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ABSTRACT

This paper is part of a broader investigation of properties of a point process
that can be identified by imagining that the process is involved in a competition
for the generation of runs of events. The general purpose of that methodology is
to quantify the prevalence of gaps and bursts in realizations of the process. The
Markovian arrival process (MAP) is highly versatile in qualitative behavior and
its analysis is numerically tractable by matrix-analytic methods. It can therefore
serve well as a benchmark process in that investigation. In this paper, we con-
sider the MAP and a regular grid competing for runs of lengths at least r, and
o, respectively. A run of length r in one of the processes is defined as a string of
r successive events occurring without an intervening event in the other process.
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1. A Comparison of Point Processes by Means of Runs

This article is part of a broader study of statistical descriptors of the behavior of point proc-
esses. One set of descriptors aims to quantify the prevalence of runs of events, and to that end,
we need operational definitions of runs in point processes on the real line. One such a definition is
based on the comparison of the path functions of two (independent) stationary point processes P,
and P,. We assume that both processes are regular and have simple events only. Positive inte-
gers r; and r, are specified. An event in the process P, is labeled as the end of a 1-run if it is pre-
ceded by at least r; events in the process P, for which there are no intervening events in P,. We
similarly define the end of a 2-run as an event in the process P; which is preceded by at least r,
events in the process P, without intervening events in the process P;.

We assign a time interval between successive ends of runs to the process which produces the
final run of that interval. For example, if an interval terminates with a 1-run, we assign that
interval to Process 1. We imagine a “competition” between P, and P, to produce respectively
runs of lengths at least r; or r,. We think of whichever process wins as being more “bursty” over
that interval. For the given values of r; and r,, the fraction of time assigned to each process in
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Foundation.
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that competition is a global measure of their relative burstiness. For several values of r; and r,,
that fraction and several related quantities are easily estimated from actual or simulated traffic
data. This is a clear advantage of such descriptors of burstiness. However, to explore the mathe-
matical properties of these descriptors for familiar point processes and thereby to inspire confid-
ence in their use, we examine the cases for which computable, tractable expressions for the descrip-
tors can be derived.

The interest of the proposed approach can best be demonstrated by simulated examples and
by using computer graphical displays. A verbal description of these examples is unavoidably
lengthy and this is not the appropriate place for it. Concrete applications are to be the subject of
future papers, but a brief description of the competition is given in Section 5.

This article deals with the case where P, is a Markovian arrival process (MAP), a broad
generalization of the Poisson process that can be thoroughly analyzed by matrix-analytic
techniques. The second process, which we think of as the reference process, is just the stationary
renewal process with events that are a distance d apart. By a simple rescaling of time, we may
obviously choose d =1. We call P,, the stationary unit grid. That reference process is useful in
the ezploration of a single MAP, where the competition has a natural interpretation. For
expositions of the essential properties of the MAP, see Lucantoni [2] or Neuts [3]. Some issues in
the quantification of the burstiness of point processes are discussed in Neuts [4].

The analysis of the case where P, is the stationary unit grid is not particularly easy. As is
well-known from other contexts, for continuous-time models, the equidistant events preclude a
simple Markovian analysis. There are interesting special results for the MAP in the role of P;.

These are useful to calibrate the run method of comparison when applied to other pairs of point
processes.

As expected, there are major analytic simplifications when the reference process is Poisson.
As always, the limitation in practical versatility of Poisson assumptions is severe. That makes
the MAP such an appealing benchmark process. For the modest cost of performing calculations
with matrix functions, we preserve much of the tractability of the Poisson process while retaining
great modeling versatility.

In subsequent papers, we shall study the MAP with two types of events. This model, of parti-

cular interest, describes among other things the input and departure processes of a finite-capacity
Markovian node in a queueing network.

Even when P, is Poisson, the analysis of run lengths is not entirely elementary. It requires
careful attention to details, but once completed, it carries over easily to the MAP. In Section 2,
we introduce the method for that case and obtain some explicit results. These are generalized to
the MAP in Section 3 and the formal similarity of the derivations and results to the Poisson case
is noted. Additional results for the MAP are derived in Section 4. Particular forms for the
Poisson case are now simple special cases. Section 5 is devoted to a brief description of a comput-

er-graphical exploration of the competition. Auxiliary results and the essential steps of lengthy
derivations are found in the Appendix.

2. The Case of the Poisson Process

Let P, be a Poisson process of rate A\. To visualize the competition between P, and the sta-
tionary grid, we superimpose the two point processes. We mark the endpoints of unit intervals
during which r; or more Poisson events occur, and also the first Poisson events following strings

of at least r, unit intervals devoid of Poisson events. These events mark the endpoints of 1-runs
and 2-runs, respectively.
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For a transparent analysis which immediately carries over to the MAP, we define an
embedded Markov renewal process. That embedded process, which has an uncountably infinite
state space, is conceptually easy. Its transition epochs are the marked endpoints. Those corres-
ponding to the end of 1-runs (Poisson) are labeled with state 1. To those that are endpoints of 2-
runs and occur at the time u during the corresponding unit interval, we associate the state (2,u).
The bivariate sequence {(J,,,7,)} of the states {J,} at the successive marked epochs and of the
sojourn times {7}, form a Markov renewal sequence on the state space E = {1}U{(2,u), with
0<u<1}

The case r; =1 is somewhat special. In order not to detract attention from the general case,
we first assume that r; is at least two. Next, we construct the transition probability operator G
of the Markov renewal process.

The Transition Probability Operator

While elementary, that construction involves mixed discrete-continuous probability mass
functions and some absorption time distributions in an associated Markov chain. To prepare the
way for the case of the MAP, we discuss the construction in detail. The operator G is specified
by the conditional probabilities of transitions out of the state 1, and those of transitions out of a
state of the type (2,u). Four cases are to be considered.

We use G,(z) for the probability Gy;(z) = P{J,, =17, <z|J, =1}, for n>1 and
z > 0. In a transition from state 1 to itself, that is, a 1-run followed by another, the sojourn time
is necessarily a positive integer v. It equals v if and only if the vth interval of length one contains
at least r; Poisson events, during all earlier unit intervals there are fewer than r, Poisson events,
and there are no strings of r, — 1 consecutive intervals devoid of Poisson arrivals. The probability
of that event is related to a simple (r, + 2)-state Markov chain with two absorbing states, whose
transitions probability matrix P(ry,r,) is of the form

0 1

2 3 4 5 *
0 (b(ry—1) a 0 0 0 0 c(ry—1)
1 |b(ry—1) 0 a 0 0 0 c(ry—1)
P(ry,6) = 2 |blr=1) 0 0 a 0 0 c(ry—1)
3 [b(ry—1) O 0 0 a 0 c(ry—1)
4 (b(ry—1) 0 0 0 0 a c(ry—1)
5 0 0 0 0 0 1 0
* 0 0 0 0 0 0 1
here displayed for the representative value ;‘2 = 6. The non-zero elements are given by
T ,
a=e"?, b(ry—1) = %Zf‘”}—.i, e(ry—1)=1-a—-b(r; - 1).
=

At this time, we do not yet make the simplifications resulting from the special structure of the
stochastic matrix P(ry,r,). It is preferable to emphasize its structural properties. We note that
the transition probability matrix is of the form
T(ry,7y) T (ry) T'(ry)
P(ry,ry) = 0 1 0
0 0 1
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We see that, for £ > 1, G;(x) is the probability that, starting from the state 0, absorption into
the state * occurs before or at time [z], where [ -] denotes the integer part. If we write y(ry —1),

for the row vector of dimension 7, — 1 with components 1,0,...,0, then
[z] )
Gui(e) = D y(ry = V[T (ry,r)? ~ ' T'(ry).
J=1

The sojourn times of transitions from state 1 to a state of the form (2,u’) are necessarily of the
form n+ v/, where n is an integer >ry,—1. To derive an explicit expression for the elementary
conditional probability

du/GIZ(uI; x) = P{Jn + 16[(2’ u’)’ (2’ ul + du’)]; Tn +1 S T | Jn, = 1}?

we again consider the Markov chain with transition probability matrix P(ry,r,). At some time
v, that Markov chain must be absorbed in its state ry. A run of r, events in P, has now been
completed. At some later time j, where j <[z —u'], the unit interval that contains at least one
Poisson event must start and the first Poisson event must occur in the interval (u',u’ + du’) count-
ing from that epoch. In that case, there are j — v unit intervals not containing Poisson events, in
addition to the ro, — 1 required for a 2-run. We see that

(z —u']

d, Ga(uw;z) = Z Z 1’7(7‘2—l)[T(Tl,r2)]""1T°(r e i =)o =2y g0
]=r2—l v=r9—

— _ o _ ——)\([x—u']-—u+1)
:Z Py = DIT(r,r)l ™10 () [F

] e~ M 2y,

Next, the transition probabilities starting from a state (2,u). First an observation that is obv-
ious when P, is Poisson, yet it is essential to the embedded process being a Markov renewal pro-
cess. A corresponding property also holds when P, is a MAP. It is then less obvious so we give
an explicit argument in Lemma A-1 of the Appendix. Let the endpoint of the preceding 2-run
fall at u in the unit interval during which it occurs. For the Poisson case, the number of
additional events in P, in that unit interval is then independent of the past and has Poisson
distribution with parameter A(1 — u).

If there are at least r; —1 Poisson events in that interval, the next event in the stationary
unit grid is also the endpoint of a 1-run. In this case, we have a (2,u)—1 transition after a
sojourn time of length 1 — u.

If there are fewer than r, — 1 Poisson events in that interval of length 1 — u, then the sojourn
times of the transitions, either to the state 1, or to some state (2,u’), are generated in exactly the
same way as for the preceding two cases.

The expressions for the corresponding transition probabilities Gy (u;) and Goy(u,u’;x) are
therefore as follows:
ry—2

. .
\ Z 21— M1 = w))?
Ga(uie) =1 _j =oe N )——(7!_—)]—
ry—2 i [z —14u]
_ _u 1-— J — /
n z e~ M1 ( T u)l . E ¥(ry— 1)[T(T'1,7'2)]k T (r)s
i=o k=1

since that mass-function has atoms only at points of the form 1 —u + n, with n > 0. By a similar
argument,
b EYCEn)y
— M1 — —-u
d Gagu,u'sz) = e~ M-l WF

j=0 7t
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[z —14u—1]

ST Ay = DIT(ry,ry) P ~ITO (ry) | 1=E

57 1
v=r, 1

Mz - ]-v+1)

—/\u/)\d !
u.
—e~ A

Laplace-Stieljes transforms of these mass-functions are evaluated in the Appendix. By setting
s =0 in these transforms, we get the transition operator of the embedded discrete-time Markov
process on the state space E. The Markov renewal process that concerns us here is a simple exam-
ple of such processes on a general state space, see Cinlar [1]. For the present case, its analysis is
entirely analogous to that of Markov renewal processes with finitely many states. The following
statements are the salient results of that analysis. We note that

$(ryyrg) = (ry = DU = T(ry,ry)] 1T (ry),

is the probability that the Markov chain with transition probability matrix P(r;,r,) is absorbed
in the state *. It is also clear that

7(7.2 - 1)[1 - T(T‘l,’f'2)] - lTO (1"1 =1- ¢(7‘1,1"2),
is the absorption probability into the state r,.

The quantity ¢(rq,r,) is the first component of the vector V which is calculated in the
Appendix. It is explicitly given by

(1—a"2" He(r, — 1)

$(r1ry) = l—a—(1-a'2" 1)"(’“1 - 1).

For notational convenience, we set

Z l—u )‘(l_u)] S(U)

7!
Theorem 1: The transition probability operator of the embedded Markov process is given by:
11(0) = é(rq,7y), (1)
- Au
Gi(u50)=[1— ¢(r1,r2)] )\du ,

G51(4;0) =1-5(u) + S(U)¢(7’1,r2),

and
e A
d iGyo(u,u';0) = S(u)[1 - ¢(r1,r2)]1—_,\)\ du'.
—e
Clearly, 1
G1,(0) + / d Gia(u'50) =1,
0
and 1
G;l(u;O) + / du,ng(u,u’;O) =1,
0

so that G is a proper Markovian transition operator. Its invariant probability measure consists of
an atom g, at the state 1 and a density g,(u') on [0,1]. These are explicitly given by
c(ry—1 -
g1 = r(_ll ) , and gy(u) = K(ry,ry)Ne Au (2)
(1-a)a? ~+c(ry—1)
for 0 <wu < 1, where the multiplicative constant is given by
G )
K(rqy,ry) = — . 3
, (1—a)a"? 1+c(r1—1)

Proof: Formulas (1) are obtained by setting s = 0 in the Laplace-Stieltjes transforms given in
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the Appendix. The invariant probability measure on the state space E should satisfy the equa-
tions

1
0= 08(rr) + [ 0L =[1 = gl IS, (4)
0
= e ) 1 S()dv-e
go(u') —91[1-¢(7'1,7°2)}1—__—e_—,\ +[1—¢(T1,r2)]{ 92(v)S(v) e (5)
and the normalization 1
9, + / go(v)dv = 1. (6)
0

Equation (5) shows that g2(u):K)\e_’\“, for some constant K. We substitute into
equations (4-6) and notice that
1 -2

T 1 . .
/ e MS(ydv=e"*Y / [-A—(l—j!idv =27 1(r, —1). (7)
0 3=0 9
Equations (4) and (5) reduce to
(1= ¢(ry,r9)lgy = K{1 —a—1[1 = ¢(ry,r5)]b(ry — 1)}

. . . . -1
Upon substitution of the expression for ¢(ry,r,), the last equation further reduces to a'? g9, =

K(ry,r9)c(ry —1). The latter and the normalizing equation (6) lead to the stated formulas for g;
and K(ry;7r,y). O

In the Appendix, it is shown that the fundamental mean of the Markov renewal process is
given by

*(ryyry) = 1 .
B = ®)

This is an important quantity. Its inverse [E'*(rl,1"2)]_1 is the rate of transitions in the
stationary version of the Markov renewal process. The ratio
91

Uy (ry,rg) = ‘ETT——

=c(r;y—1).
r1:T2) (ri=1)

is the fraction of time spent in state 1 in the stationary version of the Markov renewal process.
Informally, it is the fraction of time in steady-state that the Poisson process is winning the

competition to produce runs of its specified kind. Its inverse is the mean time between visits to
State 1.

For completeness, we record the minor modifications needed when r; = 1. There is no need
to consider the absorption time in a Markov chain. The endpoints of unit intervals containing at
least one Poisson event mark the ends of 1-runs, and the first Poisson event after a string of at

least 7o —1 empty unit intervals marks the end of a 2-run. The Laplace-Stieltjes transforms of
the transition operator for that case are:

Gii(s) = (1—e™Ne 2 L=¢
1—e

—-(s+)\)(r2—-1)
“G+Nn

TOENED oA gy

1, €
d Gia(u';s) = P VI

Gy (u;s) =e” (1 =u)s,

Direct transitions between states of the form (2,u) and (2,u’) are impossible. The calculation
of the invariant measure is as in the general case, but simpler. It yields the simple explicit expres-
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sions g, =(1+a2 )" and gy(u)=Kle"2, for 0<u<l, with K(l,r,)=

a’2” 1[(1 —a)(1+a"2" 1)] =1, The row sum mean m, is given by
To = 1 _ Tg— 1
e e
and, clearly, my(u) =1 —u. A direct calculation yields the fundamental mean, given by
E*(1,ry) = 1

(1-a)(1+a27h)
which is what we get when we set b(r; —1) = 0 in the general formula. The ratio ¥,(1,r,) equals
l—a=1-e""

Remark: The fact that, in all cases, ¥,(r,r,) equals c(r; — 1) is to be expected. The visits
to State 1 are the ends of 1-runs. These are precisely the endpoints of unit intervals during which
at least r; Poisson events occur. The times between such points have a geometric distribution
with mean [c(r, —1)] ™%

3. The Case of the Markovian Arrival Process

We now generalize the preceding results to the case where P, is a continuous-time Markovian
arrival process with parameter matrices D, and D;. We assume some familiarity with the basic
properties of the MAP as discussed, e.g., in Lucantoni [2] and Neuts [3]. The sum D of the para-
meter matrices is an m x m irreducible generator with stationary probability vector §. The ma-
trices P(n;t), n > 0, are the familiar matrices associated with the counting process. They satisfy
the system of differential equations

P'(0;t) = P(0;t)Dg, 9)
P'(n;t) = P(n;t)Dy+ P(n—1;t)Dy, n>1.
Their matrix generating function is given by
P*(z;t) = exp[(Dg + 2Dy)t], t>0.

The sequence of matrices {P(n;t)} are a natural matrix generalization of the Poisson probabil-
ity density. Methods for their numerical computation are discussed in Neuts and Li [5]. To em-
phasize the similarity to the Poisson probabilities and its role in the present analysis, we define

the analogues of the quantities a,b(ry — 1), and ¢(ry —1), but we use capital letters to emphasize
that these objects are now m x m matrices

1-1
A = P(0;1) = exp(Dy), B(ry—1)= Z P(j;1),
i=1

C(ry—1)= Z P(j;1) = exp(D) — A — B(ry — 1).
Jj=ry

The states of the continuous-parameter Markov chain with generator D are called the phases.
In modeling the competition for runs of lengths v, in P, or r, in the reference process P,, the
stationary unit grid, we construct a Markov renewal process analogous so that in Section 2. The
only essential difference is that we must now also keep track of the phase at transition epochs.
The state space is therefore

E={(1,j)1<j<myu{(2hu), with1<h<m0<u<l}

For notational convenience, we denote the first set of states by 1, and a set of states with fixed u
in the second by (2, u).
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Lemma A-1 implies that the epochs labeled at the ends of runs, the future of the process is
conditionally independent of its past, given the state in 1 or (2,u). The sequence of states and
corresponding sojourn times therefore defines a Markov renewal process with the given states. We
study the quantities associated with its stationary version as was done for the Poisson case.

The analogue of the stochastic matrix P(ry,ry) is now the matrix displayed here for the
representative value r, = 6.

0

1 2 3 4 5 x

0 |B(ry,—1) 4 0 0 0 0 C(ry—1)

1 |B(r,—1) 0 A 0 0 0 C(ry—1)
P 6= 2 |B(r,—1) 0 0 A 0 0 Cln-1)|

3 |B(ry—1) 0 0 0 A 0 C(ry—1)

4 |B(ry—1) 0 0 0 0 A C(ry—1)

5 0 0 0 0 0 I 0

x 0 0 0 0 0 0 I

This matrix has the same structural form as in the Poisson case:
T(ryyry) T(ry) T'(ry)

P(rqy,ry) = 0 I 0

0 0 I

As we need to keep track of the phase at the absorption time, the sets ry —1 and * now
consist of m states. The entries T'(r;) and T °(r,) are therefore matrices of dimensions
m(ry—1)xm. By T(r,—1), we denote a matrix of dimensions mxm(ry—1) of the form
1,0,...,0, where I is the identity matrix of order . That matrix enables us to calculate
simultaneously the absorption probabilities from each of the initial states (0,h), where h denotes
the phase of the MAP.

The Transition Operator of the Markov Renewal Process

For convenience, we give the expressions for the transition probabilities of the Markov renew-
al process embedded at the ends of the runs immediately in transform forms. The derivation of
the most complicated of these expressions, that in formula (12), is given in the Appendix; the
others are similar but simpler. The analysis that follows applies when r; > 2 and r, > 1. The
simple special case where r; =1 is treated at the end.

The matrix analogues of the transforms for the transition operator in the Poisson case are as
follows:

Gii(s) = e ™ °T(rg— DI — e~ *T(ry,ry)) = ' T'(ry). (10)
:G12 u';s) Zle s(n+u’ Zl (r2—1)[T(r1,r2)]""1T°(r2) (11)

-exp [(n — v)Dgylexp(Dyu') D, du'’
=e " T(ry— 1[I —e™ 5T (ry,ry)] 1T (ry)[I—€~ S"Iexp(Do)] ~le = Sexp(Dgu') D, du' -

G51(u;s) = [exp[D(1 —u)]—S(u)]e_s(1 —u) (12)
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+S(u)e T = We =50 (ry — 1)[I =™ *T(ry,r5)] ™ 1T(r)
and
d Gha(u,u'ss) = S(w)e " * ™Y =T (ry — 1)[I — e~ *T(ry,7,)] " 1T °(ry) (13)

[I — e~ %exp(Dy)] e~ s“,exp(Dou’)Dldu’.

Setting s = 0 in the preceding formulas, we obtain the transition probability operator of the
embedded Markov chain. We shall next derive its invariant probability measure explicitly. First,
we introduce some matrices that are the analogues of the absorption probabilities in the finite
Markov chain of Section 2.

We define the matrices:
®'(ry,ry) = L(ry = DI = T(ry,ry)] " T"(ry), (14)
®°(ry,ry) = (ry — )T = T(ry,r9)] = 1T (r)). (15)
By solving the system of matrix equations
V,=C(ry=1)+B(ry —1)Vo+ AV, 4,
for 0 <i < ry—2, with VT2_1 =0, we find that
®(ry,rg) =1 A= (I - A" B, - 1)]" YT =427 HYC(ry —1). (16)

Similarly,

B°(ry,ry)=[I—A— (T - A2 ") B(r,—1)] 71T - A)a"2 ", (17)

The Invariant Probability Measure

The invariant probability measure of the embedded Markov chain of the Markov renewal
process consists of a positive row vector g, and a vector g,(u) of density functions on (0,1). By

virtue of equations (10-13), these should satisfy the steady-state equations
1

g =8, P'(ry,rp) + / 82(u){exp[D(1 — u)] - S(u)}du (18)
0
+ /lgz(u)S(u)duq)'(rl,rg),
0
e 82(v) = 8, 2° (ry,my)[I — exp(Dy)] ™ ‘exp(Dgv) D, (19)
+ [ es(1)S(0du® 1y ) = exp(D)] exp(D) D,
0

for 0 <wv < 1, and also the normalizing equation

1

ge+ / gy(u)edu = 1. (20)
0
Theorem 2: The invariant probability measure is explicitly determined by
g, = k*0C(r; —1), and K(ry,ry) = k*04™2 7", (21)

where k* = [0[(I — A)A™2 ™ g C(ry—1)]e] ™ 1. By direct calculation, we shall subsequently verify
that k* is also the fundamental mean of the Markov renewal process. We recall that 0 is the sta-
tionary probability vector of the infinitesimal generator D.
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Proof: While these matrix formulas are completely analogous to the scalar expressions for
Poisson case, their validation requires somewhat subtle matrix calculations. We present the
details of the major steps. Equation (19) shows that g,(v) = K(r,ry)exp(Dyv)D,, for some m-
vector of constants K(r4,7,). Substitution of that form results in the equations

gL —@'(ry,r9)] = K(ry,r9)[C(ry = 1) + B(ry = 1)®'(ry,75)], (22)
; 8:2°(ryy79) = K(ryy o)1 — A= B(ry = 1)@ ° (ry,75)], (23)
gie+K(ry,r))(I —A)e=1. (24)

We enter the expressions for ®'(ry,7,) and ®°(ry,r,) into (22) and (23). That yields the respec-
tive equations

gll—A—(I—A"2"YB(r, —1)]" I = A= (I - A2 ")exp (D) — A} (25)
= K(ry,ry{C(ry = 1)+ B(ry = DI = A= (I — A" " HYB(r = 1)] 11 - A2 HYC(r, — 1)},
and
gll—A—(I—A"2"YB(r - 1)~} I-A)A2"} (26)
= K(ry,r){I ~ A= B(ry—1)[I—A—(I - A2~ HYB(r,—1)]"}(I - A)A"2 "1}

We notice that a factor I — A cancels in both sides of (26). In simplifying in the following
equations, we use the equality I — A — B(r; —1) — C(ry — 1) = exp (D). Equation (25) becomes
gl —A—(I-A""1)B(r, —1)] 714! (27)
= K(ryyry}{I = Blry = [ = A~ (1= 4™ ))B(ry = 1)) 714"},

and we replace the left-hand side of that expression in the corresponding term on the left-hand
side of (26). After some calculation, that equation yields that

(g, + K(ry,rg)B(ri — DI -A—-(I - A7 l)B(rl —1)]7 I —exp(D)]=0. (28)

This implies that the pre-factor of I —exp(D) must be a scalar multiple of the stationary
probability vector 6, or

g, + K(ry,ry)B(ry — 1) = k*0[I — A— (I — A2~ ")B(r, - 1)]. (29)

After using that equality to eliminate g; from (25), we find that K(r,,r,) = k*0A™ ", This

further entails g, = k*0C(r; —1). The explicit formula for the constant k* is readily deduced
from the normalizing equation (20). O

Calculation of the Row Sum Means

As in the scalar case where P, is the Poisson process, we need to calculate the row sum means
of the semi-Markovian transition probability operator G. We proceed directly from the trans-
forms in formulas (10-13). In each, we differentiate with respect to s, set s =0, and change sign.
Next, we “sum” over the indices of the second state. For the transitions to the macro-state 1,
that amounts to postmultiplication by a column vector e of ones. The results are column vectors
m;; and my,(u), 0 <u <1, all the dimension m. For transitions into a macro-state of the form
(2,u'), we need to integrate between 0 and 1 with respect to ’, followed by postmultiplication by
e. These operations lead to column vectors m;, and my,(u), 0 <u < 1, of dimension m. While
the calculations are straightforward, they are substantially more complicated than in the Poisson
case. They require thorough facility with the matrix formalism of the MAP. We state the final
expressions in the form of a lemma. The salient calculational steps are given in the Appendix.

Lemma 1: The mean sojourn times and the row sum means of the transition operator G are
given by the formulas:
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my; = D(ry = 1)1 = T(ry,ry)] " T'(ry)e+ D(ry = I = T(ry,m9)] ~ 2T"(ry)e. (30)
myy = [(ry = 1)[I = T(ry,ry)] = 2T ° (r)e+D(ry = DI = T(ry,ry)] =T ° (r)( = D) e (31)
my,(u) = (1 —u)e— (1 —u)S(u)e (32)

+ (1= w)S(w)l(ry = DI = T(ry,ry)] = T (r e+ S(u)I(ry = DI = T(ry,7)] 7 *T'(rye.
my,(u) = (1 —u)S(u)l(ry — 1)[I —T(ry,ry)]~ lpe (ry)e (33)

+Su)(ry — I = T(ry,r9)]~ ’re (r)e+ S (ry = VI =T(ry,r9)] = 'T° (r))( - Dg) e
As the matrix P(ry,r,) is stochastic, we have that
(I =T(ry,ry)] " T'(r)) + T° (ry)]e = e,
where e is a column of ones of dimension m(r, —1).
That serves to simplify the sum m; + m;, =m, to
m; =T(ry— V[T - T(ry,r))] e (34)
+T(ry = 1[I = T(ry,r9)] " 'T° (ry)(— Do) e,
and the sum m,;(u) + my,(u) = my(u) to
my(u) = (1= we+ S(u)l(ry — DI = T(ry,7,)] " 'e (35)
+S(u)l(ry = DI = T(ry,r))] 71T °(ry)(— D) ~le.
Ry =T(ry = I = T(ry,r9)]~ e,
is found by solving a simply structured set of linear equations. It is given by
Roy=[I-A-(I-A"2""B(r,—1)]"}I-A"2" e (36)
We now have explicit expressions for all the ingredients in the formulas
m; = Ry +@° (ry,r5)( = Do) " e,

my(u) = (1~ w)e + S(u)Rg + S(u)®° (ry,)( ~ Do) ~e.

Upon substituting these into the formula

The vector

and

1

E*(ry,ry) = gymy + / go(u)my(u)du,
0

for the fundamental mean, a fairly, lengthy calculation, summarized in Appendix, leads to the
equality E*(ry,75) =k*. In that calculation, we repeatedly use the equality A+ B(r;—1)+
C(ry —1) =exp(D).

4. More Complex Descriptors

The descriptors of the MAP obtained so far, such as the mean sojourn times of the transitions
between the states, are only moderately informative. Next, we study more complex descriptors
based on a detailed analysis of the recurrence times of the states in the set 1. The time period
between two successive visits to the set 1 will be called a 1-cycle.

The formal similarity of the general MAP to the special case of the Poisson process is now
clear. Any special formulas for the Poisson case are obtained by using the scalar coefficient
matrices D; = — Dy = A. Henceforth, the main discussion deals with the MAP only.
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The expression for the fraction of time W¥,(r;,r,) that the MAP wins the competition is en-
tirely analogous to that of the Poisson case. It is given by
g:1¢
U, (ry,ry) = ——— = Oc(r; — 1e. (37)
2T B (ry,ry) ! )
This formula also has an intuitive explanation in terms of the mean of an arbitrary waiting time
between unit intervals during which, in the MAP, at least r; events occur.

1-Cycles

The bivariate sequence of the phases at the starts of these recurrence times and their dura-
tions is a Markov renewal sequence, which we shall call the process of 1-cycles. A typical 1-cycle
consists either of a single transition from 1 to 1, or may be made up of a string of intervals that
are the successive transitions from 1 to some state in (2, u,;), thence to (2,u,), and so on to a state
in (2,u,). From that state, there is a final interval in which the MAP wins and the end of the
cycle is marked by a return to the set 1.

We shall study such descriptors as the number of intervals terminating in a state in (2, u), the
fraction of time during the 1-cycle that the process P, wins, and others. To that end, we define a
number of matrices to enable us to write the transform formulas in concise forms that clearly
bring out their structure.

For the transform of transition probability matrix of the process of 1-cycles, we use the
notation E(&,s). The element = (¢, s) is the joint Laplace-Stieltjes transform of the conditional
probability that the 1-cycle ends with the MAP in the phase j’, that during the 1-cycle, the
process P, wins during a time at most &, the MAP wins during a time at most y, given that the
1-cycle starts with the MAP in the phase j.

The matrix Z(&,s) is obtained as the sum of a series of matrices {E (&,s)}. Its first term
Eo(&,s) is the matrix G7;(s); it corresponds to a transition from 1 to 1. The subsequent terms
each correspond to the different numbers of intervals during which the process P, wins. We next
show how these terms are calculated, but first we define some useful matrices:

'(ry,7958) =€ °T(ryg— 1[I —e™ *T(ry,my)] = 1T'(ry), (38)
®° (ry,rg58) = e *T(ry = 1)L —e™ *T(ry,my)] 71T ° (ry). (39)
Formulas (10-13) may be concisely rewritten as
G11(s) = @'(ry,rg58), (40)
du,Gi‘z(u’; 5) = ®°(ry,ry;8)I —e ™ %exp(Dg)] ~ Le— S“lexp(DOu’)Dldu’, (41)
G5 (u;s) = [exp[D(1 —u)] — S(u)]e s(l—w) 4 S(u)e™ s(1 - “)<I>’(r1, 95 8), (42)
e d Goo(u,u'ss) = S(u)e ™ s(l-u)go (ryy79;8) (43)

[I — e~ ®exp(Dy)] ~ e~ s“Iexp(Dou’)Dldu'.

In what follows, we shall also need the matrices
1

Q(v;€,5) = / e~ E“exp(DOu)DlP(u; 1—u)e™ s(1 - u)du,
0
for v > 0, and where P(v;1 — u) is as defined in (9). Write B*(r, — 1;£,s) for the matrix

Y=
B*(ry—1Li&,5) = ) Q(vi&,5), (44)

v=0

and note that B*(r; —1;£,¢) = e"fB(r1 —1), in terms of the matrix B(r; —1). We shall also
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write B*(00, €, s) for the matrix
1

B*(00;&,5) = / e~ $¥exp(Dyu)D,exp[D(1 — u)]e ~ s =gy, (45)
0
and we note that B*(00,{,€) =e™ f[exp(D) —exp(Dy)].
Theorem 3: The matrices {Z,(&,s)} are given by
Eo(&,8) = ¥'(rq,79;5), (46)
and forn > 1, n-1
En(€,8) = [@° (ry, 5 O — e~ *exp(Dy)] e~ ¢B(ry — 1)] (47)

c®°(ry,re;€)[I — e Pexp(Dy)] 1{B"‘(oo; €,8)— B*(ry — 1;€,s)[I — ®'(ry,r9;9)]}.

Proof: For n > 1, we consider the elementary conditional probability d L . .(n;z,u) that in
the 1-cycle, the process P, wins the nth time in succession before time z > u and that the event
in the MAP which concludes the nth 2-run occurs in the subinterval (u,u + du) of the next unit
interval with the MAP in phase j', given that the MAP is in the phase j at the start of the 1-
cycle.

The Laplace-Stieltjes transform (for which we use the variable £) of the corresponding matrix
d,L*(n;€,u) is given by d,GTy(u,€), for n =1. We show by induction that, for n > 2, the trans
form is given by

Ao (13 6,u) =[8° (g, rg €)1 — ¢~ *exp(Dg)] ~ e~ €B(r, ~1)] "
c B (ry, 795 )T — e *exp(Dy)] le= £“exp(Dou)Dldu.

To carry out the induction, it suffices to calculate the integral
1

/ d,L*(n—1;€,0)d,G5y(v,u;€),
0
which, apart from matrices that can be factored out, reduces to the integral we have defined as

the matrix B*(r; — 15€,¢).

To obtain E, (&, s), we perform the final integration

1
/ d,L*(n;&,v)G3,(v; 8),
0

which yields the state formula for Z (¢, s). ]

From this result, we can now derive explicit matrix formulas for several interesting descrip-
tors of the MAP. As a matter of verification, we check that the matrix Z(0,0) is stochastic. By
substitution the explicit formulas for the various matrices in the expression

£(0,0) = &'(ry,ry) 4+ [I —®° (ry,ry)(I — A) " 1B(r; —1)] 71
~{exp(D) — A — B(ry — 1)[I — ®'(ry,m9)]},
that matrix simplifies to
2(0,0) =[I - A= B(r; - 1)]7'C(r; = 1), (48)

which is clearly a (positive) stochastic matrix. Its invariant probability vector is [0C(r; —
1)e] ~'0C(r, — 1), which, as expected, is also (g,€) " 'g,. Z(0,0) is the transition probability
matrix of the phases of the MAP at the successive visits to set 1.
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The Number of 2-Runs during a 1-Cycle

The sequence of sub-stochastic matrices {Z, =Z,(0,0)} define a discrete semi-Markov
matrix. They are given by

Eg = ¥'(ry,79), (49)
n-—1
Ep= [‘I) *(ryra)I —A)” 13("1 - 1)] ®° (ry,rp)(I - A)~ 1[0(7’1 = 1)+ B(ry — 1)®(ry,75)),
for n > 1. There are no appreciable simplifications upon substitution of the explicit expressions
for the ®-matrices.

The probability density W(n;r,,ry) of the number of times the process P, wins during an
arbitrary 1-cycle, given by 0C(r, — 1)E,

T0C(r, —D)e (50)

for n >0, is a useful, tractable descriptor. The quantity ¥(n;r,,ry) is the probability that there
are n gaps of length at least r4 —1 in a typical 1-cycle in the MAP.

Y(n;ry,ry) =

Moments and Dependence

Clearly, the index n in E,(§,s) is just a way of keeping track of another useful random

variable, the number of 2-runs during the 1-cycle. The transform
o0

E(&,8,2) = Z E,(&8)2",
n=20
is immediately obtained in a closed form by noting that
[0.0]

> [@° (ryyrgi O — e ~*exp(Dg)] ~ e~ €B(r, = 1)] 2"

n=20

= {1 0° ryyry 1 — e~ "exp(Dg)) e~ ¢B(r, - 1)]}

The calculation of various lower order moments from the transform is a matter of a routine
(if involved) computation. It is possible, in principle, to express these quantities in terms of the
coefficient matrices of the MAP. However, in doing so there are few analytic simplifications so
that we prefer not to record the resulting formulas here. Without numerical algorithms, little
insight can be gained from them, but the standard procedures for calculating these can be readily
translated into algorithms for numerical computation. To compute the moment matrices, we
differentiate twice in the matrix expression for Z(¢,s,2) and set £ =s =0, and z =1 to obtain
systems of linear equations. Their coefficients involve only vectors and matrices encountered
earlier and are in a sufficiently modular form for numerical work.

In the cases where the 1-cycles can be expected to be long, say, because r, is chosen fairly
large, we can also expect that the behavior of the MAP during its successive 1-cycles will be only
weakly dependent. The most readily available analytic tool to examine that dependence is the
serial correlation of sequences such as the durations of successive 1-cycles and of the numbers of 2-
runs during these.

Computationally useful expressions for these correlations are again routinely derived from the
joint transform

[0C(ry —1)e] ™ 100(7'1 = 1DE(&y,81,21)- - -E(ég 55 21) 8

of k successive 1-cycles. Well-known results for Markov renewal processes show that a readily
available indication of weak correlation is how rapidly the successive powers of the stochastic mat-
rix £(0,0,1) = Z(0,0) converge to the limit matrix [0C(r; — 1)e] ~'edC(r, — 1). As that matrix is
easily computed, that observation is useful in an initial numerical exploration of this issue.
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5. Motivation and Applications

Before we undertook the present analytic study of the competition for runs we examined for
some familiar MAPs by computer graphical displays. These suggested that this approach offers a
conceptually simple way of bringing out important differences between MAPs. The classical des-
criptors, based on second order properties, of these did not differ significantly.

For easily simulated stationary point processes, such as the MAP, the data needed to high-
light the competition are easily collected. It is sufficient to attach the value of a counter to each
event in the given process and in the reference process. That counter, which can conveniently
take positive integer values for the first and negative ones for the second, keeps track of how
many uninterrupted events of each type have currently occurred. For these counts, the 1-runs
and 2-runs corresponding to various values of r; and r, are easily identified. The effect of these
parameters on a long simulation record can be examined without having to repeat the simulation
and without making several passes through a long record of data.

To simplify interpretation of the results, we generated streams of several thousand events for
various stationary MAPs of unit rate. The streams of interest and the reference process (the grid,
in the present case) all had a common rate. We fixed r; at some integer value of modest size,
such as eight or ten. For each event stream, we graphically recorded the ends of the successive 1-
runs and 2-runs by printing a symbol 1 or 2. That was done for several increasing values of r,,.

The resulting graphs and elementary summary statistics provided clear pictures that were
remarkably consistent for different simulations with the same parameter matrices. In contrast,
differences between moderately distinct MAPs stood out vividly. The successive 1-cycles typically
involved several hundreds of events and took on a small number of typical visual forms. The
prevalence of gaps (as measured by the occurrence of 2-runs during 1-cycles) stood out clearly
and, as is to be expected, decreased with increasing values of r,. These, and the occurrence of
bursts in affecting the frequency of 1-runs, clearly distinguished between the MAPs.

We concluded that the competition for runs brings out salient local properties of the
realizations of these point processes, features that are missed by the averaging inherent in
descriptors based on second order properties or on spectral methods. While that conclusion is
based on computer experiments, we are confident that numerical computations of the descriptors
in Section 4 will substantiate these findings. The present results, and others to be included in sub-
sequent articles, should serve in a formal quantification of these experimental perceptions.

The results in Section 4 show that analytic use of the competition for runs as a tool in the in-
vestigation of MAPs requires considerable numerical work. The transform formulas obtained
there clearly indicate which embedded Markov renewal processes need to be studied in detail.
However, their complex forms show that this is best done by modular numerical algorithms than
by explicit formulas. Computer implementation remains to be done, but the resulting, well-
computable descriptors should prove very useful.

The input and departure processes of a finite-capacity Markovian node in a queueing network,
to which we alluded in Section 1, offer examples of two dependent processes for which the
competition for runs is worth examining. The features of the competition bring out how the
number of jobs within the node “pulsates” over time. Extensive numerical computations for
small nodes, based on the MAP with two event types, should serve to quantify these features for
benchmark examples. For less structured stationary point processes, it appears that only detailed
simulation studies can indicate whether the qualitative findings for MAPs have wider
applicability.
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Appendix
1. Notes of Section 2

Absorption Probabilities: The absorption into the state x for the Markov chain P(ry,r,) are
found by solving the equations

V—-T(ry,ry)V=T(r;—1)
which may be written as

Vi=e(ry=1)+b(r; = )Vy+aV, 4,
for 0 <i<r,—2, with Vr2 —1=0. Upon backwgrd substitution, we find that
yo__(1=aT " Ne(r )
' 1——a——(1——ar2_l)b(r1—l).
Transforms: For calculational convenience, we evaluate the Laplace-Stieltjes transform of the

transition probability operator G' in Section 2. Since G;(z) is a mass-function with increments
at the positive integers, its Laplace-Stieltjes transform is readily given by

Ghi(s) = i e ™ "oy(ry = DT (ry,r)]" 71T (ry) (A-1)

n=1
=e  *y(ry—1)[I —e™ *T(ry,ry)] ™ 1T’(r1).

Since the sojourn times of transitions from state 1 to a state of the form (2,u') are of the form
n+ ', where n is an integer > r, —1, the transform d_,G7,(u;s) is given by

o) ’ n /
d Giy(uss) = Y e 7N y(ry — D[T(ry,ry) Y “1T° (ry)e =¥ = 2000 (A-2)
n=1 vr=1

—(s+ )
=e *y(ry—1)I— e—sT(rl,rQ)]_1T°(r2) €

mAdu .

Similarly,
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Gy (wi5) = [1 - S(w)le ==

; + S(u)e"s(1 _“)e_s'y(r2 -I —e"sT(rl,r2)]'1T’(rl). (A-3)

d G5o(u,u'ss
Gl 659) e

= S(u)e” s(1-u)g - y(rg— 1) —e™ T (ry,7y)] I ’(rl)f——jm)\du'. (A-4)
—e
Means: As in the theory of finite-state Markov renewal processes, here also we need to calculate
the mean sojourn times and the “row sum” means of the transition probability operator. To that
end, we evaluate minus the derivative with respect to s, at s =0, in each of the preceding trans-
forms. We leave these derivatives in a form that avoids cumbersome calculations in the sequel.
The results are denoted by the functions myy, m4(u’), my;(u), and mqyy(u,u’). We obtain:

myy = y(rg— DI = T(ry,ry)] 7 *T'(ry) - (A-5)
d myg(u') = [7(7'2 — DI =T(ry,my)] " 2T (ry) + [1 = $(ry,75)] (A-6)
e A+ (1—e~ M o= A ,
. -’1_(_(3_’\ : ]1—6_)‘)\(1”.
myi(u) =1 —u—S(u)(1 —u)[l—@(ry,re)]+ S(u)y(ry — DI = T(ry,ry)]~ 2T’(r1).
Ny (A-T)
d, mogg(u,u') = S(“)[[l —¢(ryr)lll —u+ . _:E_ e———e)‘ Ju ] (A-8)

-
+9(ry = DI = T(ryym)] =T (ry) 5.

We also evaluate the “row sum” means, which are given by

1
my; =myy + / my,(u')du',
0
1

mg(u) = mqy(u) + / d, imoy(u,u’).
0

and

In calculating these, notice that, since P(rq,r,) is stochastic, we have the equality
[I=T(ry,r)] ™ 1[T° (ro) +T'(ry)] =e,
where e is a column vector with all its components equal to one. That results in major simplifica-

tions. We obtain:

. my = Y(ry = DI =T(ry,ry)] ™ te+[1 = (ry,r) A 71 (A-9)

my(u) = S(u)p(ry = DI = T(ry )]~ le+ 1= ut S@ = o(ry,r)A Y (A-10)
for 0 <u<1. The quantity Ry= y(ry—1)[I —T(ry,ry)] ‘e is the mean absorption time (to

either of the absorbing states) in the Markov chain P(ry,r,), conditional on starting in the state
0. We readily obtain that

1— ar2 -1
Ry = — : (A-11)
l—a—(l=a?2 “)b(ry—1)
The quantity E*(r,r,) defined by
1
E*(ry,my) = gymy + / go(u)ymy(u)du, (A-12)

0
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is the fundamental mean of the Markov renewal process. By substituting the expressions for
91, 9o(u), my and my(u), a direct calculation yields that

*(rq,ry) = 1 . -
E*(ry,73) (1—a)ar2_1+c(r1—l) (A-13)

2. Notes on Section 3

A Conditional Independence Property of the MAP: Consider the MAP with coefficient matrices
D, and D;. The random variable 7 is the time of the first event, 7* =[r], and 7' =7 —7*. By
M, we denote the number of events in (7,7* + 1].

Lemma A-1: Given that " = v and J(7) = h, the pair of random variables M and J(7* +1)
is (conditionally) independent of the random variables J(0), 7*, and J(7™).

Moreover, for 0 < h, j<m, and 0 <v <1,
P{M = k,J(r" +1) = j|J(r) = hy " = v} = [P(k;1 = v)], .
Proof: By using the basic properties of the MAP, the elementary conditional probability
P{M =k, J(v* + 1)]j, J(7) = h, 'e(v + dv)}J(0) = ¢} is given by
e8]
Y AIPO; D)I*P(0;0)Dydv]} [ P(m; 1 = v)]y,

n=0

= {{I - P(0;1)] " 'P(0;0) Dy dv)};[P(m; 1 = v)]y, ;-
This implies that

P{J(1) = hym'e(v+dv) | J(0) = i} = {{I — P(0;1)] ~ 1 P(0;v)D,dv]};p,

so that
P{M =k, J(r*+1)=j|J(r)=h, 7' =v} = [P(k;l—v)]hj. O
The matrix S(u), defined by "y -2
S(u)= Y P(j;1—u). (A-14)
J=0

is the analogue of the function S(u) in the Poisson case.

Some Integration Formulas: We prove a few simple integration formulas for matrix functions.

These are repeatedly needed in the calculations of the means and in various other simplifications.
Clearly, we have that:
1

/ exp(Dgu)du = [I —exp(Dg)]( = Dy) ™. (A-15)
Also: 1 °
/ uexp(Dgu)du = [I — exp(Dy) + exp(Dy) Dyl(— Dy) ~ 2. (A-16)

0
Proof: Write the integral as 1
/ ud[exp(Dyu)]- (= Dy) ™1,
0
and perform integration by parts as for scalar functions.
1
/ exp(Dgu)Dyexp[D(1 — u)]du = exp(D) — exp(Dy). (A-17)
0 O
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Proof: Since chz oP(j;t) = exp(Dt), the integral equals

1
0 o0
Z ] exp(Dyu)Ddu = Z P(j+1;1) = exp(D) — exp(Dy). a
7=0 0 7=0
By similar calculation, we establish that
1 Ty — 1
/ exp(Dyu)D;S(u)du = Z P(j+1;1) = B(ry — 1), (A-18)
0 3=0

which is the analogue of the corresponding formula for the Poisson case.

Verification of a Matrix Transform Formula: We verify the formula

d Goo(u,u'ss) = S(u)e ™ s(l-u)g - T(ry — DI — e~ *T(ry,r9)] ™ 1T ° (1))

[T —e™ %exp(Dy)] " te™ su’exp(DOu')Dldu',

which bears the number (13) in the paper. It gives the transform of the transition probability
from a state in the set (2,u) to a state in the set (2,u’). Rather than writing a complicated
general formula, we explain how the various modular parts of the transform arise. At the start of
the sojourn time, a length of time 1 —u remains of the unit interval in P,. During that time,
there must be fewer than r, events in the MAP because, otherwise, a transition to the set 1 would
occur at the end of the unit interval. That accounts for the matrix factor S(u)e ™ * L-u),

To generate a 2-run, starting at the end of the initial interval, the Markov chain P(r,r,)
must be absorbed in the macro-state ry—1. Let that occur after exactly n transitions, each
corresponding to a unit interval. That absorption can be followed by some number v > 0 of unit
intervals during which no arrival occurs. The matrix transform of that transition time is given

by o )
2o 2 e IRy = DT ()T (r)lexp(Do)
=T(ry— DI =€~ *T(ry,ry)] " 1T ° (ry)[1 -~ *exp(Dy)] ~ .

Finally, there is a first event in the MAP in the subinterval (v',u’'+ du’) of the subsequent
unit interval. That accounts for the matrix factor e ™ ** exp(Dyu')D;du’ in the stated transform.

Derivation of the Mean Sojourn Times: We give the essential steps in the calculation of the mean
sojourn times and the row sum means of the transition probability operator G. In each transform
formula, we differentiate with respect to s, set s =0 and change the sign. For the transforms
with subscripts 11 and 21, we simply postmultply by e and we readily obtain the formulas (30)
and (32). For those with subscripts 12 and 22, we integrate with respect to u' from 0 to 1 and

then postmultiply by e. To carry out the integration step, we use the formulas (A-16), (A-17),
and (A-18).

For example, for the transform with subscript 12, the integration yields
L(ry =1 = T(ry,ry)] ™ re (ri)(=Dg) ™~ lDl +T(ry = I = T(rqy,rp)] ™~ re (ri)(—Dg) ™ 2Dl
+T(ry = DI =T(ry,r9)] ™ e (ri){lI —exp(Dg)] ™ 1 I}(= Do)~ 1Dl

—T(ry = - T(ry, ’"2)] —ire (7‘1)[1 - eXP(Do)] - 1exp(Do)( —Dy)~ 1D1-
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In the postmultiplication by e, we note that, since D= D,+ D, is a generator,
(—=Dy) " 'Dye=e. That results in the cancellation of several terms and formula (31) follows
after routine simplifications. The verification of (33) proceeds along the same lines.

In calculating the sums m;; + m,, and my,(u) + my,(u), we notice that
(I =T(ry,ry)] ™ I[Tl(rl) +T°(ry)le=e

because the matrix P(ry,r,) is stochastic.

Calculation of the Fundamental Mean: We shall verify the equality (k*)_lE*(rl,rz) =1. By
using the integration formulas (A-15) and (A-18), we find that
1

-1 -1 _
# / Ba(u)my(u)du = 0A™2 " e—0A"2" (I - A)(—Dg) e
0

+0A4™2 7' B(r, — DRy + 04" " ' B(ry — 1)®° (ry,r,)(— Dy) ~ L.

Adding the expression for (k*)~ 1glml, we obtain that
LB (ryyry) =042 e— 04" 7N (1 - A)(— Dy) e

FO[C(r — 1)+ A2 Blr = )T —A— (T - A2 )B(r,—1)] "Y1 - 472" e

1

+O[C(ry— 1)+ A2 Br — D) I—A— (T - A2 YB(r,—1)] "Y1 - 4)A"2 " e.

Now, upon replacing C(r; —1) by exp(D) — A — B(r; — 1), we notice that

1

0[C(ry—1)+ A2 'B(r,—1)] =0T - A—(I - A2 ")B(r, - 1)],

so that the terms involving the factor ( — D) ~1le cancel and the remaining terms simplify to 1.
It follows that E*(ry,r,) = k™.



