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Let P (z) be a monic polynomial of degree n, and c, e > 0. A classic lemma of Cartan asserts
that the lemniscate E(P; e) := {z IP(z)l < en} can be covered by balls Bj, < j < n, whose
diameters d(Bj) satisfy

p

(d(Bj)) <e(4s).
j=l

For ot 2, this shows that E(p; e) has an area at most re(2e)2. P61ya showed in this case that
the sharp estimate is rre2. We discuss some of the ramifications of these estimates, as well as
some of their close cousins, for example when P is normalized to have Lp norm on some
circle, and Remez’ inequality.
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1 INTRODUCTION

On how large a set can a polynomial be small? This simple question and its

cousins has fascinated mathematicians of the status of H. Cartan, G. P61ya
and P. Erd6s; its ramifications range from the theory of entire functions and

potential theory to rational approximation and orthogonal polynomials. In
this paper we shall discuss,..some of these results.
The first step is normalization of the polynomial. The obvious choices are

normalizing P to be monic, that is, to have leading coefficient 1:

P(z) z" +... (.)
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or to have some norm 1, for example, for some fixed r > 0, 0 < p <

[Ie[lLp(Izl-r) 1. (1.2)

Let us begin with the former, namely monic polynomials. The classic 1928
result of Cartan [4], introduced with a view to studying minimum moduli of
holomorphic functions, still reigns supreme. Let P be monic of degree n, and
e, ot > 0. The lemma asserts that

p

E(P; (z "lP(z l _< (1.3)
j=l

where p < n, and B1, B2,... Bp are balls with diameters d(Bj) satisfying

p

E (d(Bj)) < e(4e)a" (1.4)
j=l

What is remarkable is that this estimate does not depend on the degree n

of P. The naive approach of placing balls of radius e centred on each of the
zeros of P and using these to cover E(P; ) gives the much weaker estimate
of n(2e)

In particular, when ot 2, and meas2 denotes planar Lebesgue measure,
(1.4) becomes

meas2(E(P; e)) < 7re(2e)2.
In this special case, a result of P61ya from 1928 asserts that there is the sharp
estimate

meas2(E(P; s)) <_ rs2

with equality iff P (z) (z a)n, some a 6 C.
It would be a real challenge to determine for general or, the sharp constant

that should replace e4 in (1.4). For ot 1, the conjectured sharp constant
is 4.

Like all great inequalities, Cartan’s has inspired extensions. In Section 2,
we shall state and prove an extension where d(Bj) is replaced by h (d(Bj))
for suitable increasing functions h. This form is useful in studying thin sets
that arise in potential theory and Pad6 approximation.

In Section 3, we shall prove P61ya’s inequality. Because it’s proof is so

closely linked to Green’s theorem, and the latter is tied to planar measure,
P61ya’s methods do not seem to have many generalizations. Or have they
been missed?
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The alternative normalization (1.2) is often more useful than the monic one.
For example, in convergence theory of Pad6 approximation, one is called on
to estimate the ratio

IIP [IL(Izl--r) /[ e (z)

outside as small a set as possible. If one adopts the normalization (1.2) with
p cx), then at least the numerator is taken care of, and then one wants to
see how large can be the set on which P (z) is small. Until quite recently,
this has always been via capacitary estimates or Cartan’s lemma: One splits,
following Nuttall and others,

--: cR(z)S(z).
Izjl<2r Izjl>2r Zj

Since for zl r, zj > 2r,

and for Izl r, Izj 2r,

we see that

1 3

Iz zj < 3r

IIPIILo(Izl=r)/IP(z)l <_ (3 max{l, rI)/IR(z)l.
As R is monic, one can apply Cartan’s lemma to deduce that

IIPIIro(Izl--r)/le(z)l (3 max{l, r}/e)n

for ]zl < r outside a set that can be covered by balls {Bj} admitting the
estimate (1.4).

This procedure, of separating zeros into small and large ones, is useful in
many contexts, and has been used by mathematicians of the status of Nuttall,
Pommerenke, Goncar, Stahl and others but does not admit easy extension
to several variables. Motivated by the latter, A. Cuyt, K. Driver and the
author [5] were led to directly consider the normalization (1.2). This and
the Walsh-Bernstein inequality, which bounds polynomials anywhere in the
plane in terms of their maximum modulus on some given set that is not "too
thin", very quickly give for the restricted lemniscate

E(P; r; ) := {z "lzl <_ r, IP(z)I <_
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the estimates

cap(E(P; r; e)) <_ 2re (1.5)

and

meas2(E(P; r; e)) < 7r(2re)2 (1.6)

and that these are sharp for each r, n. Here cap is logarithmic capacity (we
shall define that in Section 2). We shall discuss this simple approach in
Section 3, giving also some of its Lp extensions.

In Section 4, we review some of the implications of Remez’ inequality for
small values of polynomials. In Section 5, we shall briefly review some of the
multivariate extensions of Cartan’s lemma. Here it is difficult to decide what
is a monic polynomial! Moreover, the measures of thinness of sets become
quite complicated, and the fact that the lemniscate is unbounded leads to

difficulties.

2 THE CARTAN APPROACH

We begin by presenting Cartan’s classical argument in a general form, the
power of which lies in the arbitrary values assigned to the numbers rj.

TI-mOREM 2.1 Let 0 < ra < r2 < < rn and P(z)beamonicpolynomial
of degree n. There exist positive integers p < n {,j}P and closed ballsj=l

Bj }P. such thatj--1

.1 -]- )2 "-- + )p n

(ii) d(Bj) 4rzj, 1 < j < p.

(iii)

z, Ie(z l <_ rj c
j=l j=l

(2.1)

Proof We divide this into four steps:

STEP 1" We show that there exists )vl < n and a circle C1 of radius

rzl containing exactly )Vl zeros of P, counting multiplicity.
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For suppose such a circle does not exist. Then any circle C of radius rl

containing 1 zero of P contains at least 2. The concentric circle of radius r2
contains 2, so must contain 3 (otherwise we could choose )l 2 and C1
to be this circle). Continuing in this way, we eventually find that the circle
concentric with C and radius rn must contain n + 1 zeros of P, which is

impossible.

SxEv 2: We rank the zeros of P.
Choose the largest ,1 with the property in Step 1, and let C1 be the

corresponding circle. Call the .1 zeros of P inside C1 zeros of rank )l.
Next, applying the argument of Step 1 to the remaining n X2 zeros of P, we
obtain a largest positive integer )2 < )1 and a circle C2 containing exactly
2 of the zeros of P outside C1. Call those zeros inside C2 zeros of rank )2.
Continuing in this way, we find p < n largest integers )l > )2 _> > )p
and corresponding circles Cj of radius rzj containing exactly )j zeros of P
outside C1 U C2 tO... tO Cj-1. Moreover, as we eventually exhaust the zeros,

.1 + ,2 -+-"""-at- )p n.

STEP 3" We prove that if S is a circle of radius rz containing at least ) zeros
of P, then at least one of these zeros has rank at least .

First if S contains more than )1 zeros, then at least one must lie in C1 and
so have rank )l > ). (If not, we would obtain a contradiction to the choice
of )1 being as large as possible). Next suppose that )j > ) > ;j+l, some

j. If any of the zeros inside S lies in C1, C2,..., Cj then these have rank
> )j > ;k, as required. If all the zeros lie outside these former j circles, then
the process of Step 1 yields a circle with > ) > ,j+ zeros contradicting the
choice of j+l being as large as possible.

STEP 4: Complete the proof
Let Bj be the (closed) ball concentric with Cj but twice the radius, so that

d(Bj) 4rzj, 1 < j < p. Fix z 6 C\ I,-J;_ nj. We claim that a circle S,
centre z, radius rz, can contain at most ) 1 zeros of P. For if it contained
at least , then by Step 3, at least one, u say, would have, say, rank )j > ),
and so lie in Cj and also iia the concentric ball Bj of twice the radius. Then
the fact that z Bj and u lies inside Cj forces

Iz ul > dist(C\Bj, Cj) rz > rz

contradicting our hypothesis that S contains u.
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Finally rearrange the zeros in order of increasing distance from z as

z l, z2 Zn. Now the circle centre z, radius rj can contain at most j 1
zeros of P, and these could only be Zl, z2 zj- so

Iz-zjl > rj.

Thus

IP(z)l--]II(z z)
j=l

n

>Hrj.
j=l

I wonder if a non-geometric proof will ever be found as an alternative to

Cartan’s beautiful one above. Now by choosing {rj in various ways, we can
obtain all sorts of estimates.

COROLLARY 2.2
Then

Let P be a monic polynomial of degree n and e, c > O.

where
p

(d(Bj)) <_ e(4e)a.
j=l

Proof We choose

Then

rj Ej 1/a (n !)-1 1 < j < n

and with .{.j as in Theorem 2.1,

p p p

(d(Bj))a 4a (rzJ)a (4e)a(n!)-l/n Zj
j--1 j=l j=l

(4e)a < e(4e)a

by the elementary inequality n > (n/e)n []



SMALL VALUES OF POLYNOMIALS 205

For some applications, one needs to replace d(Bj) by h (d(Bj)) for
some positive monotone increasing function h(t) that has limit 0 at O. Such
functions are closely associated with Hausdorff h content or measure. Let
h [0, c) --+ [0, cxz) be a monotone increasing non-negative function with
limit 0 at O. The corresponding Hausdorff content, is defined for E C C, by

h c(E) inf h(d(Bj))’ECUBj
j=l j=l

Note that only balls Bj are considered for covering E. The Hausdorff
h-measure is defined similarly: when taking the inf, one restricts each Bj
to have d(Bj) < and then lets 3 --+ 0/. For our purposes, we note only
that Hausdorff h-measure and h-content vanish on the same sets. The classic

reference is Rogers [19]. In this language, if we let h,(t) , the estimate

of Corollary 2.2 may be written as

ha -c(E(P; e)) < e(4e).
In formulating our result for h c, we need the generalized inverse of a

continuous function g [0, 1] --+ N, defined by

g[-1](s) min {t" g(t) s}, s e g([0, 1]).

THEOREM 2.3 Let h [0, 1] --+ [0, cxz) be strictly increasing in [0, 1] with

limit 0 at O, and absolutely continuous in each closed subinterval of (0, 1 ].
(I) Assume

h(t)
dt < cxz. (2.2)

Let

( fo )g(t) exp -h--- ]log ulh’(u)du e (0, 1).

Thenfor n > 1 and monic polynomials P ofdegree n,

h- c(e(e; _< h(g[-11(43)), 3 e 0, ---In particular, the bounds decays to 0 as --+ 0+, since

(2.3)

(2.4)
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lim g[-1](t) 0. (2.5)
t-+0+

(II) Conversely, ifthere exists a monotone increasingfunction X [0, 1] --+

[0, cxz) with limit O.at O, such that for n > 1, 3 (0, 1) and monic

polynomials P ofdegree n,

h- c(E(P; 3)) < X(3), 3 e (0, 1) (2.6)

while for some 0 < fl < 2, h(t)/t is monotone decreasing near O,
then (2.2) holds.

Under additional conditions, we can replace the above implicit estimate

by something simpler:

COROLLARY 2.4 Suppose there exists A > 1 such that

h(U)
du < A_ l 0,- (2.7)

h(t)llogtl u

Then (2.4) may be replaced by

h c(E(P; 3)) < h((43)l/a), 3 [0, 2A-2]. (2.8)

COROLLARY 2.5 Ifh(t) (log )-, ’ > 1, then (2.4) may be replaced by

h c(E(P 3))<(Y.-1)-_ [ 41)h(43), 3 6 0,-7 (2.9)

It is noteworthy that only the behaviour of h in an arbitrarily small
neighbourhood of 0 is important in applications, for which 3 above is usually
close to 0. Thus one may always modify h away from 0 to ensure its definition

throughout (0, 1). We turn to the

Proof of Theorem 2.3 (I) Let h [-1] be the (ordinary) inverse of h, defined
at least on [0, h(1)] by h(h[-ll(u)) u. Fix H 6 [0, 1] and set

rj lh[-1] (jn l<j<n._

Then if {)j are as in Theorem 2.1,

P P P

h(d(Bj)) Z h(4rzj)= h(H) )j
h(H).

j=l j=l j=l
n

(2.10)
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Moreover,

H rj 4-n exp log h[- 11 J h 4-n

j--1 j=l

(H) > exp(I)

where, by the monotonicity of h, h [-1],

f0" ( )I "= logh[-1] h(H) du.

The substitution h(v) U--h(H) gives

nfo h(H)
(log v)h’ (v) dv n log g(H).

In summary,

H rj >
g(H)

j=l
4

(2.11)

This works only if the integral defining g is meaningful, which we now show:
An integration by parts gives

l 0tlog g(t)
h(t)

(log v)h’ (v) dv

1 fo h(V)dv.log
h(t) v

(2.12)

Here we have used the fact that h(t)log has limit 0 at 0: this is an easy
consequence of the convergence of the integral in (2.2). So we see that g is
well defined. Theorem 2.1 and (2.11) give

h_c ({z. ip(z)l < (g n
< h(H).

Now g is continuous, h >_ 0, so we see from (2.3) that 0 < g(t) <_ t, # 0 so

[ g(1) ] there exists(2.5) holds and g ([0, 1])
___

[0, g(1)].Thusforeach 0,--T-
H 6 [0, 1] such that3 g(H)/4.Moreover, we may choose H g[-11(43).
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Proof of Corollary 2.4 From (2.12), we see that the bound given in (2.7)
is equivalent to

-logg(t) <_ Allogtl, 0,

=, g(t) > A = g[-ll(u) _< u /A, u [0, 2-A]. []

Proof ofCorollary 2.5 A calculation shows that g (t) ?’/(?’-1) andhence
g[-1](u) u (?’-1)/’. One then uses the specific form of h. []

In the proof of Theorem 2.3(1I) and also in the next section, we shall
need the notion of (logarithmic) capacity. There are at least four equivalent
definitions, but the simplest is the following: For compact E C C,

cap(E) lim min IIPIIL(E>
n-- cx) deg(P)=n,

P monic

For non-compact F C C,

cap(F) sup{cap(E)" E C F, E compact}.
For a proof that the above limit exists, and an introduction to cap, perhaps
the best source is Chapter 16 of Hille [9]. Deeper treatments may be
found in Carleson [3], Hayman and Kennedy [8] and Landkof [11]. What
is particularly relevant for the purposes of this paper is that for monic

polynomials P and e > 0,

cap(E(P; s)) s.

(The inequality cap(E(P; s)) <_ s is easily proved from the definition of
cap; the converse is a little more difficult, requiring the maximum modulus
principle). This identity shows that cap is often the natural set function to

measure small values of polynomials.
We turn to the

Proof ofTheorem 2.3(11) Assume (2.6) holds. We shall assume the integral
in (2.2) diverges and derive a contradiction. We use two results of S.J.
Taylor [23]: Because of the assumed regularity condition on h, there exists
a compact set E of finite positive Hausdorff h-measure, and hence also with
0 < h c(E) < cxz. In addition, E has so-called positive lower spherical
density at each of its points. If the integral in (2.2) diverges, another theorem
of Taylor ensures that cap(E) 0. But then from the definition of cap, for
arbitrarily small e > O, and correspondingly suitable n and P of degree n,
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and hence (2.6) gives

E {z’le<zl

h-c<E h-c({z" le<zl })
Since X has limit 0 at 0, we deduce that h c(E) 0, a contradiction. So
the integral in (2.2) must converge. []

Theorem 2.3 and its corollaries are neater formulations of (presumably
new) results in [14, 15]. One of their consequences are explicit estimates

relating cap and h c. Since any compact set E can be contained in a
lemniscate {z le<z)l <_ (cap(E) + 8)n for arbitrarily small 8, it follows
that under the hypotheses of Theorem 2.3,

h-c(E) < h(g[-1](4cap(E)))
provided cap(E) < g(-(-2)) This extends to arbitrary sets E with cap(E) < g(-14---2)
and when cap(E) > g(1)/4, we may simply scale E by multiplying all its
elements by some small positive number. Similarly, Corollary 2.4 gives

h-c(E) < h([4cap(E)] 1/A) (2.14)

and Corollary 2.5 gives for h(t) (log )-’ F > 1

h(4cap(E)). (2.15)

It is still possible to obtain non-trivial estimates when the integral in (2.2)
diverges. One still chooses rj by (2.10), but instead estimates

I-I rj >_ 4-(n-l) exp(I)
j=2

where

)I= loght-ll Uh(H) du=
n fhIh(H) 1-11(h(H)/n)

(log v)h’ (v) dr.
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On integrating by parts, we see that the term coming from rl cancels, and we
obtain

rj >4
-n exp n logH

gn (H) n

j= h(H) [-ll(h(H)/n) 13 4

and hence

In specific cases such as h(t) := (log tl-)- direct calculation of gn(H) leads
to

( ) { (l+logn)h(43),
n1-’(1 y)-h(46), 0 < , < 1

(2.16)
While we have focused on polynomials, Can’s lena has some of its

most powerful applications when applied to potentials [8, 11 ]. The guments
e simil to that of Theorem 2.3, but the formulation is different. Let us

briefly indicate the extension to generalized polynoals 1, 6]. A generalized
polynomial of degree n is an expression

m m

P(z) H Iz zj EJ n.
j=l j=l

Here all aj > 0 but are not necessarily integers. (Even n need not be an

integer, as the reader will easily see). All the estimates of Theorem 2.3 and
its corollaries go through for such P. Indeed, because of continuity, we can

assume that all aj are rational, and have form kj/N for some positive integers
kj and some positive integer N independent of j. Then if

m

Q (z) "= H(z zj)kJ
j=l

we see that Q is monic of degree nN and

E<P; "IP<z)I an} {z" Ia<z)l- nN}.
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Since (2.4), (2.8), (2.9) do not depend on n, N, they remain valid for the more
general form of P. However this should hardly be surprising as E(P; e) still
has capacity e, so we are simply reformulating special cases of (2.13) to

(2.15).

3 THE POLYA APPROACH

We shall follow Goluzin [7] in proving P61ya’s

THEOREM 3.1 For monic polynomials P ofdegree n,

meas2(E(P; e)) < yre2

with equality iff P(z) (z a)n.

Proof We split this into several steps.

STEP 1: Describe the lemniscate r .= {z IP(z)l- e} as a union of
contours 1-’j, 1 < j < m.

Consider the map P(z) and its inverse algebraic function z
p[-1](). If 1-" contains none of the points z with Pt(z) 0, then 1-’ consists
of finitely many disjoint closed analytic Jordan curves, say 1-’j, 1 < j < m.

By the maximum principle, P (z)[ < en inside each 1-’j and each I’j encloses
at least one zero of P. Then m < n.

STEP 2: Parametrize each 1-’j.
Let us suppose that 1-’j contains zeros of total multiplicity lj. As z

moves around 1-’j, P(z) moves around I1 n exactly lj times and
P(z)l/b moves once around the circle I1 /lj. Hence one of the

branches of z p[-1](lj) is analytic and single valued on I1 n/b,
admitting there the Laurent series expansion

p[-1](b)-- aJ)k

so that for a suitable branch

p[-1]() aJ)k/b (3.2)
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Then setting l?n eiO we obtain a parametrization of 1-’j,

yj(O) :-- aJ)(enei)k/lj, 0 E [0, 2rlj]. (3.3)

SxEe 3: Calculate area enclosed by Fj and hence the area enclosed by F.
A well known consequence of Green’s theorem is a formula for the area

Aj enclosed by Fj

lfr(xdy-ydx)=Im(frdz)Aj -where the second integral is acomplex contour integral. Using ourparametriza-
tion (3.3), we see that

Adding over j, we see that the area A enclosed by F admits the identity

A rn
;>

n Iken/-
j=l k=-c

(3.4)

STEI" 4: Prove P61ya’s inequality by letting e --+ cxz.
From (3.4), we see that for k > 0, the terms in the series have positive

coefficients and positive powers of e, increase with e, while the terms for
k < 0 have negative coefficients and negative powers of e, also increase with
e. Thus A/(zre2) increases with e. But for large e, F consists of only one
curve F1 and pl-1] has on the curve I1 gn the expansion

p[-1]() 1/n -Jr" ao(1) -k- a(_l -1/n -t- a(l_)2-2/n q-

corresponding to the inverse of the polynomial P(z) about cxz.
(1) 1 andIntegrating over F1 gives as before (recall now n and a

a) 0, k > 2),

A _lail)]Zke2_z 1 (1)],a_-,ay,2
k=-c k=l

Thus for large e, A/(n’g2) _< 1, and hence for all smaller e also. Moreover,
() 0, k > 1, that is,we see that there is equality iff a_

p[-1]() l/n ’Jr ao , z P(z) 1/n + ao . P(z) (z ao)n.
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COROLLARY 3.2 For bounded Borel sets F,

meas2F < re(cap F)2.

Proof If F is compact, then given e > 0, we can (by definition of cap) find

n and a monic polynomial P of degree n such that F C E(P; cap(F) -t- ).
Then Theorem 3.1 gives

meas2(F) < meas2(E(P; cap F + e)) < re(cap F + e)2.

Then (3.5) follows on letting e --+ Oh-. The measurability and capacitability
of general Borel sets can be used to deduce the general case [8]. []

We note one related result also due to P61ya, also proved about the same
time: If P is a monic polynomial of degree n, and L is any line in the plane,
then there is the sharp estimate

measl (E(P; e) fq L) < 22-1/n. (3.6)

Here measl denotes linear Lebesgue measure. The proof of this involves
factorization of P and successively moving the intervals of E(P; e) N L
thereby showing that the measure is maximized when E(P; e) is a single
interval and P is essentially, a Chebyshev polynomial of degree n. This is
similar to a Remez type argument, for those familiar with the latter.

It has been conjectured that if we replace measl by one-dimensional
Hausdorff measure, then (3.6) holds without having to project E(P; e) onto
its intersection with the line L. If proved, this would show that for ot 1,
the sharp constant in Cartan’s (1.4) is 4, not 4e.

While P61ya’s proof above is a beautiful application of Green’s theorem, it
seems very closely tied to planar measure. It would be nice to see the above
argument modified to treat other measures, if this is at all possible.

4 POLYNOMIALS WITH Lt, NORMALIZATION

Despite their beauty, Cartan and P61ya’s estimates are closely linked
to one variable: Factorization of polynomials in higher dimensions is
more complicated, and Green’s theorem is very much a plane animal.
Moreover, there are many notions of what constitutes a multivariate monic
polynomial. So in the course of investigating convergence of multivariate
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Pad6 approximants, A. Cuyt, K. Driver and the author were forced to consider

alternative approaches, and the normalization (1.2) was undoubtedly the
easiest to extend. To our surprise, we discovered sharp univariate inequalities
with this normalization, and moreover the proofs are simple, though these do
involve the notion of Green’s functions.

In this section, we shall present some of these results for the univariate
case, proved for p cxz in [5] and for 0 < p < cx in [16]. Let us set

P(rei)[PdO
IIPIIG(IzI-F)-

(1 fexp -y log [e(rei)[dO

0<p<c

p=0

For p cxz, the norm is as usual Moreover, let us define to0 := 1; tc :-- 2
and

I F(L2)
/7r ( + 1) 1 0 < A < cx.tc 2 "--F-"

It follows easily from Beta function identities that xz _< 2 16]. Moreover,
Stirling’s formula gives xz =2 + O (L_) ) .
THEOREM4.1 Let r, e > O and O < p <_ cx. Let P be a polynomial of
degree at most n, normalized by the condition

Let

Then

IlellG(Izl=r) 1. (4.1)

E(P; r; s)"-- {z "]Zl < r, [P(z)[ < en}. (4.2)

cap(E(P; r; e)) < rStCnp; meas2(E(P; r; e)) < yr(rStCnp)2. (4.3)

These are sharp for each r, n in the sense that

cap(E(P; r; s)) meas2(E(P; r; s))
sup rlCnp; sup 62s>O t3 s>O

deg(P)--n deg(P)--n

7r(rtCnp)2.

(4.4)
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Proof LetussetE "= E(P; r; e). The result is trivial if cap(E) 0, sowe
assume that it is positive. We shall use some facts from potential theory. The
most elementary treatment of these appears in [9], deeper treatments appear
in [3, 8, 11 ]. The set E has piecewise analytic boundary, and is regular with
respect to the Dirichlet problem. As such it has a classical Green’s function
g(z) with pole at cx. This has the following properties: g is harmonic in C\E;
g(z) log Izl / O (1), Izl ; and g has boundary value 0 on the boundary
of E. Moreover, g 0 in E. It is known that g admits the representation

g(z) log Iz tldx(t) + log
cap(E)

where x is a probability measure with support on E, the so-called equilibrium
measure of E. For polynomials R of degree m < n, there is the Bernstein-
Walsh inequality

[e(z)[ < eg(Z)llell(E), z C. (4.5)

The proofis simple: The function F(z) := log In (z) l-mg(z)-log R
is subharmonic in C, with boundary value < 0 on E and with a finite limit
at ee. The maximum principle for subharmonic functions gives F(z) < 0 in

C\E, that is, (4.5) follows as g > 0. Likewise on E, the inequality is trivial as
g > 0. Now in our case R P has maximum En on E, SO our normalization

(4.1) and (4.5) give

1 P [Itp(Izl--r) < en eng(z) [[tp(Izl-r)

en f log Iz-tldlz(t)

cap(E) Ilzp(Izl-r).

Let us suppose now 0 < p < c. Using Jensen’s inequality for integrals
applied to the convex function et, we can continue this as

cap(E)
enP f log Irei-tldlx(t)dO

f< IreiOcap(E)
tlnpdlz(t) dO

1/p

=(ca(E))[f[2fo2lrei-tlnpdO]dtz(t)l
< sup Ireica12(e) [tl<r - tlnpdo (4.6)
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In the second last line, we used Fubini’s theorem, and in the last line, we
used the fact that/z has support in E C {z [zl <_ r}. It is clear that rotating
does not change the value of the integral in the sup so we may take 6 [0, r].
Moreover, the fact that the Lp norm of an analytic function on a circle centre

0, radius t, increases with [20, p. 337] gives that the sup is attained for
r, so

1 <_
cap(E)

[eiO l[npdo

cap(E)
cos dO

Expressing the last integral in terms of Beta functions gives

rEKnp tn
and hence we have the first inequality in (4.3). P61ya’s inequality Theorem
3.1 then gives the second inequality in (4.3). The case p cx is easier, as

we see that the sup in (4.6) then becomes (2r)n. The case p 0 requires
more care, see 16].
To prove the sharpness for0 < p < cx, we let 0 < a < r, and

P(z) "= (z___a)n, where ) is chosen to give the normalization (4.1). It is

easy to see that for small enough e, E(P; r; e) {z Iz al _< e)} and so

meas2(E(P; r; e)) ,2cap(E(P; r; e))
); re

E 62

The normalization (4.1) shows that- IreiO alnpdo -- (rlCnp)n, a --+ r.

So ) may be made arbitrarily close to Knp. Then (4.4) follows.

We note one generalization, proved in [16]:

THEOREM 4.2
with

Let p (0, x) be strictly increasing and continuous

7t(0) :-- lim ap(t) < 1 < lim ap(t)=: (o).
t-+0+ t--+c
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Assume, moreover, that gr(et) is convex in (-o, o). Let r, e > 0 and
0 < p < o. Let P be a polynomial of degree at most n, normalized by
the condition

2--1 fo
2zr

P\,P(rei),P/dO(I 1. (4.7)

Let tcz,O be the root of the equation

--2zr
1 f02r ([ll-eil]z

dO=l.

Then the estimates (4.3) hold ifwe replace Xnp by Xnp,/ and moreover these
are sharp in the sense that (4.4) holds with Knp replaced by Knp,O.

The proof is very similar to that of Theorem 4.1, one just applies Jensen’s
inequality to q/(et) rather than et. See [16] for this and further extensions
involving generalized polynomials and potentials.

5 REMEZ INEQUALITIES

Remez inequalities have been studied intensively by Tamas Erdelyi and his
collaborators in recent years. They have been shown to be useful in proving
Markov-Bernstein and Nikolskii inequalities, amongst others. The classical
one involves the Chebyshev polynomial Tn (x):

THEOREM 5.1 Let P be a polynomial of degree at most n, with real
coefficients, and

( "= measl {x [-1, 1]" IP(x)l < 1}. (5.1)

Then

,IPIIL[_I,I] < Tn (-- I). (5.2)

There is equality iff P(x) -+-Tn (+2x-2-).
The reader may find an elegant proof in the delightful book ofBorwein and

Erdelyi [1]: As with P61ya’s (3.6), the proof involves shifting the intervals
that comprise {x [-1, 1]" P (x) < 1} until one has a single interval, at
each stage increasing the measure.

For our purpose, the following corollary is of most interest: Recall that

Tn is strictly increasing in [1, oe) with Tn (1) 1. Hence it has an inverse
Tn[-1] [1, o) --+ [1, cx).
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COROLLARY 5.2 Let P be a polynomial of degree at most n, with real

coefficients, normalized by

IIPIIzoo[-1,1] 1. (5.3)

Let e (0, 1]. Then

4
measl {x [--1, 1] Ie(x)l < 6n} < (<_ 23-1/n6). (5.4)

1 + Zn[-1](e-n)
Given e 6 (0, 1], we have equality in (5.4)for suitable polynomials P of
degree n.

Note the power of the corollary: It is sharp for each e, not just as e --+ 0+.

Proof of Corollary 5.2 For the given P, let Q := e-n P. Then

{x I-a, 11" Ie(x)l {x [-1, 1]. [Q(x) _< 1} =. E.

By Remez’s inequality (5.2),

(4Ilell o t-l,la < 1
measlE

and our normalization (5.3) gives

e-n <Tn( 4 -1).measE
Inverting this gives (5.4). The second inequality in (5.4) follows from the
elementary inequality

rn(x) <_ 2n-lxn, x [1, o) == Tn[-1](u) > 2-1+l/nul/n, u [1,
(5.5)

The sharpness is a simple consequence of the sharpness of Theorem 5.1: Fix
e and set

4 ():= =Tn -1 =e-n.
1 + rnt-ll(e-)

Theorem 5.1 shows that P (x) -Fen Tn +2x+e- ) gives equality in (5.4).rn

We emphasise that Remez inequalities have been proved for generalized
polynomials, potentials, in Lp spaces, for Miantz polynomials See [1, 6]
for results and references. Since our emphasis is on ordinary polynomials, and
regions in the plane, we restrict ourselves to the following result of Erdelyi,
Li and Saff [6, Theorem 2.5] for the unit ball:
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THEOREM 5.3
with

Lets [0, 1/4] and P be a polynomial of degree at most n

Then

Here C is independent ofn, P, s.

What is fairly typical about this Remez extension is that it applies only
whenmeas2(E(P; 1; 1))isboundedawayfrom0,namelywhenitis > zr-.
This is indicative of the rationale of Remez inequalities. Their greatest
use is when meas2(E(P; 1; 1)) approaches its full measure zr, while the
inequalities ofthe previous sections are most useful when meas2 (E(P; 1; 1 ))
approaches 0.

6 MULTIVARIATE POLYNOMIALS

The polynomial P(Zl, Z2) :-" (ZlZ2)n illustrates many of the multivariate
features. The lemniscate

E<e; "= lP<z ,z=>l {(Zl,Z2). lZlZ2l

is unbounded and even has infinite (4 dimensional) Lebesgue measure.
Moreover, is the degree of P, n or 2n? We shall define its degree as n.

We shall say that the degree of a polynomial P (z l, z2 z) of k variables
is n, if the highest power of each zj is at most n, with equality for at least
one j. To take account of the unboundedness of E(P; 8), we consider the
restricted lemniscate

E(P; r; 8):-- {(Zl,Z2 Zk) [Zjl <_ rVj, IP(zl,z2 Zk) <_ 8n}.
A. Cuyt, K. Driver and the author [5] used Theorem 4.1 and induction on k
to prove:
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THEOREM 6.1
normalized by

Let r, e > O. Let P be a polynomial of degree at most n,

max{]P(z,z2 z)l" IzjI _< rj]--1.
Then ifmeas2k denotes Lebesgue measure in Ck (= N2),

(6.1)

2k_ }k-1meas2(E(P; r; e)) < (16yrr2)e2 max 1, log2 (6.2)

While the constants are not sharp, the powers of r, e are, including
the surprising factor log2 . For k 2 and the polynomial P(zl, z2)
(ZlZ2/r2) a calculation shows that

meas2(E(P;r;e))-- (yrr2)2e2 [1 + 2log
1 1

What about monic normalization? B. Paneah [17] generalized Cartan’s
lemma as follows. Given a multi-index (oil, or2 Otk) we say that it is
leading if

(I) 0aP:= ""\Oz] P#O;

(II) 1 5j 5ksuchthatj 0, ""kOzl P 0"

2 2For example, P (z z2 z3 z +z+z+3z ZzZ3 has leading multi-indices
(3, 0, 0), (0, 3, 0) and (0, 0, 2) but not (2, 2, 1).
For (Zl, z2 z) and 1 5 j 5 k, wesetj "= (Zl, z2 zj-,zj+,

z). One dimensional lines in C pallel to the zj axis have the fo

where a 6 Ck-1 Paneah proved:

THEOREM 6.2 Let P be of degree n, and be a leading multi-index. Let
8j > 0 with equality iffj O, 1 < j < k. There exist subsets jk/lj of Ck

such that
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Moreover, Mj intersects any line Cj (a), a Ck- 1, in at mostj circles, with
sum ofdiameters < 43j.

Note that for k 1, ot n andwe obtain (31 /n)nn !, precisely the quantity
in the proof of Corollary 2.2.
What about measures other than Lebesgue measure? Notions of capacity

are far more complicated in the multivariate case, and several basic questions
remain unresolved. One of the main problems is the lack of an explicit
formula for the Greens’ function. See [2, 5, 10, 12, 13, 22] for partial results.
Undoubtedly the greatest scope for work on small values of polynomials lies
in the multivariate setting.
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