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ABSTRACT

An infinite-dimensional differential equation in vector distribution in a Hil-
bert space is studied in case of an unbounded operator and discontinuous regular
functions in a right-hand side. A unique solution (wibrosolution) is defined for
such an equation, and the necessary and sufficient existence conditions for a vibro-
solution are proved. An equivalent equation with a measure, which enables us to
directly compute jumps of a vibrosolution at discontinuity points of a distribu-
tion function, is also obtained. The application of the obtained results to control
theory is discussed in the conclusion.
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1. Introduction

This paper studies an infinite-dimensional differential equation in vector distribution, whose
right-hand side also contains discontinuous regular (not generalized) functions. It should be noted
that a solution to a differential equation in distribution cannot be defined as a conventional
solution (using the Lebesgue-Stieltjes integral) owing to multiplication of the distribution by a
discontinuous regular function. Thus, the basic problems are to introduce an appropriate solution
(vibrosolution), obtain the existence and uniqueness conditions for a vibrosolution, and design an
equivalent equation with a measure, which enables us to directly compute jumps of a vibro-
solution at discontinuity points of a distribution function.

Infinite-dimensional equations in vector distribution appear, for example, when solving the
ellipsoidal guaranteed estimation problem [14] over discontinuous observations [2], or considering
infinite-dimensional (solid state) impulsive Lagrangian systems [4]. The definition of a unique
vibrosolution to a differential equation is first introduced in the background paper [9] and is
shown again in Section 3. Finite-dimensional differential equations in scalar distribution with
discontinuous regular functions in right-hand sides are studied in [1]. Finite-dimensional
equations in vector distribution are then considered in [3]. This paper generalizes the results ob-
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tained in [1, 3] to the case of infinite-dimensional differential equations in vector distribution.
The substantiation of existence and uniqueness conditions is based [7, 8] on the representation of
a solution to a differential equation in a Hilbert space as a Fourier sum of solutions to finite-
dimensional differential equations.

The paper is organized as follows. The problem statement is given in Section 1. In Section 2
a solution to an infinite-dimensional equation in vector distribution is introduced as a vibrosolu-
tion, that is defined as a unique limit. Sections 3 and 4 present the necessary and sufficient exis-
tence conditions for a vibrosolution, respectively. By definition, existence of a vibrosolution yields
its uniqueness. In Section b an equivalent equation with a measure is designed. The application
of the obtained results to control theory is discussed in the conclusion.

2. Problem Statement

Let us consider an infinite-dimensional differential equation in vector distribution with an
unbounded operator in a right-hand side

£(1) = Az(t) + f(2,u,1) + B(e,u, Ob(a,u, i(t),  o(ty) =z, (1)

where z(t) € H; A is a generator of a strongly continuous semigroup such that ( — A) is a strongly
positive operator and has a compact inverse operator A ~1; f(x,u,t) € H, b(z,u,t) € L(R™—H)
are bounded continuous functions defined in the space H x R™ x R, L(A—%) is a space of linear
continuous operators from a space A to a space B; B(z,u,t) € R is a scalar piecewise continuous
in z,u,t function such that its continuity domain is locally connected; u(t) = (uy(2),...,u,,(t)) €
R™ is a vector bounded variation function which is non-decreasing in the following sense:
u(ty) > u(ty) as ty > ty, if u,(ty) > u,(ty) fori=1,...,m.

Let S,(:):H—H be a strongly continuous semigroup generated by an operator A, and
D(A) C H be a definition domain. The following conditions imposed on an initial value and a
right-hand side of the equation (1): 1) S,(z,) € D(A), 2) S, _,(f(z,u,s)+ B(z,u,s)b(z,u,s)
w(s)) € D(A), s <t, are assumed to hold for any absolutely continuous non-decreasing function
w(s) € R™.

3. Definition of a Solution

Let us note that a solution to the equation (1) cannot be defined as a conventional solution
owing to multiplication of distribution @(t) by a discontinuous in ¢ function b(z(t),u(t),).

If u(t) € R™ is an absolutely continuous function, then an absolutely continuous solution to
the equation (1) is defined in the sense of Filippov [6]. Following [6], a function x(z,u,t) is said
to be piecewise continuous in a finite domain G ¢ H x R™t1 if

1) a domain G consists of a finite number of continuity domains G,, i =1,...,m, with
boundaries T';,

2) a function &(z,u,t) has finite one-side limiting values along boundaries r,

3) the set consisting of all boundaries I'; has zero measure.

A function k(z,u,t) is said to be piecewise continuous in H x R™ 1! if it is piecewise
continuous in each finite domain G ¢ H x R™ 1,

If u(t)€ R™ is an absolutely continuous function, then a solution to the equation (1) is
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defined [6] as an absolutely continuous solution to the differential inclusion (t) € Az(¢) + F(z,t),
where F(z,t) is a minimum convex closed set containing all limiting values f(z* u(t),?)+
B(a*, u(t), t)b(z*,u(t), t)u(t) as z*—z, t = const, while points (z*,u(t),t) are not included in a
discontinuity set of the function f(z,u(t),t)+ B(z,u(t),t)b(z,u(t),t)u(t).

The existence and uniqueness conditions for an absolutely continuous solution to the equation
(1) are given in the next lemma that is a direct corollary to theorem 1 [11].

Lemma: Let the above conditions hold, and the functions f(x,u,t), B(z,u,t)b(z,u,t) satisfy
the one-sided Lipschitz condition in z
('73 - Y f(:c,u, t) - f(y,U, t)) S m](t,u)(x —Y,x— y);
((,6(.’)3, u, t)b(.’l,', U, t) - /B(ya U, t)b(y’ u, t))*(.’lf - y)) S m2(t, u)(x - Y, r— y);

where functions my(t,u) € R, my(t,u) € R™ are integrable in t,u; B*: H—R™ is an operator ad-
joint to an operator B: R™—H.

Then there erists a unique absolutely continuous solution to the equation (1) corresponding to
an absolutely continuous function u(t) € R™.

In case of an arbitrary non-decrease function u(t) € R™, a solution to the equation (1) is
defined as a wibrosolution [9]. A vibrosolution is expected to be a function discontinuous at discon-
tinuity points of the function u(t¢).

Definition 1: The convergence in the Hilbert space H
x —limz®(t) = z(t), t> t,,

is said to be the x-weak convergence if the following conditions hold
1) lim [|a¥(t) —2(to) || =0, t> 1,
2) lim || z%(t) —2(t) ]| =0, t > ty, in all continuity points of the function z(t),
3) sup i Var [t T (t) < oo for any T > ty, where a variation of a function z(t) € H is

defined by
N
Var[a,bla(t) = || z(t) | +Sgpz lz(t;) —=(t; )l (2)
i=1
and supremum is over all possible partitions 7 = (a = t4,%,...,t5y =b), || - || is the norm in the

space H.
Definition 2: The left-continuous function (t) is said to be a vibrosolution to the equation
(1) if the *-weak convergence of an arbitrary sequence of absolutely continuous non-decreasing
functions u¥(t) € R™ to a non-decreasing function u(t) € R™
. k _
* — limu™(t) = u(t)
implies the analogous convergence
. k _
* — lim 2%(t) = z(t)

of corresponding solutions z¥(t) to the equation

ER(1) = Azk(t) + f(2*,uk 1) + B, R, t)b(k, uk, )ik(2), 2F(ty) =
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and the unique limit z(¢) occurs regardless of a choice of an approximating sequence {uk(t)},
k=1,2,...

4. Existence of a Solution. Necessary Conditions

As in case of a finite-dimensional differential equation in distribution [1, 3], existence of a

vibrosolution to an equation (1) is closely related to the solvability of a certain associated system
in differentials.

Theorem 1: Let the lemma conditions hold.

If a unique vibrosolution to the equation (1) exists, then a system of differential equations in
differentials in the space H

% = B(&,u,s)b(E,u,8), &(w) =z, 3)

is solvable inside a cone of positive directions K = {u € R™:u, > w,, i =1,...,m} with arbitrary
initial values w € R™, w > u(ty),z € H, and s > 1.

Proof: Consider a vibrosolution z(t) to an equation (1) with an initial value z(s) = z and a
function u(t) = w+ (v — w)x(t — s), where x(t —s) is a Heaviside function, w,v € R™, v > w, and
s > ty. By virtue of the theorem conditions this vibrosolution exists. Let us prove that under the
theorem conditions the Kurzweil equality [10]

r(s+)=y(1) (4)

holds as x(s + ) = limz(t), t—s +, where a limit is regarded in the norm of the space H, and y(7)
is a solution to the equation

dy =Byw+(v—w)rs)b(y,w+ (v-w)r,s)(v-w), y(0)=2 0<r<1 ()

By virtue of the given lemma and the theorem conditions, an absolutely continuous solution to
the equation (5) y(7) exists and is unique, if v > w.

Following the proof of theorem 1 [12], it is readily verified that under the theorem conditions,
the functions y*(r) ==z (s+r/k‘2 0<7<1, k=1,2,..., where z*(t) are v1brosolut10ns to
equatlons (1) with initial values "(s) = z and absolutely continuous functions u (t) =w, if t<s,

k() = w+k(v—w)(t—s), if s<t<s+1/k, and u k(t)=w, if t > s+ 1/k, in right-hand sides,
are solutions to the equations

dy* ok k
o = A () + f5 e+ (v—w)r, s+ 7/k)]/k

+ ﬂ(yk,w +(v—w)r, 5+ T/Ic)b(yk,w + (v —w)r, s+ 7/k)(v— w), yk(O) =z,

and the following equality holds
(s + 1/k) = y*(1). ()

By virtue of the theorem on continuous dependence of a solution to a differential inclusion on a
right-hand side in a Banach space [11], a sequence of absolutely continuous functions yk(T) con-
verges to an absolutely continuous solution to the equation (5) pointwise in the norm of the space
H:

lim || y*(r) = y(r) || =0, k—oo, T€[0,1].
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Thus, lim y*(1) = y(1), k—oco, and by virtue of (6)
. . /oy
tll»ﬁn+ k]LI&$ (t) = y(1)-
Taking into account the equality
. . ki
tllvgn+ kh_)n;ox ) =z(s+),

where z(t) is a vibrosolution to the equation (1), the Kurzweil equality (4) is proved.

Define the function &(z,w,v,s) by
1
(zywyv,8) =y(l) =2+ / Bly(r),w+ (v—w)r,8)b(y(r),w + (v — w)T,s)(v — w)dr, (7)
0

where y(7) is a solution to the equation (5). Since a solution y(7) exists and is unique under the
theorem conditions, if v > w, the function £(z,w,v,s) € H is uniquely defined inside a cone
K={ue R™u,>w, i=1,..,m}. It only remains to prove that

d )
—g—(f’—d—%’-?—’-i)— = B(&(z,w,v,5),v,8)b(&(z,w,v,8),v,s).

However, the proof of this correlation is quite consistent with the last part of the proof of theorem
1 [12] and can be omitted here. Thus, the function £(z,w,v,s) defined by (7) is a unique solution
to the system of equations in differentials (3) inside a cone K as s > t;,. Theorem 1 is proved.

5. Existence of a Solution. Sufficient Conditions

Let us prove that under additional conditions imposed on a function B(z,u,t)b(z,u,t) the
necessary existence conditions for a vibrosolution to an equation (1) coincide with the sufficient
ones.

Theorem 2: Let 1) the lemma conditions hold, and, moreover,

2) {0b(z,u,t)/0x} € L(H—-L(R™—H)), {0b(z,u,t)/0t} € L(R™—H) be bounded continuous
defined in the space Hx R™ x R,

3) functions 8f(z,u,t)/0z,00(x,u,t)/0t be piecewise continuous in x,u,t and their contin-
uity domains be locally connected.

If a system of differential equations in differentials (3) is solvable inside a cone of positive
directions K = {u € R™:u; > w;,i =1,...,m} with arbitrary initial values w € R™, w > u(ly),
z€ H, and s > t,, then a unique vibrosolution to the equation (1) exists.

Proof:  Let [uk(t)},k: 1,2,..., be a sequence of absolutely continuous non-decreasing
functions u¥(t) € R™, which tends to a distribution function wu(t) in the sense of the *-weak
convergence. Consider the equation (1) with absolutely continuous non-decreasing functions uk(t)
in a right-hand side, that is

B4(1) = Ak(1) + £k, ub )+ Bl b, bk ok, 0ik(1), K1) = (8)
It should be noted that the theorem conditions (1)-(3), the lemma of Section 2, and the theorem 1
[11] yield existence and uniqueness of an absolutely continuous solution to the equation (8). As
follows from [7, 8], this solution can be represented as a Fourier sum in the space H on the com-
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plete orthonormal basis {c;}72  generated by eigenfunctions of the operator A

[0,8]

k
(1) = Y wi(t)ey. 9)
1=0
Scalar functions :L'f(t) satisfy the equations

def(t) = \zh(t)dt + f(z% 0 t) + Bk, uF, )b, (2%, u¥, 1) du(2), 25(0) = 2, (10)
X)L o is a countable set [7] of eigenvalues of the operator A, and f,(z,u,t)€ R,
b,(x,u,t) € R™, x;0 € R, 1 =0,1,2,..., are Fourier coefficients for a function f(z,u,t), an operator

b(z,u,t), and an initial value x, on the basis {c;}7% , respectively:

o0 < (e8]
f(z,u,t) = Zfi(w,u,t)ci, b(z,u,t) = Zbi(az,u,t)ci, Ty = inoci. (11)
1=0 1=0 1=0

The convergence of the Fourier series (11) is regarded in the norms of the corresponding Hilbert
spaces.

Consider an infinite (i = 0,1,2,...) number of finite-dimensional equations (10) which contain
an arbitrary non-decreasing function u(t) € R™ in right-hand sides

d;(t) = Nz, (t)dt + f,(z;,u,t) + B2, u, t)b,(z;,u, t)du(t), z,(0) =z, (12)

whose solutions are thus regarded as vibrosolutions. Since z,(t) € R are scalar functions, existence
and uniqueness of solutions to the equations (12) are assured of the existence and uniqueness
theorem for a vibrosolution [3] by virtue of the inequalities Re();) < 0 [7], the theorem conditions
(1)-(3), and the solvability of the system of equations in differentials (3) inside a cone K. Then,
taking into account the vibrosolution definition given in Section 2, we obtain the pointwise conver-

gence of absolutely continuous solutions :cf(t) to the equations (10) to vibrosolutions z,(t) to the
equations (12)

lim |z¥(t) —2,(t)] =0, k—oo, t>1y i=0,1,2,...,
in all continuity points of the function u(t) as
¥ —limuk(t) = u(t), t—oo,
where u¥(t) € R™ are absolutely continuous non-decreasing functions. Thus,

N N
lim || Y a¥(t)e; = Y zi(t)e; || =0, k—oo, N < o0,
1=0 1=0
in all continuity points of the function u(t).

Consider the Fourier sum generated by the functions z,(t) on the basis {c,}7%

> zilt)e;. (13)

1=0
Let us prove that the series (13) converges in the norm of the space H. Indeed, the following in-
equalities [5] hold

13 206
1= N
t
{z,pexp(X;(1)) + / exp(A;(t — ) f;(z; u,s)ds + B(z;, u, 8)b,(z;,u, 8)du(s)]}e; ||
ty

Y

N

-
Il
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+‘§: | / exp(Re(X;(t —s)))B(x;,u, s)b;(x;,u,8)du(s) || < oo,

to

since functions f,(z,u,t) and B(z,u,t)b,(x,u,t) are bounded and satisfy the one-sided Lipschitz
condition, lim Re(A;) = —o0 as i—oo [7], t—s >0, the Fourier series (11) converge, and the
latter integral is with a bounded variation function u(t). Thus, the Fourier series (13) converges,
i.e., there exists an H-valued function z(t) € H such that

N
lim || z(t) — Z z;(t)e; || =0, N-—oo.
1=0
Let us finally prove that the function z(t) € H obtained as a Fourier sum (13) is a vibrosolution
to the equation (1). For any € > 0 there exist a number N, such that the inequality

Nl
lz(t) = Y z(t)e; || <e/3,
1=0
holds by virtue of the convergence of a Fourier series (13), and for any € >0 there exists a

number N, such that the inequality

N

2
k k
12*(t) = Y K (t)e; || < e/3,

1=0
holds by virtue of convergence of a Fourier series (9), Moreover, for any € > 0 there exist a
number N = max(N,,N,) and a number K such that for any k > K the inequality

I Z z(t)e; — Z zf(t)e; || <e/3,

1=0 1=0
holds in all continuity points of the function u(t), since z,(t) is a vibrosolution to the equation
(12) and {:c:c(t)}, k=1,2,..., is a sequence of approximating solutions to the equations (10).
Thus, for any € > 0 there exist a number N and number K such that for any k£ > K we obtain

N
| z(t)— 25 || < llz(t)— Y z;(t)e; | (14)

1=0

+ 1l Z i(t)e; —Zwk(t)c |+ [1*(t) - Zw (Oe; |l <

1 =0 1=0
in all continuity points of the function u(t). The inequalities (14) yield the convergence in the

norm of the space H
lim || ¥(t) — 2(t) || =0, k—oo,
in all continuity points of the function u(t). Moreover,
k _ —
z"(ty) = 2(ty) =z
by virtue of coincidence of initial values of the equations (1) and (8), and the inequality

sup Varoo[to,t]wk(T) < oo for any T >t
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holds by virtue of the uniform boundedness of variations of absolutely continuous functions :L'f(t),
sup Var[tO,T]:cf(t) < oo for all i =0,1,2,... and any T > t,, and the convergence of the Fourier
series (9). Thus, the *-weak convergence in the space H

¥ —limz®(t) = 2(t), k—oo, t>1,,

is proved. Since z¥(t), k =1,2,..., are absolutely continuous solutions to the equations (8) that
are equations (1) with absolutely continuous non-decreasing functions u*(t) € R™ in right-hand
sides, the vibrosolution definition implies that the function z(¢) € H is a vibrosolution to the
equation (1). Theorem 2 is proved.

Remark: The vibrosolution definition as well as the necessary and sufficient existence
conditions can also be stated for nonmonotonic functions u(t) € R™, assuming that the one-sided
Lipschitz condition holds for a function B(x,u,t)b(z,u,t)sign(u(t)) and approximating functions
,B(ack, uk,t)b(a:k, uk,t)ﬂk(t) for any k =1,2,....

6. Equivalent Equation with a Measure

It should be noted that only vibrosolutions, which correspond to absolutely continuous
functions uk(t) € R™, are absolutely continuous solutions to a differential equation in distribution
(1). Therefore, it is not clear how to compute jumps of a vibrosolution to a differential equation
in distribution at discontinuity points of an arbitrary non-decreasing function u(t) € R™. Thus,
it is helpful to design an equivalent equation with a measure whose conventional (in the sense of
the definition of a solution to an ordinary differential equation with a discontinuous right-hand
side that is given in Section 2) solution coincides with a vibrosolution to an equation (1), and

which enables us to directly compute jumps of a solution at discontinuity points of an arbitrary
non-decreasing function u(t) € R™.

Theorem 3: Let the theorem 2 conditions hold. Then an equation (1) and an equivalent
equation with a measure

dy(t) = Ay(t)dt + f(y,u, t)dt + B(y,u, t)b(u,u, t)du(t)
+ ZG(y(ti = hu(t; =), Au(t), t)dx(t = t,),  y(to) = zg. (15)

1
have the same unique solution regarded for in equation (1) as a vibrosolution.

Here G(z,v,u,s) = &(z,v,v + u,s) — z, where £(z,v,u,s) is a solution to a system of equations
in  differentials (3); u®(t) is a continuous component of a non-decreasing function wu(t),
Au(t;) =u(t;+)—u(t;—) is a jump of a function u(t) at t, t; are discontinuity points of a
function u(t), x(t —1t;) is a Heaviside function.

Proof: A function of jumps G(z,w,u,s) is bounded in the norm of the space H as a solution
to the system (3) with a right-hand side B(&,u,s)b(&, u,s) satisfying the one-sided Lipschitz
condition. Then, by virtue of the lemma of Section 2 and the theorem 1 [11], a solution to the
equation with a measure (15) exists and is unique as a bounded variation function with an
absolutely continuous component in continuity intervals of the function u(¢) and the jumps
determined by the function G(y(t,—),u(t; —),Au(t,),t;) at discontinuity points of the function
u(t). As follows from [7, 8], this solution can be represented as a Fourier sum in the space H on
the complete orthonormal basis {c;}7  generated by eigenfunctions of the operator A:

S nien (16)

1=0
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Scalar functions y,(t) satisfy the equation
yi(t) = Ay (D)t + fi(yyw, ) + By v, 0)bi(y;, u, t)dus(t) (17)
2 Ciilt =)ty =), At L)X = 1), yill) = i
where scalar functions éi(zi,w, u,s) are defined as follows
G(z;w,u,8) = €(z;w,w~+u,s) — 2,

and functions £;(z;,w,u,s), u > w, s > t, are solutions to the equations in differentials

% = B(&;,u,8)b,(Euys), Ei(w)=2; 1=0,1,2,...,

inside cones of positive directions K = {u € Rm:uj > wj,j =1,...,m} with arbitrary initial values
w€R™, z; € R, and s > .

Consider an equation (1) with an arbitrary non-decreasing function u(t) € R™ in a right-hand
side. Existence and uniqueness of a vibrosolution to such an equation have already been proved
in the theorem 2. That vibrosolution can also be represented as a Fourier sum (13) on the basis
{ci}?o: o OO

z(t) = ) zi(t)e;,
1=0
where scalar functions z,(t) satisfy the equations (12)

dz,(t) = Mz, (t)dt + f(z;,u,t) + B(x;,u, )b,(x;,u, t)du(t), =;(0) =z,

The equations (12) and (17) are finite-dimensional equations whose right-hand sides contain
vector distribution and piecewise continuous regular functions satisfying the one-sided Lipschitz
condition. Thus, by the virtue of theorem 2 [3], unique solutions ;(¢) and y,(t) to the equations
(12) and (17) coincide as vibrosolutions for any i =0,1,2,.... The vibrosolution definition given
in Section 2 implies that for any i = 0,1,2..., the equalities

l xi(t) - yi(t) | = Oa t> t(), (18)
hold in all continuity points of the function u(¢).

Let us finally prove that solutions to the equations (1) and (15) are indistinguishable as
vibrosolutions. Let

lz(t) —y(t) ]| #0, t=>1,

for at least one continuity point of the function u(t) € R™. Expand the mentioned solutions into
Fourier series on the basis {¢;}72 (:

[0.8)
LORVOES W CHORSHOV
1=0
By virtue of the equalities (18) and the uniqueness of the expansion into a Fourier series on the
given basis, the equalities

2~y | <3 20— vi(t)] =0, t> 1o,
1=0

also hold in all continuity points of the function u(t). Thus, the vibrosolution definition given in
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Section 2 implies that the functions z(t) € H and y(t) € H are indistinguishable as vibrosolutions
to the equations (1) and (15). In other words, the equations (1) and (15) have the same unique
vibrosolution. Theorem 3 is proved.

7. Conclusion

The vibrosolution definition assumes uniqueness of a vibrosolution to an equation (1). This
enables us to apply the obtained sufficient existence conditions for a vibrosolution to filtering
equations for an infinite-dimensional process over discontinuous observations, for example [13], in
case of simultaneous impulses in all observation channels (a scalar function u(t)). However, the

results of this paper also enable us to consider a case of non-simultaneous impulses in observation
channels (a vector function u(t)).
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