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ABSTRACT

The paper deals with queueing systems in which N- and D-policies are
combined into one. This means that an idle or vacationing server will resume his
service if the queueing or workload process crosses some specified fixed level N or

D, respectively. For the proposed (N,D)-policy we study the queueing processes in
models with and without server vacations, with compound Poisson input, and
with generally distributed service and vacation periods. The analysis of the
models is essentially based on fluctuation techniques for two-dimensional marked
counting processes newly developed by the author. The results enable us to arrive
at stationary distributions for the embedded and continuous time parameter
queueing processes in closed analytic forms, enhancing the well-known Kendall
formulas and their modifications.
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1. Introduction

D-policy systems form an analytically attractive and practically useful class of queues. How-
ever, very few works on this topic appear in the literature, compared to an abundance of its close
relatives: quorum, N-policy, and hysteresis (cf. [2,3,7,9,15-28,30-45]). D-policy queues belong to
workload dependent systems according to the classification of state-dependency in Dshalalow [13].

The D-policy determines when to end an idle period and begin the following busy period,
which starts when the cumulative workload (i.e. a period of time needed to process all available
customers) crosses level D. [Note that in this case, a (single) server should take a fixed number of
customers in a batch, preferably one, or else the workload would be hard to define.] One of the
main reasons for employing D-policy is to minimize server switch-overs, usually followed by start-
ups. Of course, this protracts idle or vacation periods, thereby increasing the unfinished work or,
equivalently, customers’ sojourn times. The latter, is balanced out by the reduction of switch-
overs, and the "best" value of D can become a subject of a relevant optimization problem. There
have been just a few articles [4-6, 8, 29, 38, 42, 43] on D-policy, perhaps because of the analytical
complexity of the subject, and even they target either the waiting time process or some special
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optimization problems related to the waiting time process rather than the queueing process.

The N- (or threshold) policy is another rule specifying the beginning of a busy period. How-
ever, the N-policy is tied to the queueing process. Namely, once the server enters an idle period,
the policy specifies how many customers (N, the threshold level) should be accumulated in the
queue before the server turns on. As in the case of the D-policy, N-policy is designed to minimize
server switch-overs. Another common name for N-policy is removable server, called so by Yadin
and Naor [45] (who were the first to introduce N-policy systems in 1963) and their followers
[30,31,43,44].

N-policy is most often combined with vacations. Once the system is exhausted, the server

goes on a single vacation and upon his return he checks on the queue, and if the queue has
accumulated to at least N customers he begins service; otherwise, he rests and starts servicing as

soon as the queue reaches level N. This is referred to as a single vacation discipline. In the case of
multiple vacations, when the system is exhausted, the server initiates a sequence of vacation
segments. This sequence (not any particular segment) is interrupted as soon as the system
accumulates to at least N customers. Systems with N-policy and vacations were studied in papers
[2, 9, 16, 23, 24, 28, 35, 38, 40, 43].

One of the main difficulties when analyzing queueing processes in D-policy systems is to
determine the value of the queue by the beginning of a busy period. A similar difficulty becomes
apparent in N-policy systems whenever the input stream is bulk. However, some special results on

fluctuation theory obtained in Abolnikov and Dshalalow [1] and further developed in Dshalalow
[10-12] enabled Dshalalow and Yellen [14] and Muh [33,34] to treat bulk N-policy models with
and without server vacations.

It is an obvious observation that in spite of their similarities, N- and D-policies carry different
advantages and deficiencies with respect to each other. For instance, the system may become
alerted by as many as N customers in the system to resume its service or interrupt vacations,
while in some situation it would not be necessary, as a large number of customers in the buffer
need not be a sign of a long workload for the server, as many of them may require short
processing times. However, this is not taken into account, since N-policy does not care about this
nuance. On the other hand, D-policy is blind to an abundance of customers which can overstock
the buffer while yielding just a reasonable accumulated workload. Therefore, both policies are

preferred to each other depending on system configurations and cost factors. So, if the waiting
time is too costly but the penalties for occupied seats in the waiting room are reasonable, the N-
policy would be a better option. What if all factors need to be taken into consideration?

While several works [6, 8, 38] compared N- and D-policies for special cases and concluded that
under various conditions one or the other is superior, the above arguments make us believe that a
combination of the two policies is superior to either of them. In other words a policy, referred to
as (N,D)-policy, can be specified as a rule to terminate every idle period when the queueing or
workload processes cross their respective (fixed) values N or D for the first time, whichever comes
first. On top of this, the system will include bulk arrival and, optionally, server vacations, which
is itself referred to as T-policy. To analyze such a system, in particular the queueing process,
relevant information regarding the queue length at the beginning of each busy period is crucial.
Techniques applied to these and similar situations were recently developed in Dshalalow [11, 12].
They will be discussed in Section 2 and adopted to special queues in Sections 3 and 6. The
background model for the investigation is Mx/G/1 (with bulk input) modified for (N,D)-policy
and with or without server vacations. This is rendered in Sections 4,5 and 6. The queueing process
is treated both with continuous time parameter and at departure epochs. All formulas are

computationally tractable and presented in closed analytical forms.
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2. Background Material

In this section we will present an overview of first excess level techniques applied to a class of
delayed renewal processes marked by a vector renewal process.

All processes and random variables will be considered on a probability space (Q, , P). Let

T--

be a delayed renewal process on R+, where ca is a point mass, and let

(X,Y) {(xn,rn); n 0,1,...)
be a sequence of independent and, for n >_ 1, identically distributed random vectors, such that
components Xn are discrete-valued in {0,1,...} and Yn are continuous-valued in +. (However,
for each n, X, and Yn need not be independent.) We construct with and (X,Y) the marked
renewal process

Z E n k o (Xn’ Vn)r (2.1)
such that Z is obtained from by position independent marking. Consequently,

(A,B) {(An E oXk, Bn E 0Yk); n 0,1,...} (2.2)
is a two-dimensional delayed renewal process.

Process Z will be described in terms of the following transformations:

o(Z,O [zX0e OYo], 7(z,0) [zXle 1], ]z 1, Re(0) 0, (2.3)

a0(z 70(z,0), a(z) 7(z,0), (2.4)

0(0) [[- ], h(O) [[ (1 0)], a(0) o, (2.5)
with no restrictions imposed on 70, 7, a0, a, h0, and h.

For two fixed nonnegative real numbers p and P2, let L-(Pa,P2)" We say (A,B) hits
threshold L if, for some n- 0,1,..., An or Bn exceeds Pl or P2, respectively. More formally, we

call the integer-valued random variable

u min{inf{j" Aj > p}, inf{k" Bk > P2}} (2.6)
the termination index, so that (A,B) hits L at ru, called the first passage time of (A,B). The
vlu (A,B) of (A,B) t wi bed th fi of hotd L o j.st th fi
level.

Now, we introduce the operators

Ddpf(Z)--(1-Z)Ep>_ozPf(p) Izl <1,

Vpf(S) s I p o e sPf(p)dp Re(s) > O,

and their combination

Dpl’ P2
g(x’y) Depl {Ddp2g(P

where f and g are relevant integrable Baire functions.

With Taylor-like functionals

dowe can restore f subjected to Dp

and with

1,P2)(X)}(Y)

1 Ok 1kx( limx--O k! oxk 1 z (’)

k dzDpf(X) f(k)

(2.9)

(2.10)

(2.11)
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2.,D(. Lapl-1(1(.))(D), for some real number D >_ 0, (2.12)
c. Forwhere Lapl 1 stands for the inverse of Laplace transform, we can find f transformed by Dp

various special cases throughout the paper, we notice a few elementary properties of the operator

(a) k is a linear operator with fixed points at every constant function.

(b) For any function , analytic at zero,

0,

%-
k<j

(2.13)
k>_j.

and

Now, given threshold L- (Pl,P2), we introduce the transformations

;(,O,z,tg;i) =[e 07"’zA’e tB,]

J*(,O,z,tg;x,s) (Dpl p2)(x,s).

(2.14)

(2.15)

The below result is due to Dshalalow [12].
Theorem 1.

1 -h(O)7(z,O)1 s) 70(z, 0) 70(xz, v + s) 1 h(O)7(xz 0 + s)"ho(O *(,O,z,;x, (2.16)

With Xo a.s., the Laplace-Stieltjes transform of Yo denoted by flo(O), and under the assump-
tions ho(O 1 and O, (2.16) reduces to

1-h(O)(z)*(,O,z,O;x,s) zi- (xz)iflo(S) 1 h(O)7(xz, s)" (2.17)

We will be interested in the transform of the following marginal processes: termination index,
first excess level, and first passage time, all derived from (2.17) for appropriate values of the
variables , 0, and z, and subsequent use of the inverse transforms. For the upc.oming
applications, we are going to use the pair (N- 1,D) for L and abbreviate :[-IX0 i] by :’[-].

Termination index

By using properties (a, b) (equation (2.13)) of operator kz, we obtain:

T)()- Ei[] -1-(1- )LDNx-i-a{ flO(S) }1 7(x,s)
First excess level

E)(z) Ei[zn] z zi[1 a(z)]kDN -i- 1{ 0(s)
1 Z --z,s))"

Marginal first passage time

p)(O)--Ei[e-Oru]--l_[l_h(O)]LDNz-i-l{ o(S) }1-h(O)7(x,s)

(2.18)

(2.19)

3. Model with a Dormant Server. Prehminaries

We will start with the following model based on the M/G/1 queue. The input to the system
is compound Poisson. A single server processes customers one at a time and there is no restriction
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to their service time distribution. The server becomes idle when the system is exhausted. The idle
period lasts until the queue accumulates to N >_ 1) or more customers or the cumulative service
time of all arrived customers will exceed a fixed number D (_> 0) whichever of the two events
comes first. Then, a busy period begins. As it was mentioned in the introduction, while each of
the policies is aimed to reduce the number of switch-overs between idle and busy modes (usually
followed by start-up periods), its combination, i.e., the (N,D)-policy, limits the "first excess level"
from an excessive (accumulated) workload and buffer overstock simultaneously.

We will formalize the system as follows.

Service. Let To 0, T1, be the successive instants of service completions. The service of
the nth customer, rendered within the time interval (Tn_l, Tn] which is referred to as the nth
service cycle, lasts rn (<_ Tn- Tn_l) with the PDF B(), finite first moment b, and Laplace-

Stieltjes transform /(0)- -[e-r], common for all n- 1, 2, If Q(t) is the number of all
customers in the system present at time t, including one in service, then let Qn Q(Tn + ).

Input. The input to the system will be associated with the marginal marked point process
II- n >_ o Xn er

n
and for convenience specified on the first service cycle. We set X0 -Q0 and

vo 0 a.s. and assign X, X2, to the successive batches arriving at the system at rl, r2, ...,
i.e., Xk is the kth increment of the arrival process over the interval (rk_l, Tk]. With the
assumption that II is (delayed) compound Poisson, we have h(0)=/(+0), while the
probability generating function (pgf), a(z) of X1 is arbitrary, with finite mean a. The term "nth
customer" mentioned above is not related to a rigid order. Customers are lined up in order of
arriving batches, but within every batch the order is arbitrary. Ak -Xo +... + Xk is the total
number of customers arrived at the system by time rk.

Busy period discipline. Again, for convenience we specify the processes on the first service
cycle. Let Yk be the cumulative job brought by the kth batch of customers. Hence, the arriving
jobs form the marginal marked point process J- n>oYng. with Y0 being the initial

cumulative job due the presence of X0 customers, and Bk Yo +’" + Yk is the cumulative job
accumulated by time vk. If Qo- X0 is zero, then so is Y0, and the system turns the server off
until the buffer fills up with at least N units or the cumulative job crosses level D, whichever
comes first; that is, the busy period begins upon (A,B) hitting threshold L (N- 1,D).

The transformation "7(z,O)- _[zXle ’Y1] reduces to

with the use of the conditional expectation
t(1 +... + (rX1)"(Z,) [[-[zXle Xi]] (3.2)

and straightforward probability arguments. For arbitrary i, ri0(s)in (2.17)is [/(s)]/. Since we

consider an exhaustive system, the relevant value of in formula (2.17) will be zero and because
of (3.1) and (2.17) we have the modified expression for the joint transformation of the
termination index, first excess level, and first passage time:

:[Ue 07"zAu] 1 -[1 -A +0a(z)
1- +oa(XZ(S))A

Equation (3.3) will therefore yield the following analogs of (2.18-2.20).
Termination index

T)()- 1- (1- )"D)xN 1{ 1 -a(X(s))l }. (3.4)



556 JEWGENI H. DSHALALOW

,) EO[u] DxN -1{ 1
1 -(xfl(s))}"

Marginal first excess level

E’(z)--l--[l--a(z)]DgNx-l{ 1 }1 -a(xz(s))

First passage time

P)(O) 1 -(1 , + 0 1 +OC((s))

(3.6)

(3.7)

(3.8)

(3.9)

4. Embedded Process

The above transformations will be used to derive a formula for the pgf of the queueing
process embedded in Q(t) over the sequence {Tn} in the steady state.

The queueing process Q(t) is obviously semi-regenerative relative to the point process {Tn}.
Consequently, {Qn, Tn} is a Markov renewal process and {Qn} is an embedded Markov chain
with transition probability matrix (tpm) (Pij)" This is a A2-matrix which differs from one for the
MX/G/1 queue by the first row only. This can be seen from the transition

J Q0 + J[’l 1, Q0 > 0
Q1

A + .41 1, Q0 0,
(4.1)

where An is the number of customers that arrive during the nth service period. [For MX/G/1
system, A needs to be replaced by X1, the size of the first arriving batch.] Consequently,

p < 1, where p- abe, (4.2)
is the necessary and sufficient condition for the steady state, which we assume to be met through-
out the paper.

The invariant probability measure p- (P0, Pl, "") of {Qn} can be sought in the form of its
pgf P(z), which satisfies the equation

P(z) E oPiPi(z), z _< 1, (4.3)
along with the boundary condition

P(1) 1, (4.4)
where gi(z)- Fi[zQ1] is the pgf of the ith row of the tpm (Pij)" With

tlEi[z ]-/((1 c(z)), in notation, b(z), (4.5)
and (4.1) we have

z lb(z), > 0
Pi(z)

z -1E)(z)b(z), O.
(4.6)
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By (4.3) and (4.6) we easily arrive at the Kendall-like formula

E)(z)
P(z) P0b(z)

1

b(z)- z

P0 is determined from boundary condition (4.4) applied to (4.7) and equation (3.7), yielding

1-p
P0 a,)"

The mean stationary service cycle is defined as

c PC, where C (C :i[T1]; 0, 1,...)T,
satisfying

c-{ ,:-o[.,,] + , ,2) + ,, i-o

b, i>0.

(4.)

(4.8)

(4.9)

(4.10)

(See (3.9).) Now, (4.8-4.10) yield

which is the same value as that for the MX/G/1 system, a quite surprising result.

The Kendall-like formula for the conventional MX/G/1 model without (N,D)-policy follows

from (4.7) and (4.8) by taking N- 1 in L- (N-1,D), thereby reducing E)(z) to c(z) and
) to 1.

5. Continuous Time Parazneter Queueing Process

The analysis of the continuous time parameter process is based on semi-regenerative
techniques, which give much quicker results than the more popular method of supplementary
variables provided the invariant probability measure of the embedded process is known. It starts
with the
evaluation of transition probabilities

gik(t)- [Pi{Q(t)- k, T1 > t} (5.1)
on the first service cycle, where pi{ .}_ [p{. Qo- i}, and the formation of matrix K(t)-
(g(t)), wi isdt,-atn.

The stationary probability measure r (r0,rl,...) exists given the ergodicity condition
p < 1, regardless of the initial state of the system, and is conveniently sought in the form of its
pgf r(z):

(z) lh(z), (.)
where c is the stationary mean value of the service cycle and ph(z) is the scalar product of the in-
variant probability measure p of the embedded process (derived in the previous section) and
vector h(z) (hi(z);i 0, 1,...)T of the pgf’s of the respective rows of the integrated (over [ +)
semi-regenerative kernel K(t). (See cf. Dshalalow [13] for a pertinent reference.)

Let
j(t)- {A- j, r < t} (5.3)

be the joint PDF of the first excess level and first passage time of process (A,B) relative to the
threshold L, and let
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arguments,

5j(t) po{ E , _> oX,G-,[0, t] j}, (5.4)
the probability that j customers arrive in interval [0,t]. Then, by simple probability

go (t) E j l(Sk_j(-)[1 B(-)]),Oi(t), k 1, 2,...,

where is the convolution operator,
goo(t e- t

and for > 0,

Sk_i(t)[1 B(t)],
0,

NOW,

yields
hi(z) E k 0

zk
0
K ik(t)dt

 o(Z) +

where 1 -b(z)A(z) All a(z)]"
Finally, by (5.2)and with (5.9-5.11), we have

(5.9)

(5.10)

(5.11)

r(z) aPo + A(z)P(z), (5.12)

where P(z) and Po satisfy formulas (4.7) and (4.8).
The above results can be summarized as the following theorem.

Theorem 2. The stationary probability distribution r of the queueing process Q(t) exists given
the condition p < 1 and satisfies formulas (5.12), (4.7), and (4.8).

For g- 1, (5.12) reduces to the well-known result for the MX/G/1 system:

r(z) a(1 z)
1 -(z)P(z)" (5.13)

6. Model with Multiple Vacations

In this section we consider a variant of the preceding model, in which the exhausted system
lets the server go on vacation. We will adopt the vacation rule known in the literature as multiple
vacations. This is specified as follows. Once the last customer leaves the system, the server leaves
the system too. [He may be assigned for a maintenance or other duties.] The whole vacation trip,
called the vacation period, consists of multiple segments. At the end of each vacation segment,
the server returns to the system and checks on whether the queue is filled up to the desired level;
if it does not, the server leaves again and keeps on going until the condition specified for the busy
period policy is met. Then the service is resumed. Note that none of the individual vacation
segments is interrupted even if the queue hits a specified level.

We assume that all vacation segments are independent of each other and stochastically equiv-
alent with a common distribution V(t), different from the service time distribution, the Laplace-
Stieltjes transform (0), and finite mean v. We will show how the first excess level theory can be
adopted to this type of model by means of a few minor modifications. We will preserve all other



Ou (N,D)-Policy Bulk Queueing Coysterns 559

assumptions made regarding the input and service.

First, idle periods are replaced by vacation periods. A service cycle starts with a vacation
period if the preceding departure exhausts the system. (Again, for convenience, the situation will
be applied to the first service cycle.) Then the server leaves the system and returns to the system
periodically in accordance with the renewal process rl, r2, The nth interrenewal period
corresponds to the nth vacation segment, during which time the input delivers Xn customers with

X*
E[z ] [A(1 c(z)]. (6.1)

The value Y will represent the nth increment of the workload brought by X customers during
the nth vacation segment. Analogously to formula (3.2), we have that

* vY *
7(Z,b9) _[zXle ]-- E[(z/(bg))X1] p{A[1 --c(z(0))]}. (6.2)

The two-dimensional benchmark process, to which the busy period policy is applied, is now

(A,B) {(A, E nk oXk,* Bn- _,nk oY); n O, ,.1..}. (6.3)
(A,B) should, as before, hit level L- (N- 1,D) to have the server stop vacationing and resume
his service. The number of vacation segments made prior to this will equal the termination index
u. The first passage time will obviously be r. (replacing ’u)" h(O) will be replaced by 9(0), now

standing for E[e-rl], and the marginal transformation 7(z,0) satisfies formula (6.1).
The analog of the joint transformation in (3.3) for our case is

=0[Ce 0rza]
__I_[I_,(O)[A(I_c(z))]]DNx-I{ 1 }(6.4)1 (0)[A(1 o(xz(s))]

which yields corresponding expressions for termination index, first excess level, and first passage
time. We will introduce only a few later on.

We analyze the process {Qn} embedded in Q(t) over the service completions, To, T1, by
using the same arguments as for the previous model with very little impact on the pgf P(z):

P(z)- p0U(z)
1- E)(z) (6 5)b(z)- z

where E)(z)is the marginal functional of (6.4)"

E)(z)- F[zA’] --1-[1- p[A(1- a(z))]]D 1 1
1 p[A(1 a(xz(s))] )’

and
1 p

PO aAv,,),
where the mean value of the termination index is

(6.6)

(6.7)

,)_ 0[p] .DN- 1{ 1 } (6.8)
1 -[A(1 -a(x/(s))]

The ergodicity condition p abA < 1 and the value c A of the mean stationary service cycle are

also the same as for the previous model.

The main formula for the pgf :r(z) for continuous time parameter process also does not
change with respect to its relationship with P(z)"

az A7r(z) aPo + b(z) (z)P(z), (6.9)
where
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1 b(z) (6 10)A(z) ,[1 c(z)]"

The above will be convenient to summarize in the following statement.

Theorem 3. For the model under (N,D)-policy with multiple vacations, the queueing process
Q(t) has a unique stationary distribution r (Tro, Tr1,...), given the ergodicity condition p < 1
(which is sufficient and necessary for the embedded process {Qn}), and it is expressed in the form
of its pgf 7r(z) satisfying formulas (6.9) and (6.10), in which the expressions for the pgf P(z) are

given by formulas (6.5-6.8).

7. Summary and Open Problems

The (N,D)-policy seems to be a rather advanced way of controlling queueing and workload
processes in bulk systems with and without server vacations. With the use of the first excess level
techniques it enabled us to analyze the queueing process (which previously was difficult even for a

regular D-policy systems) and derive its stationary distributions in closed analytic forms. The
studied models can be extended by employing state dependent input and service, which would
enhance the versatility of the systems and further motivate the rationale of (N,D)-policy.

A practical generalization of the above systems would be the one with batch service, along
with its perspective use of the hysteretic control. The latter means that the system abandons a

busy period whenever the queue drops below some specified level (say, r) and ends the following
idle or vacation period when the queue accumulates to a level N >_ r). The real obstacle here is
its difficulty in determining the workload when making a decision on resuming service based on
whether or not it hits level D, as it is hard to predict how the server will form servicing batches
and keep track on the rests of customers. A clever solution to this problem could lead to a

significant enhancement over the proposed models.
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