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Picone-type inequalities are established for nonlinear elliptic equations which are
generalizations of nonself-adjoint linear elliptic equations, and Sturmian comparison
theorems are derived as applications. Oscillation results are also obtained for forced su-
perlinear elliptic equations and superlinear-sublinear elliptic equations.
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1. Introduction

Beginning with the work of Picone [11], Picone identity has been investigated by many
authors. In particular, we refer the reader to Allegretto [2], Kreith [8], Protter [12], Swan-
son [13] and the references cited therein for Picone identities and comparison theorems
for nonself-adjoint linear elliptic equations.

Recently there has been an increasing interest in studying the forced oscillations of
differential equations. We mention the papers [3-7, 10] dealing with forced oscillations
of differential equations of self-adjoint type.

In Jaro$ et al. [6], they have established Picone-type inequalities which connect the
self-adjoint linear elliptic operator

i i(a Jdu
= 0 l] an

)+c(x)u (L.1)

with the nonlinear elliptic operator

(1.2)
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where 8 and y are positive constants with § > 1 and 0 < y < 1. They have derived Sturmian
comparison theorems and oscillation theorems for the forced elliptic equation

Plv] = f(x) (1.3)
as well as the superlinear-sublinear elliptic equation
Plv] =o0. (1.4)

The objective of this paper is to extend the results obtained in [6] to the nonlinear
elliptic equations with first-order terms

v] = f(x), (1.5)
Llv] =0, (1.6)
where
_ <« 0 ov !
UEDY g(A,-j( >+ZZB(x Oy,
. v ; (1.7)
Z —( ij x)—) +ZzBi(x)—v+C(x)lvlﬁ*1v+D(x)|v|V*1v.
= 0. ] -1 axi
We note that if there exists a C!-function F(x) such that
VF(x) = 2B(x)(4;(x)) (18)
where B(x) = (Bi(x),B(x),...,B,(x)), then (1.5) can be written in the form
$ d F(x F(x) B-1,, _ F(x)
Z T\ Ajj x)— +efOC(x)[v[P 1y = ef @ f(x (1.9)

Xj

which was studied in [6].

In Section 2 we establish Picone-type inequalities for (1.5), and in Section 3 we obtain
oscillation theorems for (1.5) in an unbounded domain Q) C R”. Sections 4 and 5 concern
Sturmian comparison theorems and oscillation theorems for (1.6), respectively.

2. Sturmian comparison theorems for (1.5)

Let G be a bounded domain in R” with piecewise smooth boundary 0G. It is assumed
that

(A1) Aij(x) € C(G;R), Bi(x) € C(G;R), C(x) € C(G;[0,0)) and f(x) € C(G;R);

(Az) the matrix (A;j(x)) is symmetric and positive definite in G;

(A3) ﬁ > 1. B

The domain %; (G) of L is defined to be the set of all functions v of class C!(G;R) with
the property that A;j(x)(9v/dx;) € C'(G;R) N C(G;R) (i,j = 1,2,...,n).
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TueoreM 2.1. If v € D1(G), v # 0in Gand v - f(x) <0 in G, then the following inequality
holds for any u € C'(G;R):

,Z_M(ax,() 3 b v (1) - 2 mooa o)

(2.1)

< ZIA,-](x)<gZ > Bi( x)Ak’(x)u) (aa—;:] - sz(x)Akj(x)u>

k=1 k=1

—B(B - 1)(1*ﬁ)/ﬁC(x)1/ﬁ|f(x) | (ﬁ—l)/ﬁuz " %Z{L[v] —f(x)},

where (A (x)) = (Ayj(x))™!
Proof. The following Picone-type inequality was established by Jaros et al. [6]:

=405 (5) (g () + 2 3 (Favzy)

i,j=1

= 3 Ag 2 (s 0B 0| P (2o
i OXj

2 n
+u_{z aa (Alj( )=— )+C(x)|v|ﬁ IV—f(x){
Since
_Zuign;Bi(X)vai)Ci(%) = —2u§B,’(x)a—l{ +2%2§:B,-(x)a—v' (2.3)

combining (2.2) with (2.3) yields

i)ji_lA”(x)(Va%(%))( ai,( )) Z”ZB 8x,( )
+B() (45(x)) B(X)T”2+Uzl (S Ay

ou Jdu

= i Ajj(x )———2 ZB(x —+B x)(Ajj (x))le(x)TuZ (2.4)

— BB - 1)-BVBC x)l/ﬁ|f(x)| B-1/B 2
W2

7{2 a%(A,]( )§”>+223 )—+C(x)|v|‘8 y_ fx)}
ij=

Xj
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where B(x) = (B1(x),...,B,(x)) and the superscript T' denotes the transpose. In view of

the identities
3400w () (g (7)) -2 mcow ()

i,j=1 1

+B(x) (A(x)) ' B(x)"u?

< ) ) » (2.5)
- i’jZ:IA i(x )( 8x,< ) kZlBk(x )AK (x)u )
0 - ;
x (Va—%e) - ZBk(x)AkJ(x)u),

3 Ay )5 22 B S B4 ) B

S ) ) ) (2.6)
= > A ( Z Bi(x) AR (x ) (a—“ -> Bk(x)Akf(x)u>,
ij=1 Xi 0% k=1
we observe that (2.4) is equivalent to (2.1). O
We consider the comparison operator
=0

elu] = ,]zl . (a,](x ) sz S el 2.7)

where the coefficients a;;(x), bi(x), c(x) satisfy the following hypotheses:

(A4) aij(x), bi(x), c(x) € C(GR);

(As) the matrix (a;j(x)) is symmetric and positive definite in G.

The domain @,(G) of £ is defined to be the set of all functions u of class C!(G;R) with
the property that a;j(x)(du/0x;) € C'(G;R) N C(GR) (i,j =1,2,...,n).

THEOREM 2.2. Assume that u € D¢(G), v € D(G), v#0inGandv - f(x) <0in G. Then
we have the following Picone-type inequality

"9 ou  u? ov
i)jzzl 7 (uaij(x)a— - —Aij(x)_)

xXj v 0x;

au Ju
(aij(x) — Ajj(x) 587]_2 ; B(x) ™

>

TM=

i,j=1

+ (BB - 1IPECE)E| f(x)| PP — c(x) - B(x) (A (x))B(x)T)”2
S N 0 (u) _ S ki 0 (u) C kj
*i,jzzlA'f(")(Vaxi@) 3 B eou) (vse () - 2 Beoadion)

+ %{Ve[u] —u(Llv] - f(x))}.
(2.8)
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Proof. To prove the theorem it suffices to combine the inequalities (2.4) and (2.5) with
the identity

welu] = S 2 (ua,](x ) Z )%ﬁ +2qu(x) re@il. (29)
e ax, P i 0x;
(]
Now we consider the first-order partial differential system
Vw—P(x)w =0, (2.10)

where P(x) = (P1(x),P5(x),...,P,(x)) is a continuous vector function, and define the se-
quence of functions {gx(x)};_, by

- | P,
5 (2.11)
) = g1 @)+ | (Pe) = 5 () )i (k=23,0m)
LEmMMA 2.3. The system (2.10) has a C'-solution if and only if
J (P(x)—i (x))—o (k=2,3,...,n) (2.12)
axk71 k axk qk-1 = = 4595...,11). .
Then any C'-solution w of (2.10) can be written in the form
w = C,expqn(x) (2.13)
for some constant C,,.
Proof. Suppose that (2.10) has a C!-solution w. Then we obtain
M pyxw=0, (2.14)
8x1
and hence
w=Cy(x2,...,%) exijl (x)dx1 = Cy(x2,...,xn) expq1(x) (2.15)
for some function C;(x5,...,x,). From
al —P(x)w=0 (2.16)
8x2

we see that C; (xz,...,x,) must satisfy

G (Pz(x) _ aixz Jpl (x)dx1>C1 o0, (2.17)

aX2
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Hence, it is necessary that
% (s - == [ i) =0, (2.18)
ox, ox,
and we have
C1 = Cy(x35...,%n) expj <P2(x) - % JPI (x)dx1>dx2 (2.19)

for some function C,(x3,...,x,), and therefore

w=Cy(x3,...,%) exp(JPl(x)dx1+J(P2( JPI dx1>dx2)
= Cy(x3,...,%n) expqa(x).

(2.20)

Repeating this procedure, we observe that (2.12) is necessary and the solution w has the
form (2.13). From the above consideration it is obvious that the condition (2.12) is suffi-
cient for (2.10) to have a C'-solution. O

THEOREM 2.4. If there exists a nontrivial function u € C'(G;R) such that u = 0 on 9G and

Mu] JG[ Z Aij(x) (8_ - ZBk (x) Ak x)u) (— - ZB VAR (x )
b . K (2.21)

— BB 1)PBC(x)VB| £(x) | (’“W‘m} dx <0,

then every solution v € D (G) of (1.5) satisfying v - f(x) < 0 in G vanishes at some point
of G. Furthermore, if 0G € C', then either every solutlon v € D1(G) of (1.5) satisfying v -
f(x) <0in G has a zero in G or else u = Covexpq(x) for some nonzero constant Cy and
some continuous function q(x).

Proof

The first statement. Suppose to the contrary that there exists a solution v € 9, (G) of
(1.5) satisfying v - f(x) <0 in G and v # 0 on G. We find that the inequality (2.1) of
Theorem 2.1 holds. Integrating (2.1) over G and then using the divergence theorem yield

Mu] > J S Ay(®) <a (V) sz(xAk’(x)>

i,j=1
; (2.22)
k
x( ax,< )- kZlBk(xAJ( %) >dx.
If
v% (4)- S BAR (=0 in G (i=1,2,...,m), (2.23)
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then it follows from Lemma 2.3 that

% = Coexpq(x) (2.24)

in G, by continuity on G, where C, is some constant and g(x) is some continuous func-
tion. Since u = 0 on 0G, we see that Cy = 0, which contradicts the fact that u is nontrivial.
Therefore, we observe that

() <sz VAR (x )(%)io in G. (2.25)

Hence, we conclude that the right-hand side of (2.22) is positive, and hence M[u] >
This contradicts the hypothesis (2.21).

The second statement. Next we consider the case where dG € C!. Let v € 91(G) be a
solution of (1.5) such that v+ f(x) <0in Gand v # 0 in G. Since G € C!, u € C'(G;R)

and u = 0 on dG, we see that u belongs to the Sobolev space H 1(G) which is the closure
in the norm

12
llull = llull, = (J > |D"‘u|2dx> (2.26)
lal<1

of the class Cg’(G) of infinitely differentiable functions with compact support in G (see,
e.g., Agmon [1, page 131]). Let {uy} be a sequence of functions in Cy’ (G) converging to
u in the norm (2.26). Then, the inequality (2.1) with u = uy holds. In view of the fact that
(2.22) with u = u holds, we find that M[uy] > 0. Since

ou du « Jdu
ul =] LzlA,, N e MBS

+ (B0 (A (x) ' B@)T - BB~ DIPEC() | f(x) | “‘”/")uz}dx
(2.27)

and A;j(x), Bi(x), B(x)(A;;(x))"'B(x)T = B(B—1)1-P/BC(x)VE| f (x)| B~V are uniformly
bounded in G, there is a constant K > 0 such that

& ((Oug 9wk —u) | 9(ux —u) du
( ox;  0x; * ox;  0x; dx

| M[ur] — Mlu]

dx (2.28)

+KJ i( k_u)+(uk—u)%>
+KL | g (uk — u) + (ug — u)u|dx.

Application of Schwarz inequality yields

| Mwi] = Mlul| < K(n? +n+1) ([l + lull) [ = u]. (2.29)
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Since limg_ o |ux — u| = 0, we see that limg_.. M[ug] = M[u] = 0, and therefore M[u] =
in view of (2.21). Let B denote an arbitrary ball with B C G and define

JZA,](x)(V<> ZB x)AX (x )

i,j=1

(2.30)
x( ax]( ) ZBk VAR (x )dx
for u € C'(G;R). We easily see that
0 < Jp[ux] = M[u] (2.31)
and that
[Js[ue] = Jslul| < Ki(|[willg + lwlls) [[wi — wl|g (2.32)

holds, where K; is a positive constant, wx = ux/v, w = u/v and the subscript B indicates
the integrals involved in the norm (2.26) are taken over B. As v # 0 on B, we observe
that limg_ o« [|wr — wllg = 0 when limy . ||ux — u|| = 0, and hence limg_. o J[ur] = Jp[u].
Since limy_ o M[ux] = M[u] = 0, we obtain limy_. Jp[ur] = Jg[u] = 0. It follows from
Lemma 2.3 that u/v = Cyexpq(x) in B, by arbitrariness of B in G, and hence by continuity
on G for nonzero constant Cy and some continuous function g(x). This completes the
proof of the second statement. O

COROLLARY 2.5. Assume that f(x) = 0 (or f(x) < 0) in G. If there exists a nontrivial func-
tion u € C'(G;R) such that u =0 on 9G and M[u] <0, then (1.5) has no negative (or
positive) solution on G.

Proof. Let (1.5) have a solution v which is negative (or positive) on G. Then, it is obvious
that v - f(x) <0 in G, and hence Theorem 2.4 implies that v must vanish at some point
of G. This is a contradiction and the proof is complete. O

THEOREM 2.6. If there exists a nontrivial solution u € De(G) of €[u] = 0 in G such that
u=0o0n0dG and

" ou o « d
f [Z (ai(x) - ))a“a—;—m;(bi(m—&u»a%

+ (BB - 1P| £ C — o) - Bx) (A"f<x>>B<x>T)“2]dx

>0,
(2.33)

then every solution v € D1 (G) of (1.5) satisfying v - f(x) <0 in G vanishes at some point
of G. Furthermore, if 0G € C', then either every solution v € D1(G) of (1.5) satisfying v -
f(x) <0 in G has a zero in G or else u = Cyvexpq(x) for some nonzero constant Cy and
some continuous function q(x).
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Proof. It suffices to start the inequality (2.8) instead of (2.1) and use the same arguments
as in the proof of Theorem 2.4. O

COROLLARY 2.7. Assume that f(x) =0 (or f(x) <0) in G. If there exists a nontrivial so-
lution u € D¢(G) of €[u] =0 in G such that u =0 on oG and V[u] = 0, then (1.5) has no
negative (or positive) solution on G.

Proof. It is easily verified that
Vil = ,J weluldx - Mu] (2.34)
G

for any u € C'(G;R) satisfying u = 0 on dG. Hence, we conclude that
Viu] = —Mlu] (2.35)

for the solution u of £[u] = 0 such that u = 0 on dG. The conclusion follows from
Corollary 2.5. O

Remark 2.8. Tf (a;;(x) — Ayj(x)) is positive definite in G and
BB —1)IPECx)VF f(x)| (B-1/B
> ¢(x) +B(x) (A7 (x))B(x)" (2.36)
+ (b(x) — B(x) (a(x) = Ay (1)) ' (b(x) — B(x)) ",
then V[u] > 0 for any u € C'(G;R), where
b(x) — B(x) = (b1 (x) — By (x),b3(x) — By(x),..., bu(x) — Bu(x)). (2.37)

In the case where b;(x) = B;(x) (i = 1,2,...,n), we see that V[u] > 0 for any u € C'(G;R)
if (a;j(x) — Aij(x)) is positive semidefinite in G and

BB —1)IPBCG)VE| f(x) | PP = c(x) + B(x) (A (x)) B(x)T. (2.38)

THEOREM 2.9. Suppose that G is divided into two subdomains G, and G, by an (n — 1)-
dimensional piecewise smooth hypersurface in such a way that

f(x)=0 inG, f(x)<0 inG.. (2.39)

If there exist nontrivial functions u, € Cl(G_p; R) (p = 1,2) such that u, = 0 on oG, and

Mylug) = | [ZAU(’C( . - S B x)Ak’(xmp)( Z Ak (x )

i,j=1 k=1 =

— BB~ 1) IPYEC(x) V| f(x |<‘“’/’3u§,]dx <0,
(2.40)

then every solution v € 91(G) of (1.5) has a zero on G.
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Proof. Assume that (1.5) has a solution v which has no zero on G. Then, either v < 0 on G
orv>0o0nG.Ifv<0on G, then v<0on Gy, and therefore v - f(x) <0 in G;. It follows
from Corollary 2.5 that (1.5) has no negative solution on G;. This is a contradiction. The
case where v > 0 on G can be treated similarly, and we are also led to a contradiction. The
proof is complete. U

THEOREM 2.10. Suppose that G is divided into two adjacent subdomains G, and G, as men-
tioned in Theorem 2.9. If there exist nontrivial solutions u, € D,(G,) (p = 1,2) of €[u,] =0
in G, such that u, = 0 on dG, and

S dup " 3
Volugl = | LZI (o) = ) 52 5 =20y X ) = B 5.1

+(BB-1)AFEC) P f(x) | PP - cx) - Bx) (AT (x))B(x)T)uf,}dx

>0,

(2.41)

then every solution v € @1 (G) of (1.5) has a zero on G.

Proof. By using the same arguments as in the proof of Theorem 2.9, we conclude that the
conclusion follows from Corollary 2.7. O

3. Oscillation theorems for (1.5)

In this section we derive an oscillation criterion for (1.5) in an unbounded domain Q C
R”. Assume that

(Hi) Ajj(x),Ai(x), C(x), f (x) € C(Q;R);

(H;) the matrix (A;j(x)) is symmetric and positive definite in Q.

The domain 97 (Q) of L is defined to be the set of all functions v of class C'(Q; R) with
the property that A;;(x)(dv/0x;) € CHR) (3, =1,2,...,n).

Definition 3.1. A function v: Q — R is said to be oscillatory in Q if v has a zero in Q, for
any r > 0, where

Q,=Qn{xeR; |x| >r}. (3.1)

THEOREM 3.2. Assume that for any r > 0 there is a bounded domain G in Q, with piecewise
smooth boundary, which can be divided into two subdomains G, and G, by an (n — 1)-
dimensional hypersurface in such a way that f(x) =0 in Gy and f(x) <0 in G,. Fur-
thermore, assume that C(x) = 0 in G and there exist nontrivial functions u, € Cl(G_p; R)
(p = 1,2) such that u, = 0 on 0G and My[u,] < 0, where M, are given by (2.40). Then
every solution v € D1 (Q) of (1.5) is oscillatory in Q.

Proof. We need only to apply Theorem 2.9 to make sure that every solution v has a zero
in any domain as mentioned in the hypotheses of Theorem 3.2. O
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Example 3.3. We consider the forced superlinear elliptic equation

0 0 ) ) .
Av+2£ +2£ + K (sin (x; — ) sinxg) [v[F~ 1y = cosxy sinxa,  (x1,%) € Q,  (3.2)
1 2

where K >0 is a constant, A is the two-dimensional Laplacian, and Q is an unbounded
domain in R? containing a horizontal strip such that

[mm,00) X [0,77] C Q. (3.3)
Let m be any fixed natural number, and consider the square
G=(2m—-1)m,2mm) x (0,7), (3.4)

which is divided into two subdomains

G = (2m—1Dm, (2m—(1/2)) ) x (0,7),
3.5
G, = ((2m— (1/2))m,2mm) X (0,7) -2

by the vertical line x; = (2m — (1/2))7. It is easy to see that C(x) = K sin(x; — ) sinx, > 0
in G, f(x) = cosx;sinx; <0 in Gy and f(x) = 0 in G,. Letting u, = sin2x;sinx; (p =
1,2), we observe that u, = 0 on dG,. An easy calculation shows that

[i (au{o - up>2 —B(B— 1) BB (K (sin (x, — ) sinx,)) *

i=1

Myluy] = |

Gp

X | cosx; sinx; | (ﬁ_l)ﬁuz}dxl dx; (3.6)

_7 2 8 uppip_ 1\1-pB <§ S _L)
=3" 3’K B(B-1) B 2+2ﬁ,2 )

where B(s,t) denotes the beta function. Hence, we find that M [u,] <0 (p = 1,2) ifK >0
is chosen so large that

K= [2—31712 . (ﬁ(ﬁ_ 1)(1713)/EB(§+ i,z_ L))l]ﬂ, (3.7)

It follows from Theorem 3.2 that every solution v € C>(Q;R) of (3.2) is oscillatory in Q
for all sufficiently large K > 0.
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4. Sturmian comparison theorems for (1.6)

We deal with the elliptic equation (1.6) and establish Picone-type inequalities for (1.6).
Sturmian comparison theorems for (1.6) are derived by using the Picone-type inequali-
ties.

We assume that the coefficients A;j(x), Bij(x), C(x), D(x) and the constants f3, y ap-
pearing in (1.6) satisfy the following:

(A1) Ajj(x) € C(G;R), Bi(x) € C(G;R), C(x) € C(G;[0,00)) and D(x) € C(G; [0, ));

(A,) the matrix (A;j(x)) is symmetric and positive definite in G;

(A;) f>land0<y<1.
The domain %} (G) of L is defined to be the same as that of L, that is, @; (G) = 91(G).

TueoreMm 4.1. If v € D;(G) and v # 0 in G, then the following inequality holds for any
uec CY(G;R):

M=
>

~

=
=

o

VS
<

QJ|QJ
—
= |-
N———
TM:

k<x>A’“<x>u)< aij(%) S B(x)AM (x) )

ij=1 k=1
=0 (u? ov
"2 (403,
g (4.1)
< 3 Ay - S Baou) [ 24 3 Bux)AY (nu
T ax,‘ a ]
i,j=1 k=1 k=1
(1-p)/(B-
_B-y (ﬁ ) 4 Clox) 19V B=9) D () B-D/ B 2 4 ”_21[1,].
I—y\1—-y v
Proof. Starting with the following inequality
: ov
l]ZlAl](x ( <v>>< ax]< )) z= 8x,< ax]>
z oudu P-y(Bp—1\"PVEY L—y)/(B—
< Z Ajj(x) = =— — _(_) C(x)1-7) (B-y)
ij=1 1—y (4.2)

which was established by Jaros et al. [6, Theorem 7], and proceeding as in the proof of
Theorem 2.1, we find that the inequality (4.1) holds. O



Jaroslav JaroS etal. 13

THEOREM 4.2. Assume that u € D,(G), v € D (G) and v # 0 in G. Then we have the fol-
lowing Picone-type inequality:

i ou  u? ov
Zz <ua,](x ax,- 7A,~j(x)§>

" au ou S 8
Zz“ aij (X ax, ax] Z{ —B; (x axl
_ _ 1y =B/~
. (/3 y (ﬁ ) 7 )16 () -1/ )
I-y\1-y

— c(x) — B(x) (A7 (x))B(x)T> u?

n a n . a n )
+ > Aji(x) (Va_x,- (%) - ZBk(x)Ak’(x)u) (Va_xJ (%) —I;Bk(x)A"f(x)u)

k=1
(4.3)

Proof. Arguing as in the proof of Theorem 2.2, we observe that the conclusion follows
from (4.1). O

THEOREM 4.3. If there exists a nontrivial function u € C'(G;R) such that u = 0 on 9G and

J [ > A x)(— - ZBk YAK (x ) (% - ZBk(x)Akj(x)u>
Xi J

ij=1 k=1

e (lfﬁ)/(ﬂ*
_ /f Yy ([lg 1) Y C(x)(lfy)/(,B*V)D(x)(ﬁfl -y) 2:|dx <0,
—yA Y

(4.4)

then every solution v € 9; (G) of (1.6) vanishes at some point of G. Furthermore, if G € C',
then either every solution v € 9; (G) of (1.6) has a zero in G or else u = Covexp q(x) for some
nonzero constant Cy and some contmuousfunctzon q(x)

Proof. Suppose that there is a solution v of (1.6) such that v # 0 on G. Then, the in-
equality (4.1) of Theorem 4.1 holds for the nontrivial function u. Integrating (4.1) over
G and proceeding as in the proof of Theorem 2.4 yield the conclusion M[u] > 0, which
contradicts the hypothesis (4.4). This completes the proof of the first statement. Next we
consider the case where dG € C'. Let v be a solution of (1.6) satisfying v # 0 in G. Using
the same arguments as in the proof of Theorem 2.4, we see that M [u] = 0, which implies
that u = Cyvexpg(x) for some nonzero constant Cy and some continuous function g(x).
This completes the proof of the second statement. O
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THEOREM 4.4. If there exists a nontrivial solution u € De(G) of €[u] = 0 in G such that
u=00n0G and

" au ou u au
,-2:1 (a;(x) = Ay (x)) 5 - 3% Zl i) = Bilx)) o -
— ﬁ,
(/_f Y (/f ) & Cx) =D D) B-DE-D  (4.5)
—y\1-y

~ c(x) - B(x) (A7 (x))B(x)T) uﬂ dx > 0,

then every solution v € 9;(G) of (1.6) vanishes at some point of G. Furthermore, if9G € C',
then either every solution v € Dz (G) of (1.6) has a zero in G or else u = Cyvexp q(x) for some
nonzero constant Cy and some continuous function q(x).

Proof. The proof follows by using the same arguments as in Theorem 2.6. O

Remark 4.5. In the case where b;(x) =0 (i = 1,2,...,1) and B;(x) € C'(G;R) (i = 1,2,
n), it can be shown that V[u] > 0 for any u € C'(G;R) if (aij(x) — Ajj(x)) is positive
semidefinite in G and

(1-p)/(B=y)
Py </3 - 1) Py C (o) 1=V B~ D () B/ B-p)

l-=y\l-y (4.6)

> c(x)+V - B(x) +B(x) (A7 (x))B(x)T inG.

5. Oscillation theorems for (1.6)

Now we establish oscillation criteria for (1.6) in an unbounded domain Q) C R”. It is
assumed that
(H)) Ajj(x) € C(;R) and the matrix (A;j(x)) is symmetric and positive definite in Q;
and the same is true of a;;(x);
(H,) Bi(x) € C'(R), C(x) € C(€;[0,00)), D(x) € C(Q;[0,00)) and bi(x), c(x)
€ C(;R);
(H;) f>land0<y<1.
The domain %; (Q) of L is defined to be the same as that of L, that is, 9; (Q) = % (Q).
The domain %,(Q) of ¢ is defined similarly.

Definition 5.1. A bounded domain G with G C Q is said to be a nodal domain for €[u] =
if there is a nontrivial function u € %9,(G) such that £[u] = 0in G and u = 0 on 0G. The
equation £[u] = 0 is called nodally oscillatory in Q if it has a nodal domain contained in
Q, for any r > 0.
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THEOREM 5.2. Let bj(x) =0 (i = 1,2,...,n), and assume that

(aij(x) — Ajj(x)) is positive semidefinite in Q, (5.1)

_ — 1\ U=PV(B=y)
c(x) < /1%)): (%) C(x)(1—y)/(ﬁ—y)D(x)(,B—l)/(ﬁ—y)

—V-B(x) - B(x)(A7(x))B(x)T inQ.

(5.2)

Every solution v € D3 (Q) of (1.6) is oscillatory in Q if €[u] = 0 is nodally oscillatory in Q.

Proof. Since £[u] = 0 is nodally oscillatory in Q, there exists a nodal domain G C Q, for
any r > 0, and therefore there is a nontrivial solution u of £[u] = 0 in G such that u =0
on dG. It follows from the hypotheses (5.1) and (5.2) that V[u] > 0. Theorem 4.4 implies
that every solution v € %;(Q) of (1.6) must vanish at some point of G, that is, v has a
zero in Q), for any r > 0. This implies that v is oscillatory in Q. g

The following corollary is an immediate consequence of Theorem 5.2.

CoROLLARY 5.3. If the elliptic equation

(-B)/ (B~
Au+t (/5 Y (ﬁ ) & Cl0) I B-DD(x) BV ED _ v . B(x) |B(x)|2)u -0

1=yl -y

(5.3)

is nodally oscillatory in Q, then every solution v € C*(Q;R) of

z ov
Av+2> Bi(x a—+C( x)|v[F v+ D(x)|v]"lv =0 (5.4)
i=1
is oscillatory in Q.
Various nodal oscillation criteria for

Au+dx)u=0, xeR" (5.5)

have been obtained by Kreith and Travis [9]. They have shown that (5.5) is nodally oscil-
latory in R” if

I dix)dx =0 (n=2),
S (5.6)
J S[AG)|(Ndr = 0 (n>3),

where S[d(x)](r) denotes the spherical mean of d(x) over the sphere {x € R"; |x| = r}.

COROLLARY 5.4. Let Q) = R" and assume that

J Y(x)dx =00 (n=2),
(5.7)
j SN (dr =00 (n=3),
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where

/B — 1\ BB
W(x) = /iJ (F) ¥ )P/ D) B/ B)
—y Y

—V-B(x)- |B(x)|%

(5.8)

Then every solution v € C*(R";R) of (5.4) is oscillatory in R".

Proof. The conclusion follows by combining the oscillation results due to Kreith and
Travis [9] with Corollary 5.3. O

COROLLARY 5.5. Let Q) = R" and assume that there are positive constants ko, ki (i = 1,2,...,
n) such that

C(X) = k(), D(x) = k(), B,-(x) = k,‘ (l = 1,2,...,1’1). (59)
If
_ 1\ =RVB-y)
u<ﬁ—1> ko> K+ - +k2, (5.10)
l—y\l—y

then every solution v € C*(R";R) of (5.4) is oscillatory in R".
Proof. Since
_ — 1\ U=BV/B=y)
‘P(x)z/u(ﬁ—) ko—(kf+---+k,2,) >0, (5.11)
l-—y\l-y

we find that the hypotheses of Corollary 5.4 are satisfied, and consequently the conclusion
follows from Corollary 5.4. g

Example 5.6. We consider the elliptic equation

0 0 .
Au+4ZY 2 %% a2y 45y 2y =0 in R (5.12)
8x1 ax2

Heren=2,k; =2,k =1,ko =4, 5 =3,and y = 1/2. It is easily seen that

B 1y BV
lf_;(‘f_y) k=525,  KB+k=5. (5.13)

From Corollary 5.5 it follows that every solution v € C2(R%*;R) of (5.12) is oscillatory in
RZ.
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