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theorems are derived as applications. Oscillation results are also obtained for forced su-
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1. Introduction

Beginning with the work of Picone [11], Picone identity has been investigated by many
authors. In particular, we refer the reader to Allegretto [2], Kreith [8], Protter [12], Swan-
son [13] and the references cited therein for Picone identities and comparison theorems
for nonself-adjoint linear elliptic equations.

Recently there has been an increasing interest in studying the forced oscillations of
differential equations. We mention the papers [3–7, 10] dealing with forced oscillations
of differential equations of self-adjoint type.

In Jaroš et al. [6], they have established Picone-type inequalities which connect the
self-adjoint linear elliptic operator

p[u]≡
n∑

i, j=1

∂

∂xi

(
ai j(x)

∂u

∂xj

)
+ c(x)u (1.1)

with the nonlinear elliptic operator

P[v]≡
n∑

i, j=1

∂

∂xi

(
Aij(x)

∂v

∂xj

)
+C(x)|v|β−1v,

P̃[v]≡
n∑

i, j=1

∂

∂xi

(
Aij(x)

∂v

∂xj

)
+C(x)|v|β−1v+D(x)|v|γ−1v,

(1.2)
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2 Picone-type inequalities

where β and γ are positive constants with β > 1 and 0 < γ < 1. They have derived Sturmian
comparison theorems and oscillation theorems for the forced elliptic equation

P[v]= f (x) (1.3)

as well as the superlinear-sublinear elliptic equation

P̃[v]= 0. (1.4)

The objective of this paper is to extend the results obtained in [6] to the nonlinear
elliptic equations with first-order terms

L[v]= f (x), (1.5)

L̃[v]= 0, (1.6)

where

L[v]≡
n∑

i, j=1

∂

∂xi

(
Aij(x)

∂v

∂xj

)
+ 2

n∑

i=1

Bi(x)
∂v

∂xi
+C(x)|v|β−1v,

L̃[v]≡
n∑

i, j=1

∂

∂xi

(
Aij(x)

∂v

∂xj

)
+ 2

n∑

i=1

Bi(x)
∂v

∂xi
+C(x)|v|β−1v+D(x)|v|γ−1v.

(1.7)

We note that if there exists a C1-function F(x) such that

∇F(x)= 2B(x)
(
Aij(x)

)−1
, (1.8)

where B(x)= (B1(x),B2(x), . . . ,Bn(x)), then (1.5) can be written in the form

n∑

i, j=1

∂

∂xi

(
eF(x)Aij(x)

∂v

∂xj

)
+ eF(x)C(x)|v|β−1v = eF(x) f (x), (1.9)

which was studied in [6].
In Section 2 we establish Picone-type inequalities for (1.5), and in Section 3 we obtain

oscillation theorems for (1.5) in an unbounded domain Ω⊂Rn. Sections 4 and 5 concern
Sturmian comparison theorems and oscillation theorems for (1.6), respectively.

2. Sturmian comparison theorems for (1.5)

Let G be a bounded domain in Rn with piecewise smooth boundary ∂G. It is assumed
that

(A1) Aij(x)∈ C(G;R), Bi(x)∈ C(G;R), C(x)∈ C(G; [0,∞)) and f (x)∈ C(G;R);
(A2) the matrix (Aij(x)) is symmetric and positive definite in G;
(A3) β > 1.
The domain �L(G) of L is defined to be the set of all functions v of class C1(G;R) with

the property that Aij(x)(∂v/∂xj)∈ C1(G;R)∩C(G;R) (i, j = 1,2, . . . ,n).
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Theorem 2.1. If v ∈�L(G), v �= 0 in G and v · f (x)≤ 0 in G, then the following inequality
holds for any u∈ C1(G;R):

n∑

i, j=1

Aij(x)
(
v
∂

∂xi

(
u

v

)
−

n∑

k=1

Bk(x)Aki(x)u
)(

v
∂

∂xj

(
u

v

)
−

n∑

k=1

Bk(x)Ak j(x)u
)

+
n∑

i, j=1

∂

∂xi

(
u2

v
Aij(x)

∂v

∂xj

)

≤
n∑

i, j=1

Aij(x)

(
∂u

∂xi
−

n∑

k=1

Bk(x)Aki(x)u

)(
∂u

∂xj
−

n∑

k=1

Bk(x)Ak j(x)u

)

−β(β− 1)(1−β)/βC(x)1/β
∣∣ f (x)

∣∣(β−1)/β
u2 +

u2

v

{
L[v]− f (x)

}
,

(2.1)

where (Aij(x))= (Aij(x))−1.

Proof. The following Picone-type inequality was established by Jaroš et al. [6]:

n∑

i, j=1

Aij(x)
(
v
∂

∂xi

(
u

v

))(
v

∂

∂xj

(
u

v

))
+

n∑

i, j=1

∂

∂xi

(
u2

v
Aij(x)

∂v

∂xj

)

≤
n∑

i, j=1

Aij(x)
∂u

∂xi

∂u

∂xj
−β(β− 1)(1−β)/βC(x)1/β

∣∣ f (x)
∣∣(β−1)/β

u2

+
u2

v

{ n∑

i, j=1

∂

∂xi

(
Aij(x)

∂v

∂xj

)
+C(x)|v|β−1v− f (x)

}
.

(2.2)

Since

−2u
n∑

i=1

Bi(x)v
∂

∂xi

(
u

v

)
=−2u

n∑

i=1

Bi(x)
∂u

∂xi
+ 2

u2

v

n∑

i=1

Bi(x)
∂v

∂xi
, (2.3)

combining (2.2) with (2.3) yields

n∑

i, j=1

Aij(x)
(
v
∂

∂xi

(
u

v

))(
v

∂

∂xj

(
u

v

))
− 2u

n∑

i=1

Bi(x)v
∂

∂xi

(
u

v

)

+B(x)
(
Aij(x)

)−1
B(x)Tu2 +

n∑

i, j=1

∂

∂xi

(
u2

v
Aij(x)

∂v

∂xj

)

≤
n∑

i, j=1

Aij(x)
∂u

∂xi

∂u

∂xj
− 2u

n∑

i=1

Bi(x)
∂u

∂xi
+B(x)

(
Aij(x)

)−1
B(x)Tu2

−β(β− 1)(1−β)/βC(x)1/β
∣∣ f (x)

∣∣(β−1)/β
u2

+
u2

v

{ n∑

i, j=1

∂

∂xi

(
Aij(x)

∂v

∂xj

)
+ 2

n∑

i=1

Bi(x)
∂v

∂xi
+C(x)|v|β−1v− f (x)

}
,

(2.4)
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where B(x) = (B1(x), . . . ,Bn(x)) and the superscript T denotes the transpose. In view of
the identities

n∑

i, j=1

Aij(x)
(
v
∂

∂xi

(
u

v

))(
v

∂

∂xj

(
u

v

))
− 2u

n∑

i=1

Bi(x)v
∂

∂xi

(
u

v

)

+B(x)
(
Aij(x)

)−1
B(x)Tu2

=
n∑

i, j=1

Aij(x)

(
v
∂

∂xi

(
u

v

)
−

n∑

k=1

Bk(x)Aki(x)u

)

×
(
v

∂

∂xj

(
u

v

)
−

n∑

k=1

Bk(x)Ak j(x)u

)
,

(2.5)

n∑

i, j=1

Aij(x)
∂u

∂xi

∂u

∂xj
− 2u

n∑

i=1

Bi(x)
∂u

∂xi
+B(x)

(
Aij(x)

)−1
B(x)Tu2

=
n∑

i, j=1

Aij(x)

(
∂u

∂xi
−

n∑

k=1

Bk(x)Aki(x)u

)(
∂u

∂xj
−

n∑

k=1

Bk(x)Ak j(x)u

)
,

(2.6)

we observe that (2.4) is equivalent to (2.1). �

We consider the comparison operator

�[u]≡
n∑

i, j=1

∂

∂xi

(
ai j(x)

∂u

∂xj

)
+ 2

n∑

i=1

bi(x)
∂u

∂xi
+ c(x)u, (2.7)

where the coefficients ai j(x), bi(x), c(x) satisfy the following hypotheses:
(A4) ai j(x), bi(x), c(x)∈ C(G;R);
(A5) the matrix (ai j(x)) is symmetric and positive definite in G.
The domain ��(G) of � is defined to be the set of all functions u of class C1(G;R) with

the property that ai j(x)(∂u/∂xj)∈ C1(G;R)∩C(G;R) (i, j = 1,2, . . . ,n).

Theorem 2.2. Assume that u∈��(G), v ∈�L(G), v �= 0 in G and v · f (x)≤ 0 in G. Then
we have the following Picone-type inequality

n∑

i, j=1

∂

∂xi

(
uai j(x)

∂u

∂xj
− u2

v
Aij(x)

∂v

∂xj

)

≥
n∑

i, j=1

(
ai j(x)−Aij(x)

) ∂u
∂xi

∂u

∂xj
− 2u

n∑

i=1

(
bi(x)−Bi(x)

) ∂u
∂xi

+
(
β(β− 1)(1−β)/βC(x)1/β

∣∣ f (x)
∣∣(β−1)/β− c(x)−B(x)

(
Aij(x)

)
B(x)T

)
u2

+
n∑

i, j=1

Aij(x)
(
v
∂

∂xi

(
u

v

)
−

n∑

k=1

Bk(x)Aki(x)u
)(

v
∂

∂xj

(
u

v

)
−

n∑

k=1

Bk(x)Ak j(x)u
)

+
u

v

{
v�[u]−u

(
L[v]− f (x)

)}
.

(2.8)
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Proof. To prove the theorem it suffices to combine the inequalities (2.4) and (2.5) with
the identity

u�[u]=
n∑

i, j=1

∂

∂xi

(
uai j(x)

∂u

∂xj

)
−

n∑

i, j=1

ai j(x)
∂u

∂xi

∂u

∂xj
+ 2u

n∑

i=1

bi(x)
∂u

∂xi
+ c(x)u2. (2.9)

�

Now we consider the first-order partial differential system

∇w−P(x)w = 0, (2.10)

where P(x)= (P1(x),P2(x), . . . ,Pn(x)) is a continuous vector function, and define the se-
quence of functions {qk(x)}nk=1 by

q1(x)=
∫
P1(x)dx1,

qk(x)= qk−1(x) +
∫ (

Pk(x)− ∂

∂xk
qk−1(x)

)
dxk (k = 2,3, . . . ,n).

(2.11)

Lemma 2.3. The system (2.10) has a C1-solution if and only if

∂

∂xk−1

(
Pk(x)− ∂

∂xk
qk−1(x)

)
= 0 (k = 2,3, . . . ,n). (2.12)

Then any C1-solution w of (2.10) can be written in the form

w = Cn expqn(x) (2.13)

for some constant Cn.

Proof. Suppose that (2.10) has a C1-solution w. Then we obtain

∂w

∂x1
−P1(x)w = 0, (2.14)

and hence

w = C1
(
x2, . . . ,xn

)
exp

∫
P1(x)dx1 = C1

(
x2, . . . ,xn

)
expq1(x) (2.15)

for some function C1(x2, . . . ,xn). From

∂w

∂x2
−P2(x)w = 0 (2.16)

we see that C1(x2, . . . ,xn) must satisfy

∂C1

∂x2
−
(
P2(x)− ∂

∂x2

∫
P1(x)dx1

)
C1 = 0. (2.17)
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Hence, it is necessary that

∂

∂x1

(
P2(x)− ∂

∂x2

∫
P1(x)dx1

)
= 0, (2.18)

and we have

C1 = C2
(
x3, . . . ,xn

)
exp

∫ (
P2(x)− ∂

∂x2

∫
P1(x)dx1

)
dx2 (2.19)

for some function C2(x3, . . . ,xn), and therefore

w = C2
(
x3, . . . ,xn

)
exp

(∫
P1(x)dx1 +

∫ (
P2(x)− ∂

∂x2

∫
P1(x)dx1

)
dx2

)

= C2
(
x3, . . . ,xn

)
expq2(x).

(2.20)

Repeating this procedure, we observe that (2.12) is necessary and the solution w has the
form (2.13). From the above consideration it is obvious that the condition (2.12) is suffi-
cient for (2.10) to have a C1-solution. �

Theorem 2.4. If there exists a nontrivial function u∈ C1(G;R) such that u= 0 on ∂G and

M[u]≡
∫

G

[ n∑

i, j=1

Aij(x)

(
∂u

∂xi
−

n∑

k=1

Bk(x)Aki(x)u

)(
∂u

∂xj
−

n∑

k=1

Bk(x)Ak j(x)u

)

−β(β− 1)(1−β)/βC(x)1/β
∣∣ f (x)

∣∣(β−1)/β
u2

]
dx ≤ 0,

(2.21)

then every solution v ∈�L(G) of (1.5) satisfying v · f (x) ≤ 0 in G vanishes at some point
of G. Furthermore, if ∂G ∈ C1, then either every solution v ∈�L(G) of (1.5) satisfying v ·
f (x) ≤ 0 in G has a zero in G or else u = C0v expq(x) for some nonzero constant C0 and
some continuous function q(x).

Proof

The first statement. Suppose to the contrary that there exists a solution v ∈ �L(G) of
(1.5) satisfying v · f (x) ≤ 0 in G and v �= 0 on G. We find that the inequality (2.1) of
Theorem 2.1 holds. Integrating (2.1) over G and then using the divergence theorem yield

M[u]≥
∫

G

n∑

i, j=1

Aij(x)

(
v
∂

∂xi

(
u

v

)
−

n∑

k=1

Bk(x)Aki(x)u

)

×
(
v

∂

∂xj

(
u

v

)
−

n∑

k=1

Bk(x)Ak j(x)u

)
dx.

(2.22)

If

v
∂

∂xi

(
u

v

)
−

n∑

k=1

Bk(x)Aki(x)u≡ 0 in G (i= 1,2, . . . ,n), (2.23)



Jaroslav Jaroš et al. 7

then it follows from Lemma 2.3 that

u

v
= C0 expq(x) (2.24)

in G, by continuity on G, where C0 is some constant and q(x) is some continuous func-
tion. Since u= 0 on ∂G, we see that C0 = 0, which contradicts the fact that u is nontrivial.
Therefore, we observe that

∇
(
u

v

)
−
( n∑

k=1

Bk(x)Aki(x)

)(
u

v

)
�≡ 0 in G. (2.25)

Hence, we conclude that the right-hand side of (2.22) is positive, and hence M[u] > 0.
This contradicts the hypothesis (2.21).

The second statement. Next we consider the case where ∂G ∈ C1. Let v ∈ �L(G) be a
solution of (1.5) such that v · f (x)≤ 0 in G and v �= 0 in G. Since ∂G∈ C1, u∈ C1(G;R)

and u= 0 on ∂G, we see that u belongs to the Sobolev space
◦
H1(G) which is the closure

in the norm

‖u‖ = ‖u‖1 =
(∫

G

∑

|α|≤1

∣∣Dαu
∣∣2

dx

)1/2

(2.26)

of the class C∞0 (G) of infinitely differentiable functions with compact support in G (see,
e.g., Agmon [1, page 131]). Let {uk} be a sequence of functions in C∞0 (G) converging to
u in the norm (2.26). Then, the inequality (2.1) with u= uk holds. In view of the fact that
(2.22) with u= uk holds, we find that M[uk]≥ 0. Since

M[u]=
∫

G

[ n∑

i, j=1

Aij(x)
∂u

∂xi

∂u

∂xj
− 2u

n∑

i=1

Bi(x)
∂u

∂xi

+
(
B(x)

(
Aij(x)

)−1
B(x)T −β(β− 1)(1−β)/βC(x)1/β

∣∣ f (x)
∣∣(β−1)/β

)
u2

]
dx

(2.27)

and Aij(x), Bi(x), B(x)(Aij(x))−1B(x)T−β(β−1)(1−β)/βC(x)1/β| f (x)|(β−1)/β are uniformly
bounded in G, there is a constant K > 0 such that

∣∣M
[
uk
]−M[u]

∣∣≤ K
∫

G

∣∣∣∣∣

n∑

i, j=1

(
∂uk
∂xi

∂
(
uk −u

)

∂xj
+
∂
(
uk −u

)

∂xi

∂u

∂xj

)∣∣∣∣∣dx

+K
∫

G

∣∣∣∣∣

n∑

i=1

(
uk

∂
(
uk −u

)

∂xi
+
(
uk −u

) ∂u
∂xi

)∣∣∣∣∣dx

+K
∫

G

∣∣uk
(
uk −u

)
+
(
uk −u

)
u
∣∣dx.

(2.28)

Application of Schwarz inequality yields
∣∣M

[
uk
]−M[u]

∣∣≤ K
(
n2 +n+ 1

)(∥∥uk
∥∥+‖u‖)∥∥uk −u

∥∥. (2.29)
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Since limk→∞ |uk −u| = 0, we see that limk→∞M[uk]=M[u]≥ 0, and therefore M[u]= 0
in view of (2.21). Let B denote an arbitrary ball with B ⊂G and define

JB[u]≡
∫

B

n∑

i, j=1

Aij(x)

(
v
∂

∂xi

(
u

v

)
−

n∑

k=1

Bk(x)Aki(x)u

)

×
(
v

∂

∂xj

(
u

v

)
−

n∑

k=1

Bk(x)Ak j(x)u

)
dx

(2.30)

for u∈ C1(G;R). We easily see that

0≤ JB
[
uk
]≤M

[
uk
]

(2.31)

and that

∣∣JB
[
uk
]− JB[u]

∣∣≤ K1
(∥∥wk

∥∥
B +‖w‖B

)∥∥wk −w
∥∥
B (2.32)

holds, where K1 is a positive constant, wk = uk/v, w = u/v and the subscript B indicates
the integrals involved in the norm (2.26) are taken over B. As v �= 0 on B, we observe
that limk→∞‖wk −w‖B = 0 when limk→∞‖uk −u‖ = 0, and hence limk→∞ JB[uk]= JB[u].
Since limk→∞M[uk] =M[u] = 0, we obtain limk→∞ JB[uk] = JB[u] = 0. It follows from
Lemma 2.3 that u/v = C0 expq(x) in B, by arbitrariness of B in G, and hence by continuity
on G for nonzero constant C0 and some continuous function q(x). This completes the
proof of the second statement. �

Corollary 2.5. Assume that f (x)≥ 0 (or f (x)≤ 0) in G. If there exists a nontrivial func-
tion u ∈ C1(G;R) such that u = 0 on ∂G and M[u] ≤ 0, then (1.5) has no negative (or
positive) solution on G.

Proof. Let (1.5) have a solution v which is negative (or positive) on G. Then, it is obvious
that v · f (x)≤ 0 in G, and hence Theorem 2.4 implies that v must vanish at some point
of G. This is a contradiction and the proof is complete. �

Theorem 2.6. If there exists a nontrivial solution u ∈��(G) of �[u] = 0 in G such that
u= 0 on ∂G and

V[u]≡
∫

G

[ n∑

i, j=1

(
ai j(x)−Aij(x)

) ∂u
∂xi

∂u

∂xj
− 2u

n∑

i=1

(
bi(x)−Bi(x)

) ∂u
∂xi

+
(
β(β− 1)(1−β)/βC(x)1/β

∣∣ f (x)
∣∣(β−1)/β− c(x)−B(x)

(
Aij(x)

)
B(x)T

)
u2

]
dx

≥ 0,
(2.33)

then every solution v ∈�L(G) of (1.5) satisfying v · f (x) ≤ 0 in G vanishes at some point
of G. Furthermore, if ∂G ∈ C1, then either every solution v ∈�L(G) of (1.5) satisfying v ·
f (x) ≤ 0 in G has a zero in G or else u = C0v expq(x) for some nonzero constant C0 and
some continuous function q(x).
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Proof. It suffices to start the inequality (2.8) instead of (2.1) and use the same arguments
as in the proof of Theorem 2.4. �

Corollary 2.7. Assume that f (x) ≥ 0 (or f (x) ≤ 0) in G. If there exists a nontrivial so-
lution u∈��(G) of �[u]= 0 in G such that u= 0 on ∂G and V[u]≥ 0, then (1.5) has no
negative (or positive) solution on G.

Proof. It is easily verified that

V[u]=−
∫

G
u�[u]dx−M[u] (2.34)

for any u∈ C1(G;R) satisfying u= 0 on ∂G. Hence, we conclude that

V[u]=−M[u] (2.35)

for the solution u of �[u] = 0 such that u = 0 on ∂G. The conclusion follows from
Corollary 2.5. �

Remark 2.8. If (ai j(x)−Aij(x)) is positive definite in G and

β(β− 1)(1−β)/βC(x)1/β
∣∣ f (x)

∣∣(β−1)/β

≥ c(x) +B(x)
(
Aij(x)

)
B(x)T

+
(
b(x)−B(x)

)(
ai j(x)−Aij(x)

)−1(
b(x)−B(x)

)T
,

(2.36)

then V[u]≥ 0 for any u∈ C1(G;R), where

b(x)−B(x)= (b1(x)−B1(x),b2(x)−B2(x), . . . ,bn(x)−Bn(x)
)
. (2.37)

In the case where bi(x)= Bi(x) (i= 1,2, . . . ,n), we see that V[u]≥ 0 for any u∈ C1(G;R)
if (ai j(x)−Aij(x)) is positive semidefinite in G and

β(β− 1)(1−β)/βC(x)1/β
∣∣ f (x)

∣∣(β−1)/β ≥ c(x) +B(x)
(
Aij(x)

)
B(x)T . (2.38)

Theorem 2.9. Suppose that G is divided into two subdomains G1 and G2 by an (n− 1)-
dimensional piecewise smooth hypersurface in such a way that

f (x)≥ 0 in G1, f (x)≤ 0 in G2. (2.39)

If there exist nontrivial functions up ∈ C1(Gp;R) (p = 1,2) such that up = 0 on ∂Gp and

Mp
[
up
]≡

∫

Gp

[ n∑

i, j=1

Aij(x)

(
∂up

∂xi
−

n∑

k=1

Bk(x)Aki(x)up

)(
∂up

∂xj
−

n∑

k=1

Bk(x)Ak j(x)up

)

−β(β− 1)(1−β)/βC(x)1/β
∣∣ f (x)

∣∣(β−1)/β
u2
p

]
dx ≤ 0,

(2.40)

then every solution v ∈�L(G) of (1.5) has a zero on G.
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Proof. Assume that (1.5) has a solution v which has no zero on G. Then, either v < 0 on G
or v > 0 on G. If v < 0 on G, then v < 0 on G1, and therefore v · f (x)≤ 0 in G1. It follows
from Corollary 2.5 that (1.5) has no negative solution on G1. This is a contradiction. The
case where v > 0 on G can be treated similarly, and we are also led to a contradiction. The
proof is complete. �

Theorem 2.10. Suppose that G is divided into two adjacent subdomains G1 and G2 as men-
tioned in Theorem 2.9. If there exist nontrivial solutions up ∈��(Gp) (p = 1,2) of �[up]= 0
in Gp such that up = 0 on ∂Gp and

Vp[up]≡
∫

Gp

[ n∑

i, j=1

(
ai j(x)−Aij(x)

)∂up

∂xi

∂up

∂xj
− 2up

n∑

i=1

(
bi(x)−Bi(x)

)∂up

∂xi

+
(
β(β−1)(1−β)/βC(x)1/β

∣∣ f (x)
∣∣(β−1)/β−c(x)−B(x)

(
Aij(x)

)
B(x)T

)
u2
p

]
dx

≥ 0,
(2.41)

then every solution v ∈�L(G) of (1.5) has a zero on G.

Proof. By using the same arguments as in the proof of Theorem 2.9, we conclude that the
conclusion follows from Corollary 2.7. �

3. Oscillation theorems for (1.5)

In this section we derive an oscillation criterion for (1.5) in an unbounded domain Ω⊂
Rn. Assume that

(H1) Aij(x),Ai(x),C(x), f (x)∈ C(Ω;R);
(H2) the matrix (Aij(x)) is symmetric and positive definite in Ω.
The domain �L(Ω) of L is defined to be the set of all functions v of class C1(Ω;R) with

the property that Aij(x)(∂v/∂xj)∈ C1(Ω;R) (i, j = 1,2, . . . ,n).

Definition 3.1. A function v : Ω→R is said to be oscillatory in Ω if v has a zero in Ωr for
any r > 0, where

Ωr =Ω∩ {x ∈R; |x| > r
}
. (3.1)

Theorem 3.2. Assume that for any r > 0 there is a bounded domain G in Ωr with piecewise
smooth boundary, which can be divided into two subdomains G1 and G2 by an (n− 1)-
dimensional hypersurface in such a way that f (x) ≥ 0 in G1 and f (x) ≤ 0 in G2. Fur-
thermore, assume that C(x) ≥ 0 in G and there exist nontrivial functions up ∈ C1(Gp;R)
(p = 1,2) such that up = 0 on ∂G and Mp[up] ≤ 0, where Mp are given by (2.40). Then
every solution v ∈�L(Ω) of (1.5) is oscillatory in Ω.

Proof. We need only to apply Theorem 2.9 to make sure that every solution v has a zero
in any domain as mentioned in the hypotheses of Theorem 3.2. �
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Example 3.3. We consider the forced superlinear elliptic equation

Δv+ 2
∂v

∂x1
+ 2

∂v

∂x2
+K

(
sin
(
x1−π

)
sinx2

)|v|β−1v = cosx1 sinx2, (x1,x2)∈Ω, (3.2)

where K > 0 is a constant, Δ is the two-dimensional Laplacian, and Ω is an unbounded
domain in R2 containing a horizontal strip such that

[π,∞)× [0,π]⊂Ω. (3.3)

Let m be any fixed natural number, and consider the square

G= ((2m− 1)π,2mπ
)× (0,π), (3.4)

which is divided into two subdomains

G1 =
(
(2m− 1)π,

(
2m− (1/2)

)
π
)× (0,π),

G1 =
((

2m− (1/2)
)
π,2mπ

)× (0,π)
(3.5)

by the vertical line x1 = (2m− (1/2))π. It is easy to see that C(x)= K sin(x1−π)sinx2 ≥ 0
in G, f (x) = cosx1 sinx2 ≤ 0 in G1 and f (x) ≥ 0 in G2. Letting up = sin2x1 sinx2 (p =
1,2), we observe that up = 0 on ∂Gp. An easy calculation shows that

Mp
[
up
]=

∫

Gp

[ 2∑

i=1

(
∂up

∂xi
−up

)2

−β(β− 1)(1−β)/β(K
(

sin
(
x1−π

)
sinx2

))1/β

×∣∣cosx1 sinx2
∣∣(β−1)β

u2
p

]
dx1dx2

= 7
8
π2− 8

3
K1/ββ(β− 1)(1−β)/βB

(
3
2

+
1

2β
,2− 1

2β

)
,

(3.6)

where B(s, t) denotes the beta function. Hence, we find that Mp[up]≤ 0 (p = 1,2) if K > 0
is chosen so large that

K ≥
[

21
64

π2 ·
(
β(β− 1)(1−β)/βB

(
3
2

+
1

2β
,2− 1

2β

))−1
]β

. (3.7)

It follows from Theorem 3.2 that every solution v ∈ C2(Ω;R) of (3.2) is oscillatory in Ω
for all sufficiently large K > 0.
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4. Sturmian comparison theorems for (1.6)

We deal with the elliptic equation (1.6) and establish Picone-type inequalities for (1.6).
Sturmian comparison theorems for (1.6) are derived by using the Picone-type inequali-
ties.

We assume that the coefficients Aij(x), Bi(x), C(x), D(x) and the constants β, γ ap-
pearing in (1.6) satisfy the following:

(Ã1) Aij(x)∈ C(G;R), Bi(x)∈ C(G;R), C(x)∈ C(G; [0,∞)) and D(x)∈ C(G; [0,∞));
(Ã2) the matrix (Aij(x)) is symmetric and positive definite in G;
(Ã3) β > 1 and 0 < γ < 1.

The domain �L̃(G) of L̃ is defined to be the same as that of L, that is, �L̃(G)=�L(G).

Theorem 4.1. If v ∈ �L̃(G) and v �= 0 in G, then the following inequality holds for any
u∈ C1(G;R):

n∑

i, j=1

Aij(x)

(
v
∂

∂xi

(
u

v

)
−

n∑

k=1

Bk(x)Aki(x)u

)(
v

∂

∂xj

(
u

v

)
−

n∑

k=1

Bk(x)Ak j(x)u

)

+
n∑

i, j=1

∂

∂xi

(
u2

v
Aij(x)

∂v

∂xj

)

≤
n∑

i, j=1

Aij(x)

(
∂u

∂xi
−

n∑

k=1

Bk(x)Aki(x)u

)(
∂u

∂xj
−

n∑

k=1

Bk(x)Ak j(x)u

)

− β− γ

1− γ

(
β− 1
1− γ

)(1−β)/(β−γ)

C(x)(1−γ)/(β−γ)D(x)(β−1)/(β−γ)u2 +
u2

v
L̃[v].

(4.1)

Proof. Starting with the following inequality

n∑

i, j=1

Aij(x)
(
v
∂

∂xi

(
u

v

))(
v

∂

∂xj

(
u

v

))
+

n∑

i, j=1

∂

∂xi

(
u2

v
Aij(x)

∂v

∂xj

)

≤
n∑

i, j=1

Aij(x)
∂u

∂xi

∂u

∂xj
− β− γ

1− γ

(
β− 1
1− γ

)(1−β)/(β−γ)

C(x)(1−γ)/(β−γ)

×D(x)(β−1)/(β−γ)u2

+
u2

v

{ n∑

i, j=1

∂

∂xi

(
Aij(x)

∂v

∂xj

)
+C(x)|v|β−1v+D(x)|v|γ−1v

}
,

(4.2)

which was established by Jaroš et al. [6, Theorem 7], and proceeding as in the proof of
Theorem 2.1, we find that the inequality (4.1) holds. �
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Theorem 4.2. Assume that u∈��(G), v ∈�L̃(G) and v �= 0 in G. Then we have the fol-
lowing Picone-type inequality:

n∑

i, j=1

∂

∂xi

(
uai j(x)

∂u

∂xj
− u2

v
Aij(x)

∂v

∂xj

)

≥
n∑

i, j=1

(
ai j(x)−Aij(x)

) ∂u
∂xi

∂u

∂xj
− 2u

n∑

i=1

(
bi(x)−Bi(x)

) ∂u
∂xi

+

(
β− γ

1− γ

(
β− 1
1− γ

)(1−β)/(β−γ)

C(x)(1−γ)/(β−γ)D(x)(β−1)/(β−γ)

− c(x)−B(x)
(
Aij(x)

)
B(x)T

)
u2

+
n∑

i, j=1

Aij(x)

(
v
∂

∂xi

(
u

v

)
−

n∑

k=1

Bk(x)Aki(x)u

)(
v

∂

∂xj

(
u

v

)
−

n∑

k=1

Bk(x)Ak j(x)u

)

+
u

v

(
v�[u]−uL̃[v]

)
.

(4.3)

Proof. Arguing as in the proof of Theorem 2.2, we observe that the conclusion follows
from (4.1). �

Theorem 4.3. If there exists a nontrivial function u∈ C1(G;R) such that u= 0 on ∂G and

M̃[u]≡
∫

G

[ n∑

i, j=1

Aij(x)

(
∂u

∂xi
−

n∑

k=1

Bk(x)Aki(x)u

)(
∂u

∂xj
−

n∑

k=1

Bk(x)Ak j(x)u

)

− β− γ

1− γ

(
β− 1
1− γ

)(1−β)/(β−γ)

C(x)(1−γ)/(β−γ)D(x)(β−1)/(β−γ)u2

]
dx ≤ 0,

(4.4)

then every solution v ∈�L̃(G) of (1.6) vanishes at some point of G. Furthermore, if ∂G∈ C1,
then either every solution v ∈�L̃(G) of (1.6) has a zero inG or else u= C0v expq(x) for some
nonzero constant C0 and some continuous function q(x).

Proof. Suppose that there is a solution v of (1.6) such that v �= 0 on G. Then, the in-
equality (4.1) of Theorem 4.1 holds for the nontrivial function u. Integrating (4.1) over
G and proceeding as in the proof of Theorem 2.4 yield the conclusion M̃[u] > 0, which
contradicts the hypothesis (4.4). This completes the proof of the first statement. Next we
consider the case where ∂G∈ C1. Let v be a solution of (1.6) satisfying v �= 0 in G. Using
the same arguments as in the proof of Theorem 2.4, we see that M̃[u]= 0, which implies
that u= C0v expq(x) for some nonzero constant C0 and some continuous function q(x).
This completes the proof of the second statement. �
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Theorem 4.4. If there exists a nontrivial solution u ∈��(G) of �[u] = 0 in G such that
u= 0 on ∂G and

Ṽ[u]≡
∫

G

[ n∑

i, j=1

(
ai j(x)−Aij(x)

) ∂u
∂xi

∂u

∂xj
− 2u

n∑

i=1

(
bi(x)−Bi(x)

) ∂u
∂xi

+
(
β− γ

1− γ

(
β− 1
1− γ

)(1−β)/(β−γ)

C(x)(1−γ)/(β−γ)D(x)(β−1)/(β−γ)

− c(x)−B(x)
(
Aij(x)

)
B(x)T

)
u2

]
dx ≥ 0,

(4.5)

then every solution v ∈�L̃(G) of (1.6) vanishes at some point of G. Furthermore, if ∂G∈ C1,
then either every solution v ∈�L̃(G) of (1.6) has a zero inG or else u= C0v expq(x) for some
nonzero constant C0 and some continuous function q(x).

Proof. The proof follows by using the same arguments as in Theorem 2.6. �

Remark 4.5. In the case where bi(x)= 0 (i= 1,2, . . . ,n) and Bi(x)∈ C1(G;R) (i= 1,2, . . . ,
n), it can be shown that Ṽ[u] ≥ 0 for any u ∈ C1(G;R) if (ai j(x)−Aij(x)) is positive
semidefinite in G and

β− γ

1− γ

(
β− 1
1− γ

)(1−β)/(β−γ)

C(x)(1−γ)/(β−γ)D(x)(β−1)/(β−γ)

≥ c(x) +∇·B(x) +B(x)
(
Aij(x)

)
B(x)T in G.

(4.6)

5. Oscillation theorems for (1.6)

Now we establish oscillation criteria for (1.6) in an unbounded domain Ω ⊂ Rn. It is
assumed that

(H̃1) Aij(x)∈ C(Ω;R) and the matrix (Aij(x)) is symmetric and positive definite in Ω;
and the same is true of ai j(x);

(H̃2) Bi(x) ∈ C1(Ω;R), C(x) ∈ C(Ω; [0,∞)), D(x) ∈ C(Ω; [0,∞)) and bi(x), c(x)
∈ C(Ω;R);

(H̃3) β > 1 and 0 < γ < 1.
The domain �L̃(Ω) of L̃ is defined to be the same as that of L, that is, �L̃(Ω)=�L(Ω).

The domain ��(Ω) of � is defined similarly.

Definition 5.1. A bounded domain G with G⊂Ω is said to be a nodal domain for �[u]= 0
if there is a nontrivial function u∈��(G) such that �[u]= 0 in G and u= 0 on ∂G. The
equation �[u]= 0 is called nodally oscillatory in Ω if it has a nodal domain contained in
Ωr for any r > 0.
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Theorem 5.2. Let bi(x)= 0 (i= 1,2, . . . ,n), and assume that
(
ai j(x)−Aij(x)

)
is positive semidefinite in Ω, (5.1)

c(x)≤ β− γ

1− γ

(
β− 1
1− γ

)(1−β)/(β−γ)

C(x)(1−γ)/(β−γ)D(x)(β−1)/(β−γ)

−∇·B(x)−B(x)
(
Aij(x)

)
B(x)T in Ω.

(5.2)

Every solution v ∈�L̃(Ω) of (1.6) is oscillatory in Ω if �[u]= 0 is nodally oscillatory in Ω.

Proof. Since �[u]= 0 is nodally oscillatory in Ω, there exists a nodal domain G⊂Ωr for
any r > 0, and therefore there is a nontrivial solution u of �[u] = 0 in G such that u = 0
on ∂G. It follows from the hypotheses (5.1) and (5.2) that Ṽ[u]≥ 0. Theorem 4.4 implies
that every solution v ∈�L̃(Ω) of (1.6) must vanish at some point of G, that is, v has a
zero in Ωr for any r > 0. This implies that v is oscillatory in Ω. �

The following corollary is an immediate consequence of Theorem 5.2.

Corollary 5.3. If the elliptic equation

Δu+

(
β− γ

1− γ

(
β− 1
1− γ

)(1−β)/(β−γ)

C(x)(1−γ)/(β−γ)D(x)(β−1)/(β−γ)−∇·B(x)−∣∣B(x)
∣∣2
)
u= 0

(5.3)

is nodally oscillatory in Ω, then every solution v ∈ C2(Ω;R) of

Δv+ 2
n∑

i=1

Bi(x)
∂v

∂xi
+C(x)|v|β−1v+D(x)|v|γ−1v = 0 (5.4)

is oscillatory in Ω.

Various nodal oscillation criteria for

Δu+d(x)u= 0, x ∈Rn (5.5)

have been obtained by Kreith and Travis [9]. They have shown that (5.5) is nodally oscil-
latory in Rn if

∫

R2
d(x)dx =∞ (n= 2),

∫∞
S[d(x)](r)dr =∞ (n≥ 3),

(5.6)

where S[d(x)](r) denotes the spherical mean of d(x) over the sphere {x ∈Rn; |x| = r}.
Corollary 5.4. Let Ω=Rn and assume that

∫

R2
Ψ(x)dx =∞ (n= 2),

∫∞
S[Ψ(x)](r)dr =∞ (n≥ 3),

(5.7)
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where

Ψ(x)= β− γ

1− γ

(
β− 1
1− γ

)(1−β)/(β−γ)

C(x)(1−γ)/(β−γ)D(x)(β−1)/(β−γ)

−∇·B(x)−∣∣B(x)
∣∣2
.

(5.8)

Then every solution v ∈ C2(Rn;R) of (5.4) is oscillatory in Rn.

Proof. The conclusion follows by combining the oscillation results due to Kreith and
Travis [9] with Corollary 5.3. �

Corollary 5.5. Let Ω=Rn and assume that there are positive constants k0, ki (i= 1,2, . . . ,
n) such that

C(x)≥ k0, D(x)≥ k0, Bi(x)= ki (i= 1,2, . . . ,n). (5.9)

If

β− γ

1− γ

(
β− 1
1− γ

)(1−β)/(β−γ)

k0 > k2
1 + ···+ k2

n, (5.10)

then every solution v ∈ C2(Rn;R) of (5.4) is oscillatory in Rn.

Proof. Since

Ψ(x)≥ β− γ

1− γ

(
β− 1
1− γ

)(1−β)/(β−γ)

k0−
(
k2

1 + ···+ k2
n

)
> 0, (5.11)

we find that the hypotheses of Corollary 5.4 are satisfied, and consequently the conclusion
follows from Corollary 5.4. �

Example 5.6. We consider the elliptic equation

Δu+ 4
∂v

∂x1
+ 2

∂v

∂x2
+ 4|v|2v+ 5|v|−1/2v = 0 in R2. (5.12)

Here n= 2, k1 = 2, k2 = 1, k0 = 4, β = 3, and γ = 1/2. It is easily seen that

β− γ

1− γ

(
β− 1
1− γ

)(1−β)/(β−γ)

k0 = 5 · 22/5, k2
1 + k2

2 = 5. (5.13)

From Corollary 5.5 it follows that every solution v ∈ C2(R2;R) of (5.12) is oscillatory in
R2.
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