several ways by Horvath [6], Zhou and
Chen [15], and Chang and Zhang [3]. In order to establish our general variational inequalities
under weaker convexity we first recall some definitions and facts.

Definition 1.1: Let X be convex subset of a vector space E. A function ¢: X—R is said to be

quasi-convez (resp., quasi-concave) if the set {x € X:¢(z) < A} (resp., {z € X:4(z) > A}) is convex
for each A € R.

We also need the following definition which was introduced by Chang and Zhang [3] and it is
a generalization of the classical KKM mapping.

Definition 1.2: Let X and Y be non-empty convex subsets of topological vector spaces E and
F, respectively. Suppose G:X—%P(F) is a set-valued mapping. Then G is said to be a
generalized KKM mapping if for each non-empty finite set {z;,...,z,} C X, there exists a finite

set {yy,..Y,} C F suc’ that for each {y, ,..,y; } C{yys...,¥,}, where 1 <k < n, the following
inclusion holds: k

1
co(yil,. - yik) C U’;= 1G(:cij).

We would like to note that the generalized KKM mapping contains the classical KKM mapping
as a special case. For more details, see Chang and Zhang [3] and Yuan [14].
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Definition 1.3: (Chang and Zhang [3]). Let v € R be a fixed constant, X and ¥ non-empty
convex subsets of topological vector spaces E and F, respectively. A real-valued function
¢: X xY—R is said to be y-generalized quasi-convez (resp., quasi-concave) on Y if for each finite
subset non-empty {y,...,y,} CY, there exists a non-empty finite subset {z,,...,2,,} C X such
that for each z, € co{:cil,. - :cik} C {zy,...,z,.}, the following inequality holds:

1<, Jax k¢(x0, y,»j) (resp., v > ) énjué k¢(w0, y,-j))-

Remark 1.4: Let F=F and X =Y in Definition 1.3. If ¢: X x X—R is convex (resp.,
concave) on Y, clearly ¢ is quasi-convex (resp., quasi-concave) on Y. When ¢: X x X—R is v-
diagonally quasi-convex (resp., quasi-concave) on Y then ¢ is y-generalized quasi-convex (resp.,
quasi-concave) on Y, where v: =inf_ . y¢(z,z) (resp., 7: =sup, ¢ x9(z,z).

The following result is a combination of Proposition 2 and Theorem 3.1 of Chang and Zhang
[3] and it will be used in the study of Section 2.

Proposition 1.5: Let X and Y be a non-empty conver subsets of topological vector spaces E
and F, respectively, and v €ER a fized constant. Suppose ¢: X XY —-R is a real-valued function.
Then the set-valued mapping G:Y -P(X), defined by

G(y): = {z € X:¢(2,y) <7} (resp., G(y): = {z € X:¢(z,9) 2 7})

for each y€Y, is a generalized KKM mapping if and only if the function ¢ is y-generalized
quasi-concave (resp., quasi-convez) on Y. Moreover, if the mapping G is finitely closed (i.e., for
every finite-dimensional subspace L of F, the set G(z)NL is relatively closed in the relative
FEuclidean topology of L for each © € X), then the family {G(z):x € X} has the finite intersection
property if and only if the set-valued mapping G defined above is a generalized KKM mapping.

2. New Deterministic Variational Inequalities and Existence Theorems of Saddle
Points in Topological Vector Spaces

In this section, with the help of the concept of the generalized KKM mapping, we have
established a general variational inequality with weaker convexity condition. This new
variational inequality is then used to derive an existence theorem of saddle points for a real-
valued function defined in topological vector spaces. Our thc¢ wems include a number of
corresponding results in the literature as special cases (e.g., see [1], [3-4], [9], [12-13]).

Theorem 2.1: Let X and Y be non-empty convex subsets of topological vector spaces E and
F, respectively and v €R a fized constant. Suppose two real-valued functions ¢,: X x Y >R
satisfy the following conditions:

(1)  é(z,y) < Y(z,y) for each (z,y) € X xY;

(2)  for each fized x € X, the mapping y—¢(z,y) is lower semicontinuous on each non-empty
compact subset C of Y;

(3) there exist a non-empty compact subset X, of X, a non-empty compact conver subset
Yo of Y and a non-empty compact subset K, of Y such that for each non-empty subset
(21,..42,} C X, there exists a non-empty finite subset {y,,...,y,} CY satisfying that
the restriction of ¥ to co(XyU{zy,..,z,})xco(YqU{yy,..,¥,}) is y-generalized quasi-
concave on co(XgU {zy,...,z,});

(4)  for each y € Y\K, there exists ¢ € Xy such that ¢(z,y) > 7.

Then there exists y € K such that
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sup ¢(z,y) < 7.
zeX

Proof: In order to reach the conclusion it suffices to show that the family {[y € K:
#(z,y) < v)]:z € X} has the finite intersection property. By condition (3), for each non-empty
finite subset {z;,...,2,} of X, there exists a non-empty finite subset {y;,...,3,,} of ¥ such that
the mapping +:D; x D,—R is 7-generalized quasi-concave on D,, where D;: =co(X,U
{z4,...,2,} and Dy: = co(YyU{yy,...y,}). Let us define two mappings T;,T,: D;—%P(D,) by

Ty(z): ={y € Dy:9(2,y) < 7}

and
Ty(z): = {y € Dy: ¢(z,y) < 7}

for each £ € X. Note that for each y € Y, the mapping x—(x,y) is y-generalized from D, x D,
to R so that T',(z) is non-empty for each € D;. Moreover, T is a generalized KKM mapping
by Proposition 1.5. Therefore the family {T';(z):2 € D,} has the finite intersection property by
applying Proposition 1.5 again. As T',(x) C To(x) and T'y(x) are non-empty compact subsets for
each z € X, it follows that [ ¢ D, Ty(z) # 0. Taking any fixed y € (), ¢ D, T,(x) we have that
y € K by condition (4). Now definé a mapping, G: X—P(Y) by

G(z): ={y € K:¢(z,y) < 7}

for each z € X. Then the family {G(z):z € X} has the finite intersection property. Note that
G(z) is compact so that (], xG(z)# 0. Taking any fixed y* € (), xG(z), we have
sup, ¢ x¢(z,y*) < v and the conclusion follows. ]

We note that non-compact conditions (3) and (4) of Theorem 2.1 are different from the non-
compact conditions which were posed by Chang and Zhang [3, Theorem 3.4]. In the case E = F
and X =Y in Theorem 2.1, it still includes Theorem 3 of Shih and Tan [9], Theorem 6 of Fan
[4], Theorem 2 of Allen [1], Theorem 1 of Yen [13], and Tarafdar [12] as special cases.

As an immediate consequence of Theorem 2.1, we have the following variational inequality
which improves the well-known Ky Fan minimax inequality in several aspects (e.g., see Aubin

[2]):

Corollary 2.2: Let X be a non-empty convez subset of a topological vector space. Suppose
that f: X x X—R is a real-valued function such that
(a)  for each fized y € X, the mapping z—f(z,y) is lower semi-continuous on each non-
empty compact subset C' of X;
()  for each A € F(X) and for each z € co(A), min, ¢ 4f(<, y) <0;
(c) there exists a non-empty compact subset K of X and a non-empty conver compact
subset X of X such that for each x € X\K, there exists y € X, with f(z,y) > 0.
Then there exists x € X such that

sup f(z,y) <0.
yeX

Considering another application of Theorem 2.1, we obtain the following existence theorem of
saddle points for a real-valued function defined on topological vector spaces.

Theorem 2.3: Let X and Y be non-empty convex subsets of topological vector spaces E and

F, respectively, and vy €R a fized constant. Suppose ¢: X xY—-R is a real-valued function
satisfying
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(1)  for each z € X, the mapping y—dé(z,y) is lower semicontinuous on each non-empty
compact subset C of Y; and for each fired y €Y, the mapping v—¢(z,y) is upper
semicontinuous on each non-empty compact subset C of X;

(2) there exist non-empty compact conver subsets X, X; of X, non-empty compact convex
subsets Y, Y, of Y, a non-empty compact (not necessarily conver) subset K of Y and a
non-empty compact (not necessarily convez) subset W of X such that:

(2), for each non-empty finite subset {x,,...,z,.} C X, there exists a non-empty finite subset
{y1r--»¥,} of Y such that the restriction of ¢ to co(XoU{zy,..,z,})xco(Y U
{y1,--+9y,}) is v-generalized quasi-concave on co(xyU {zy,...,xz,.}); and

(2)p for each non-empty finite subset {y,,...,y,} in Y, there exists a non-empty finite subset
{zy,..,x,} in X with that the restriction of ¢ to co{X,U{zy,...,z,})xco(Y U
{y1,--y,}) is v-generalized quasi-convez on co(Y,U{yy,..,y,});

(3)  for each y € Y\Y, there exists x € X, such that ¢(x,y) >y and for each © € X\W,
there exists y € Y, such that ¢(z,y) < 7.

Then ¢ has a saddle point (Z,7) € X XY i.e., the following equality holds:

sup inf ¢(m,y):¢(§,§):'y:inf sup ¢(1'ay)-
re€X yeY yeY ze X

Proof: Let ¢(z,y): = ¢(z,y) for each (z,y) € XxY in Theorem 2.1. Then Theorem 2.1
implies that there exists § € Y such that

sup ¢(z,7) <. (1)
z€ X

Let ¢,(z,y) = —%(y,z) for each (z,y) € X xY. Then ¢, satisfies all hypotheses of Theorem 2.1.
Applying 2.1, there exists T € X such that

sup —9(Z,y) < —7. 2)
yeyY

Combining inequalities (1) and (2), we have

¢(z,y) < 4(2,¥) < (%)

for each (z,y) € X xY. Thus,

inf su z,y) <su 2,y ) <+v<inf ¢(Z <sup inf ¢(z
ermepcd’( ,y)_xeg(¢( ,y)_v_yey ( ’y)‘xel}er (2,9),

which shows that (Z,7 ) is a saddle point of ¢, i.e.,

inf su z,y) =¢(Z,y) =y =sup inf é(,
erxeg((b( y)=¢(Z,y)=7 zer;(yeydﬁ( v)

and we complete the proof. 0

Setting E=F,X=Y,X,=Y, and X; =Y, in Theorem 2.3, we have the following
corollary which improves Theorem 5.1 of Chang and Zhang [3].

Corollary 2.4: Let X be a non-empty convezr subset of a topological vector space E. Suppose
¢: X x X—R is such that:
(a)  for each fized x € X, the mapping y—d¢(z,y) is lower semi-continuous on each non-
empty compact subset C of X; and for each fized y € X, the mapping z—¢(z,y) is
upper semi-continuous on each non-empty compact subset C of X;
()  for each A€ F(X), each z€co(A) and each y € co(A), minyeAqS(m,y) <0 and
maz, ¢ 28(z,y) > 0;
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(c) there erist two non-empty convexr compact subsets Xy, X; of X and two non-empty
compact (not necessarily convezr) subsets Ky, K, of X such that for each z € X\K,,
there exists y € X, with ¢(z,y) > 0; and for each y € X\K,, there exists x € X, such
that f(z,y) <0.

Then ¢ has a saddle point (T,5)€ X xX, ie., ¢(z,7)<¢(Z,¥) <d(Z,y) for each (x,y)€
Xx X and

sup inf §(z,y) = ¢(Z,¥) =0=inf sup ¢(z,y).
z€X yeX yeX z€X

3. Random Variational Inequalities and Random Best Approximation Theorems

By employing a measurable selection theorem of Himmelberg [5] and our variational inequali-
ty of Section 2, a random variational inequality is presented. As an application of our random
variational inequality, we derive a random best approximation theorem which is a stochastic
version of the best approximation theorem of Fan [4].

Let X be a non-empty subset of a topological vector space F and f:Qx X x X—RU
{ =00, + 00} an extended real-valued function, where (2,X) is a measurable space. Then a
single-valued measurable mapping ¢:Q2—X is said to be a rendom variational solution for the
function f provided that

sup f(w,g(w),y) <0

yeX

for all w € Q. It is clear that if f has a random variational solution g, the operator f(w, -, -) has
at least one variational solution as sup, ¢ xf(w,9(w),y) <0 for each fixed w € Q. However, the
following simple example illustrates that the converse does not hold true in general, unless f
satisfies certain measurable conditions.

Example 3.1: Let Q = X =[0,1],  the o-algebra of Lebesgue measurable subsets of [0,1],
and A a non-Lebesgue measurable subset of [0,1]. Define f:Q2x X x X—RU { — o0, + oo} by
(z—-1)-y, if (w,z,y) € Ax X x X;
f(wv T,y y) =

z-y, otherwise.
Then for each fixed w € Q, f(w, -, +) has a unique variational solution %, which is

{1}, if we 4;
P(w) = .
{0}; otherwise.

However, f does not have any random variational solution as 1 is not measurable.

In what follows, we shall present one existence theorem of random variational solutions when
f satisfies certain continuous and measurable conditions. We recall a measurable selection
theorem of Himmelberg [5, Theorem 5.6] which is stated as follows:

Theorem 3.A: Let (,X) be a measurable space and X a separable metric space. Suppose
F:Q—%P(X) is a mapping with complete values. Then F is weakly measurable if and only if there
exists a countable family {g;}72 | of measurable selection for F such that F(w) = {g;(w):1,2,...}
for allw e Q. If X is also o-compact, F only needs to have closed values.

Then we obtain the following existence theorem for random variational solutions:
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Theorem 3.1: Let (2,X) be a measurable space and X a non-empty separable metrizable
conver subset of a Hausdorff topological vector space. Suppose f:QAx X x X—RU { — oo, + oo}
such that:

(¢) w—f(w,z,y) is measurable for each fized (z,y) € X x X;

() z—f(w,z,y) is compactly continuous for each fized (w,y) € Ax X (i.e., —f(w,x,y) is
continuous on each non-empty compact subset of X);

(¢)  y—f(w,z,y) is lower semicontinuous for each fized (w,x) € Ax X;

(d)  for each A € F(X) and each z € co(A), min,, ¢ af(w,z,y) <0 for all w € Q; and

(e) there erists a non-empty compact subset K of X and a non-empty compact and convex
subset Xy of X such that for any x € X\K there exists y € K satisfying f(w,z,y) >0
for all w € Q.

Then there ezists a countable measurable family {g,}7%  from Q to K such that

sup f(w,g,(w),y) <0
yeX

for each g, and all w € Q.
Proof: Define a set-valued mapping v: Q—%P(K) by
Y(w): = {z € K:sup f(w,z,y) <0}
yeX

for each w € Q. Then ¢(w) is a non-empty closed subset of K for each w € by Corollary 2.2.
We claim that ¢: Q—%P(K) is measurable. Let D: = {x,;:n = 1,...} be a countable dense subset of
K, since K is metrizable and compact. For each n € N, define ¢,: Q—P(K) by

Y (w): ={z € K: f(w,z,z,) <0}

for each w € Q. Due to the lower semicontinuity of y—f(w,z,y), P(w) = (o= 1¥,(w) for each
w €. Note that ¥, has non-empty compact values for each n €N. In order to prove ¢ to be
measurable, it suffices to show that ¢,, is measurable (by Theorem 4.1 of Himmelberg [5]). Let C
be any non-empty closed subset of K and C be its countable dense subset. From condition (b),
z— f(w,z,y) is continuous on K and we have

Y NC) = {w € Qg (w)NC # 0}
= UxGC{w € Q:f(w,win) < 0}
= N2 1{Uq e o lw € 2 f(w,2,2,) <,

which is measurable by condition (a). Indeed, if we€ 1, 1(C), there exists € C' such that
flwyz,2,) <0< L for all meN. Since z—f(w,z,z,) is continuous, there exists z, € Cy such
that f(w,z,,,z,) < L. Hence,

¥ (0 € N2 = {Us, e gl fm2,) <ml)-

Now suppose w € (o _ 4{ U””i € Co[w: flwyz,,z,) < L1}, For each m €N, there exists z,, € C,

such that f(w,z,,z,) < L As C, C C and C is compact, without loss of generality, we assume
that {zm}m ¢ N converges to z, € C. The lower semicontinuity of z— f(w,z,z,,) implies that

f(w,zg,2,) < lrinrrl'igloff(w, T, r,) <0.

Thus,
e 1(C) = N I{Uzi c Co[w € Q: f(wyz;,x,) < —lm-]},
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which shows that 1), is measurable, and so is the mapping % by Theorem 4.1 of Himmelberg [5].
By Theorem 3.A, there exists a countable family of measurable selections {g;}2 ; of ¥ from Q to
K such that ¥(w) = {g;(w):¢=1,2,...}. From the definition of 1, it follows that

sup f(w,g;(w),y) <0
yeCl
for each g; and all w € Q. Thus, the proof is complete. O

Let A and B be two non-empty subsets of a normed space (E, || - ||). We denote by
d(A,B): =inf{||z—y]||:z € A and y € B} the distance between A and B.

As an application of Theorem 3.1, we have the following random best approximation theorem
which is a stochastic version of Fan’s best approximation theorem [4, Theorem 2].

Theorem 3.2: Let (,X) be a measurable space and X a non-empty separable conver subset
of a normed space (E, || - ||). Suppose ¥:Qx X—P(E) is a randomly continuous mapping with
non-empty compact and conver values. Moreover, assume that there erists a non-empty convex
compact subset X, of X and a non-empty compact subset K of X such that for each x € X\K,
there ezists y € X, with inf, ¢(w’x).” g—ull <inf, ¢ W(w,2) lz—u|| for all w€ Q. Then
there exists a countable measurable family {g,}3° | from Q to K such that

inf ) ” gi(w) —u ” = d(X5 '/’(w’ gi(w)))

u € d’(w’g,‘(w)
for each g; and all w € Q.

Proof: In order to apply Theorem 3.1, we define f:2x X x X—R U { — 00, + 00} by

w,T,y) = inf z—z|| — inf z—

foan = it lle=zll =it le-vl

for each (w,z,y) € 2x X xX. Because ¥(w,z) is non-empty compact, the mapping (w,z,y)—

f(w,zy) is randomly continuous by Lemma 3 of Sehgal and Singh [10]. Now we show that the

function f satisfies all of Theorem 3.1. Fixing each w €, for A € ¥(X) and each z € co(A), it

must hold that minyeAf(w, z,y) < 0; otherwise there exist A: = {y;,...,y,} € F(X) and z =
1= 1\y; €co(A), where A,..,A >0 with Y 7_ A =1 such that f(w,z,y;)>0 for all

i=1,..,n. Since F(w,r) is compact, there exists z; € ¥(w,z) such that | z;—y;| =

inf, W(w,z) || z=y,|| fori=1,2,...,n, ie.,

,z,y;) = inf —zll — inf —v.ll = inf —zll = lz:—uy.
f(w,z,y;) zefﬁw,z)”z z | zeg%wym)llz yi ll zE};}g}JHV |l = [z —yll

for each i =1,...,n. Let zy= ) 7_,);2;. Then z; € ¢(w,z) as F(w,z) is convex. It follows that

0 ,Z,y;) = inf — - i — .
<Hwew)= it le=all= it ll=-ui
<lzo=all = it e=uill < Sfoahllsi-will - inf ==l

=0,

which is not true. Thus, f satisfies all the conditions of Theorem 3.1. By Theorem 3.1, there
exists countable measurable mappings {9:‘},' eN from 2 to K such that

sup f(w, gi(w)vy) <0
yeX
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for each g; and all w € 2, and so that

d((w, g;(w)) = d($(w, 9,(w)), X)

for all w € Q. O
Theorem 3.2 includes Theorem 2 of Sehgal and Singh [10] as a special case.

We would like to observe that some other kinds of random best approximation theorems have
been established (e.g., see Tan and Yuan [11], Yuan [14] and the references contained therein)
when the measurable space (€2,X) has the property that X is a Suslin family. Note that not all o-
algebra Ys are Suslin families (the definition of Suslin family can be found in either [11] or [14].
For example, the o-algebra which consists of all Lebesgue measurable subsets of [0,1] is not one
(e.g., see Royden [8]). Thus, Theorem 3.2 is independent of those random best approximation
theorems in the literature, such as [11] and [14].

4. Random Fixed Point Theorems

As applications of the random best approximation Theorem 3.2, we prove some random fixed
point theorems.

Theorem 4.1: Let (Q2,X) be a measurable space and X a non-empty complete separable
conver subset of a normed space (E-). Suppose ¥:Qx X—P(E) is a randomly continuous
mapping with non-empty compact and conver values such that:

(a) there exist a non-empty convex compact subset X, of X and a non-empty compact
subset K of X such that for each y€ X\K there exists x€ X, with
inf, ¢ (w,y |z—ull < infy, e pw v) lly—u]|| for each w € Q; and

() Y satisfies one of the following conditions:

(z)  for each fized w€ Q, each x € K with « # ¢(w,z), there ezists y € I y(x): =
{z +c(z —z) for some z € X and some ¢ > 0} such that inf P(w, ) [y —u|l <
inf, ¢ W(w,z) lz—ul|; or

(it) 4 is weakly inward (i.e., for each w € Q, Y(w,z)NIx(x) #0 for each z € K).

Then ¢ has a random fized point.

Proof: By Theorem 3.2, there exists a countable measurable family [¢;}{% ; from Q to K
such that

wewlorg 19—l = e 0i{)) X)

for each g; and all w € 2. We now prove that each g, is a random fixed point of .

Suppose 9 satisfies (b)(¢). If there exists some w € Q such that g,(w) ¢ ¥(w, g;(w)), by our
assumption (b)(7), there exists y € I x(g;(w)) such that

nf Clly=ull

we vl o) py Hoit@) =l

< inf
u€ d)(w,gi(w

Note that y € I y(g,(w)), there exists z € X and ¢ > 0 such that y = g,(w) + ¢(z — g;(w)), so that
y ¢ X; otherwise a contradiction to the choice of g;(w) would result. Without loss of generality,
we assume that ¢ > 1. Then z: =y/c+(1—1/c)g;(w) = (1 - B)y + Bg;(w), where 3 =1—-1/c
and 0 <8 <1 Let w€(w,g;(w)) such that |[g(w)—w]| =inf, W(w, 9:(w)) | g;(w)—ull =
d(¥(w, g,(w)), X). Then, !
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lz—w| <A=-B)ly—wll + Bl g(w) —wl|

<@A=P)llgi(w)—wll + Bl gi(w) —w]]

= . — frnd .f . —_
I =wll = int o) =ul

= d(Y(w, g;(w)), X),

and this contradicts the choice of g;(w). Therefore, g;(w) € ¥(w, g;(w)) for each w € Q, i.e., g, is a
random fixed point of .

Let 1 satisfy (b)(i7) then, for each w € Q and each z € K with = # ¢(w, ) there must exist
y € Ix(z) such that inf, ¢\, ,)|ly—u| <inf, ¢ b(w,2) lze=u|l as $(w,z)NIx(z)#0 and ¢
is randomly continuous. rI'/)hus, % satisfies the assumption (¢). Therefore, each g; is a random
fixed point of . 0

As an application of Theorem 4.1, we have the following random fixed point theorem.

Theorem 4.2: Let (,X) be a measurable space and X a non-empty complete separable
conver subset of a normed space (E, || - ||). Suppose ¥:Q2x X—P(R) is a random continuous
mapping with non-empty compact and convex values and there exist a non-empty compact convex
subset Xy of X and a non-empty compact subset K of X such that

(a)  for each y € X\K, there exists x € X such that inf € ¥(w, v) |z —u]|| <inf, € ¥(w,y)
|ly—u]| for all we Q;
(b) o satisfies Y(w,0K)NX # 0 for all w € Q.
Then v has a random fized point.

Proof: Since ¥(w,0K)NX # 0 for all w € Q, 9 satisfies condition(b)(¢i) of Theorem 4.1 due
to the fact that (i) K C X CIx(z), Ix(x) CIx(z) and (i7) Ig(z)=FE for each z €intK.
Therefore, for each z € K, y(w,z)NIx(x) #0 for all w€ Q, and the conclusion follows from
Theorem 4.1. a

Remark 4.3: Theorem 4.2 improves the corresponding result of Sehgal and Singh [10].
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