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1. Introduction

Let H be the class of analytic functions in the open unit disc D = {z ∈ C | |z| < 1} and H[a, n]
be the subclasses of H consisting of the functions of the form f(z) = a + anz

n + an+1z
n+1 · · · .

Let A(p, n) denote the class of functions f(z) normalized by

f(z) = zp +
∞∑

k=n+p

akz
k (

p, n ∈ N :=
{
1, 2, 3, . . .

})
(1.1)

which are analytic in the open unit disc D. In particular, we set

A(p, 1) := Ap, A(1, 1) := A = A1. (1.2)

If f(z) and g(z) are analytic in D, we say that f(z) is subordinate to g(z), written symbolically
as

f ≺ g or f(z) ≺ g(z) (z ∈ D). (1.3)
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If there exists a Schwarz function w(z) which is analytic in D with w(0) = 0, |w(z)| < 1 such
that f(z) = g(w(z)), z ∈ D.

For two analytic functions f(z) and F(z), we say that F(z) is superordinate to f(z) if
f(z) is subordinate to F(z).

For integer n ≥ 1, let Ω(n) denote the class of functions w(z) which are regular in D

and satisfy the conditions w(0) = 0, |w(z)| < 1, and w(z) = znφ(z) for all z ∈ D, where φ(z)
is regular and analytic in D and satisfies |φ(z)| < 1 for every z ∈ D. Also, let P{(p, n) denote
the class of functions p(z) = p +

∑∞
k=n pkz

k which are regular in D and satisfy the conditions
p(0) = p, Re p(z) > 0 for all z ∈ D. We note that if p(z) ∈ P(p, n), then

p(z) = p
1 −w(z)
1 +w(z)

=
1 − znφ(z)
1 + znφ(z)

(1.4)

for some functions w(z) ∈ Ω(n) and every z ∈ D.

Definition 1.1. Let f(z) ∈ A(p, n) for m ∈ N0 = N ∪ {0}, λ ≥ 0, l > 0, one defines the multiplier
transformations Ip(m,λ, l) onA(p, n) by the following infinite series:

Ip(m,λ, l)f(z) := zp +
∞∑

k=p+n

(
p + λ(k − p) + l

p + l

)m

akz
k. (1.5)

It follows that

Ip(0, λ, l)f(z) = f(z),

(p + l)Ip(2, λ, l)f(z) =
(
p(1 − λ) + l

)Ip(1, λ, l)f(z) + λz(Ip(1, λ, l)f(z)
)′
,

Ip

(
m1, λ, l)

(Ip

(
m2, λ, l

)
f(z)

)
= Ip

(
m2, λ, l

)(Ip

(
m1, λ, l

)
f(z)

)
(1.6)

for all integers m1, m2.

Remark 1.2. This multiplier transformation was introduced by Cătaş [1]. For p = 1, l = 0, λ ≥ 0,
the operatorDm

λ
:= I1(m,λ, 0)was introduced by Al-Oboudi [2]which reduces to the Sălăgean

differantial operator [3]. For λ = 1, the operator Im
l
:= I1(m, 1, l) was studied recently by Cho

and Srivastava [4] and Cho and Kim [5]. The operator Im := I1(m, 1, 1) was studied by Urale-
gaddi and Somanatha [6] and the operator Ip(m, l) := Ip(m, 1, l) was investigated recently by
Sivaprasad Kumar et al. [7].

Definition 1.3 (see [1]). Let ϕ(z) be analytic in D and ϕ(0) = 1. A function f(z) ∈ A(p, n) is said
to be in the class Ap(m,λ, l, n;ϕ) if it satisfies the following subordination:

Ip(m + 1, λ, l)f(z)
Ip(m,λ, l)f(z)

≺ ϕ(z) (z ∈ D). (1.7)

Definition 1.4. The radius of starlikeness of the classAp(m,λ, l, n, ϕ) is defined by the following.
For each f(z) ∈ Ap(m,λ, l, n;ϕ), let r(f) be the supremum of all numbers r such that

f(Dr) is starlike with respect to the origin. Then the radius of starlikeness forAp(m,λ, l, n;ϕ) is

rst
(Ap(m,λ, l, n;ϕ)

)
= inf

f∈Ap(m,λ,l,n,ϕ)
r(f). (1.8)
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Theorem 1.5. Let f(z) ∈ A(p, n) and λ > 0, then f(z) belongs to the class Ap(m,λ, l, n;χ) if and
only if F(z), defined by

F(z) =
p + l

λz(p(1−λ)+l)/λ

∫z

0
ζ(p(1−λ)+l)/λ−1f(ζ)dζ = zp +

∞∑

k=p+n

(
p + l

p + l + (k − p)λ

)
akz

k, (1.9)

belongs to the classAp(m + 1, λ, l, n;χ).

This theorem was proved by Cătaş [1].

2. Main result

Theorem 2.1. The radius of starlikeness of the classAp(m,λ, l, n, φ) is

rst =

⎛
⎜⎝

p + l

λ(p + n) +
√
λ2(p + n)2 + (p + l)

(
p + l − 2λp

)

⎞
⎟⎠

1/n

. (2.1)

This radius is sharp because the extremal function is

f∗(z) =
λ

p + l

zp
(
c + p + (c − p)zn

)

(
1 + zn

)2p/n+1 , c =
p(1 − λ) + l

λ
. (2.2)

Proof. If we take c = (p(1 − λ) + l)/λ, then the function F(z) in Theorem 1.5 can be written in
the form

F(z) =
p + l

λzc

∫z

0
ζc−1f(ζ)dζ. (2.3)

If we take the logarithmic derivative from (2.3) and after simple calculations, we get

z
F ′(z)
F(z)

=
zcf(z) − c

∫z
0 ζ

c−1f(ζ)dζ
∫z
0 ζ

c−1f(ζ)dζ
. (2.4)

Since F(z) is starlike, hence there exists a function w(z) ∈ Ω(n) such that

z
F ′(z)
F(z)

=
zcf(z) − c

∫z
0 ζ

c−1f(ζ)dζ
∫z
0 ζ

c−1f(ζ)dζ
= p

1 −w(z)
1 +w(z)

. (2.5)

Solving for f(z),

f(z) =
(c + p) + (c − p)w(z)

(
1 +w(z)

)
zc

∫z

0
ζc−1f(ζ)dζ. (2.6)
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Taking the logarithmic derivative from (2.6), we get

z
f ′(z)
f(z)

= p
1 −w(z)
1 +w(z)

+ (b − 1)
zw′(z)

(
1 +w(z)

)(
1 + bw(z)

) , (2.7)

where b = (c − p)/(c + p). To show that f(z) is starlike in |z| < r0, we must show that

Re
(
z
f ′(z)
f(z)

)
> 0 (2.8)

for |z| < r0. This condition is equivalent to

(1 − b)Re
(

zw′(z)
(
1 +w(z)

)(
1 + bw(z)

)
)

≤ Re
(
p
1 −w(z)
1 +w(z)

)
. (2.9)

On the other hand, we have the following relations:

Re
(
p
1 −w(z)
1 +w(z)

)
= p

1 − ∣∣w(z)
∣∣2

∣∣1 +w(z)
∣∣2
,

(1 − b)Re
(

zw′(z)
(
1 +w(z)

)(
1 + bw(z)

)
)

≤ (1 − b)
∣∣zw′(z)

∣∣
∣∣1 +w(z)

∣∣ ∣∣1 + bw(z)
∣∣ ,

∣∣zw′(z)
∣∣ ≤ n|z|n

1 − |z|2n
(
1 − ∣∣w(z)

∣∣2)

(2.10)

(Golusin inequality, [8]). Therefore, the inequality (2.9)will be satisfied if

n(1 − b)|z|n∣∣1 +w(z)
∣∣ ∣∣1 + bw(z)

∣∣
1 − ∣∣w(z)

∣∣2

1 − |z|2n ≤ p
1 − ∣∣w(z)

∣∣2
∣∣1 +w(z)

∣∣2
. (2.11)

Simplifying and writing |z| = r, we obtain

n(1 − b)rn

1 − r2n
≤ p

∣∣∣∣
1 + bw(z)
1 +w(z)

∣∣∣∣. (2.12)

Since |w(z)| ≤ |z|n = rn, p|(1 + bw(z))/(1 +w(z))| ≥ p((1 + brn)/(1 + rn)) so that (2.12) will be
satisfied if

n(1 − b)rn

1 − r2n
< p

1 + brn

1 + rn
. (2.13)

The inequality (2.13) can be written in the following form:

p − (1 − b)(p + n)rn − bpr2n > 0, (2.14)

which gives the required root r0 of the theorem.
To see that the result is sharp, consider the function F(z) = zp/(1 + zn)2p/n. For this

function, we have

f∗(z) =
λ

p + l

zp
(
(c + p) + (c − p)zn

)

(
1 + zn

)2p/n+1 ,

z
f ′
∗(z)

f∗(z)
=
p − (1 − b)(p + n)zn − pbz2n

(
1 + zn

)2p/n+1 .

(2.15)

So that z(f ′
∗(z)/f∗(z)) = 0 for |z| = r0. Thus, f(z) is not starlike in any circle |z| < r if r > r0.
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Remark 2.2. If we give special values to m,λ, l, n, we obtain the radius of starlikeness for the
corresponding integral operators.
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