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Suppose that f(x) is strictly increasing, strictly concave, and twice continuously differentiable on
a nonempty interval I ⊆ R, and f ′(x) is strictly convex on I. Suppose that xk ∈ [a, b] ⊆ I, where
0 < a < b, and pk ≥ 0 for k = 1, · · · , n, and suppose that

∑n
k=1pk = 1. Let x =

∑n
k=1pkxk, and

σ 2 =
∑n

k=1pk(xk − x) 2. We show
∑n

k=1pkf(xk) ≤ f(x−θ1σ 2),
∑n

k=1pkf(xk) ≥ f(x−θ 2σ
2), for suitably

chosen θ1 and θ2. These results can be viewed as a refinement of the Jensen’s inequality for the class
of functions specified above. Or they can be viewed as a generalization of a refined arithmetic mean-
geometric mean inequality introduced by Cartwright and Field in 1978. The strength of the above
result is in bringing the variations of the xk’s into consideration, through σ 2.

Copyright q 2008 Ye Xia. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

1. Main theorem

The goal is to generalize the following refinement of the arithmetic mean-geometric mean
inequality introduced in [1]. The result in this paper can also be viewed as a refinement of
Jensen’s inequality for a class of increasing and concave functions. Many other refinements
can be found in [2].

Theorem 1.1 (see [1]). Suppose that xk ∈ [a, b] and pk ≥ 0 for k = 1, . . . , n, where a > 0, and
suppose that

∑n
k=1pk = 1. Then, writing x =

∑n
k=1pkxk,

1
2b

n∑

k=1

pk
(
xk − x

)2 ≤ x −
n∏

k=1

x
pk
k

≤ 1
2a

n∑

k=1

pk
(
xk − x

)2
. (1.1)

For notational simplicity, define

σ2 =
n∑

k=1

pk
(
xk − x

)2 =
n∑

k=1

pkx
2
k − x2. (1.2)
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The vector p = (p1, . . . , pn) satisfying pk ≥ 0 for k = 1, . . . , n and
∑n

k=1pk = 1 will be called a
weight vector. Sometimes, we write x(p) and σ2(p) to emphasize the dependency on the weight
vector p. We have the following main theorem.

Theorem 1.2. Suppose that f(x) is strictly increasing, strictly concave, and twice continuously
differentiable on a nonempty interval I ⊆ R, and suppose that f ′(x) is strictly convex on I. Suppose
that xk ∈ [a, b] ⊆ I, where 0 < a < b, and pk ≥ 0 for k = 1, . . . , n, and suppose that

∑n
k=1pk = 1. Then,

writing x =
∑n

k=1pkxk,
(a)

n∑

k=1

pkf
(
xk

) ≤ f(x − θ1σ2), (1.3)

where θ1 = min{μ1, μ2}. Here,

μ1 = min
q,t,x

f ′((1 + qt)x
) − f ′((1 + t)x

)

2(1 − q)txf ′((1 + qt)x
) , (1.4)

where the minimization is taken over q ∈ [0, 1], t ∈ [0, (b − x)/x], and x ∈ [a, b], and

μ2 = min
x∈[a,b]

− f ′(x) − f ′(b)
2(x − b)f ′(x)

, (1.5)

(b)
n∑

k=1

pkf
(
xk

) ≥ f(x − θ2σ2), (1.6)

where θ2 = max{π1, π2}, provided 0 < π1 < ∞ and x(p̂) − θ2σ2(p̂) ∈ I for the given x1, . . . , xn
and for all possible weight vectors p̂. Here,

π1 =
(

min
t,q,x,θ

2f ′((1 + qt)x − θq(1 − q)t2x2)

−f ′′((1 + qt)x − θq(1 − q)t2x2
) − qtx

)−1
, (1.7)

where the minimization is taken over θ ∈ [0, 1/(2(1 − q)tx)], q ∈ [0, 1], t ∈ [0, (b − x)/x], and
x ∈ [a, b] (wewill see later that (1+qt)x1−θq(1−q)t2x2

1) is an alternative expression for x−θσ2

when n = 2). And

π2 = max
x∈[a,b]

f ′(a) − f ′(x)
2(x − a)f ′(x)

. (1.8)

Proof. The proof is similar to the proof for Theorem 1.1 [1], based on induction on n. We first
demonstrate part (a) of the theorem. The fact that the function f is always defined at x − θ1σ2

will be proved in Lemma 1.3.
The case of n = 1 is trivial because σ2 = 0. When n = 2, write x2 = (1 + t)x1, where

0 ≤ t ≤ (b − x1)/x1, p1 = 1 − q, and p2 = q. With these definitions, we have x = (1 + qt)x1, and
σ2 = q(1 − q)t2x2

1. Define

g(t) = f
(
x − θ1σ2) −

2∑

k=1

pkf
(
xk

)

= f
(
(1 + qt)x1 − θ1q(1 − q)t2x2

1

) − (1 − q)f(x1
) − qf((1 + t)x1

)
.

(1.9)
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Clearly, g(0) = 0. We will show that, for any θ1 satisfying 0 ≤ θ1 ≤ μ1, g ′(t) ≥ 0 for t ≥ 0, and
hence, g(t) ≥ 0 for t ≥ 0:

g ′(t) = f ′(x − θ1σ2)(qx1 − 2θ1q(1 − q)tx2
1

) − qx1f ′((1 + t)x1
)

= qx1
(
f ′(x − θ1σ2)(1 − 2θ1(1 − q)tx1

) − f ′((1 + t)x1)
)
.

(1.10)

Since x1 > 0, let us ignore the factor qx1. We wish to show, for all admissible q, t, and x1
(Admissible parameters are those that make x1, . . . , xn fall on [a, b]. In this case, q ∈ [0, 1],
x1 ∈ [a, b] and t ∈ [0, (b − x1)/x1].),

f ′(x − θ1σ2)(1 − 2θ1(1 − q)tx1
) − f ′((1 + t)x1

) ≥ 0. (1.11)

Equation (1.11) is true if and only if

θ1 ≤
1 − f ′((1 + t)x1

)
/f ′(x − θ1σ2)

2(1 − q)tx1 . (1.12)

The right-hand side (The cases q = 1 or t = 0 do not pose problems because the right-hand
side is still finite.) is an increasing function of θ1. Substituting θ1 = 0 into the right-hand side,
it suffices to show

θ1 ≤ f ′(x
) − f ′((1 + t)x1

)

2(1 − q)tx1f ′(x
) =

f ′((1 + qt)x1
) − f ′((1 + t)x1

)

2(1 − q)tx1f ′((1 + qt)x1
) . (1.13)

Since μ1 as in (1.4) achieves the minimum of the right-hand side above, we can choose any θ1
satisfying 0 ≤ θ1 ≤ μ1.

For n > 2, let us suppose that (1.3) has been proved for up to n− 1, and consider the case
of n. Fix x1, . . . , xn. We may assume that all xk are distinct. Otherwise, we can combine those
identical xk together by combining the corresponding pk together, and we are back to the case
of n − 1 or less.

Let p = (p1, . . . , pn), and let

h(p) � f
(
x − θ1σ2) −

n∑

k=1

pkf
(
xk

)
. (1.14)

Define the set S by

S =
{(
p1, . . . , pn

) | pk ≥ 0, ∀k}. (1.15)

We wish to show h(p) ≥ 0 on the set S subject to the constraint p1 + · · · + pn = 1. Suppose the
minimum of h(p) is in the interior of S. By the Lagrangemultiplier method, any suchminimum
pmust satisfy the following set of equations for some real number λ:

∂h

∂pk
(p) = λ

∂

∂pk

( n∑

k=1

pk − 1
)

∀k. (1.16)
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This gives, for all k,

f ′(x − θ1σ2)(xk − θ1
(
x2
k − 2xxk

)) − f(xk
)
= λ. (1.17)

From this, we deduce that each of the xk must satisfy the following equation with variable y:

f ′(x − θ1σ2)(y − θ1y2 + 2θ1xy
) − f(y) − λ = 0. (1.18)

Wewill consider the critical points of the left-hand side above, that is, the zeros of its derivative
with respect to y. By taking the derivative, the critical points are the solutions to the equation

f ′(x − θ1σ2)(2θ1
(
x − y) + 1

)
= f ′(y). (1.19)

The left-hand side of (1.19) is a decreasing linear function of y. Under the assumption that
f ′(y) is strictly convex, there can be at most two solutions to the equation. We will show that,
under suitable conditions, there is at most one solution. The situation is illustrated in Figure 1.
We will find conditions for the following to hold, for any admissible x and σ2,

f ′(x − θ1σ2)(2θ1
(
x − b) + 1

)
> f ′(b). (1.20)

When the xk are not all identical, σ2 /= 0. Hence, for θ1 > 0, f ′(x − θ1σ2) > f ′(x) > 0, it is enough
to consider

f ′(x
)(
2θ1

(
x − b) + 1

) ≥ f ′(b) (1.21)

which is the same as

θ1 ≤ − f ′(x
) − f ′(b)

2
(
x − b)f ′(x

) . (1.22)

We can choose θ1 as in the theorem, which satisfies θ1 ≤ μ1 and

θ1 ≤ μ2 = min
x∈[a,b]

− f ′(x) − f ′(b)
2(x − b)f ′(x)

. (1.23)

By Rolle’s theorem, we conclude that there can be at most two distinct roots to (1.18)
on the interval [a, b]. This contradicts our assumption that all x1, . . . , xn are distinct. Hence, it
must be true that the minimum of h(p) in S subject to the constraint p1 + · · · + pn = 1 occurs on
the boundary of S, where some of the pk must be zero. At the minimum, say po, we are back
to the case of n − 1 or less, and by the induction hypothesis, h(po) ≥ 0. Hence, h(p) ≥ 0 for
arbitrary p ∈ S subject to the constraint p1 + · · · + pn = 1.

We now proceed to show (1.6) in part (b). For the case of n = 2, let us replace θ1 by θ2
in (1.9), and rename the function ĝ(t). Again ĝ(0) = 0. We will find appropriate θ2 for which
ĝ ′(t) ≤ 0 for t ≥ 0. Following similar steps as before, we get

ĝ ′(t) = qx1
(
f ′(x − θ2σ2)(1 − 2θ2(1 − q)tx1

) − f ′((1 + t)x1)
)
. (1.24)
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a b y

Figure 1: Illustration of functions f ′(x − θ1σ2)(2θ1(x − y) + 1) and f ′(y).

To show ĝ ′(t) ≤ 0, it suffices to show

f ′(x − θ2σ2)(1 − 2θ2(1 − q)tx1
) − f ′((1 + t)x1

) ≤ 0. (1.25)

Observe that if 1−2θ2(1−q)tx1 ≤ 0, or equivalently, θ2 ≥ 1/(2(1−q)tx1), the above automatically
holds. (We assume the convention 1/0 = ∞.)We sketch our subsequent strategy. For any fixed
q, t, and x1, find θ2(q, t, x1) that satisfies both (1.25) and

θ2
(
q, t, x1

) ≤ 1
2(1 − q)tx1 . (1.26)

Such θ2(q, t, x1) must exist because 1/(2(1 − q)tx1) qualifies. Then, we can take sup θ2(q, t, x1)
over all admissible q, t, and x1.

By the mean value theorem, there exists η̂ ∈ (x − θ2σ2, (1 + t)x1) such that

f ′(x − θ2σ2)(1 − 2θ2(1 − q)tx1
) − f ′((1 + t)x1

)

= −f ′′(η̂
)
(1 − q)tx1

(
1 + θ2qtx1

) − f ′(x − θ2σ2)2θ2(1 − q)tx1.
(1.27)

Note that, for (1.25) to hold, it suffices if

−f ′′(η̂
)(
1 + θ2qtx1

) − f ′(x − θ2σ2)2θ2 ≤ 0. (1.28)

Since −f ′′(x) is decreasing and positive, (1.28) is implied by

−f ′′(x − θ2σ2)(1 + θ2qtx1
) − f ′(x − θ2σ2)2θ2 ≤ 0, (1.29)

which is equivalent to

1
θ2

≤ 2f ′(x − θ2σ2)

−f ′′(x − θ2σ2
) − qtx1. (1.30)

We wish to find θ2 that satisfies (1.30) for all admissible q, t, and x1.
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For any fixed q, t, and x1, suppose we obtain

θ2
(
q, t, x1

)
=
(

min
θ∈[0,1/(2(1−q)tx1)]

2f ′(x − θσ2)

−f ′′(x − θσ2
) − qtx1

)−1
(1.31)

and suppose 0 < θ2(q, t, x1) < ∞. Let us consider θ̂2 ≥ θ2(q, t, x1). If θ̂2 > 1/(2(1 − q)tx1), then
(1.25) holds trivially. If θ̂2 ≤ 1/(2(1 − q)tx1), then

1

θ̂2
≤ 1
θ2
(
q, t, x1

) = min
θ∈[0,1/(2(1−q)tx1)]

2f ′(x − θσ2)

−f ′′(x − θσ2
) − qtx1 ≤

2f ′(x − θ2σ2)

−f ′′(x − θ2σ2
) − qtx1, (1.32)

that is, (1.30) holds, which implies that (1.28), and hence, (1.25) hold. Hence, we can choose
θ2 ≥ supq,t,x1θ2(q, t, x1), where the supremum is over all admissible q, t, and x1. To summarize,
we can choose the following θ2 for the theorem, provided 0 < π1 <∞,

θ2 ≥ π1 =
(

min
t,q,x1,θ

2f ′(x − θσ2)

−f ′′(x − θσ2
) − qtx1

)−1
, (1.33)

where the minimization is taken over θ ∈ [0, 1/(2(1 − q)tx1)], and over all admissible q, x1, t,
that is, q ∈ [0, 1], x1 ∈ [a, b], and t ∈ [0, (b − x1)/x1]. This minimization can be solved easily in
a number of cases, which we will show later.

For n > 2, the proof is nearly identical to that for part (a). Let us suppose (1.6) has been
proved for up to n − 1, and consider the case of n. Fix x1, . . . , xn. We may assume that all xk are
distinct as before. Let

ĥ(p) � f
(
x − θ2σ2) −

n∑

k=1

pkf
(
xk

)
. (1.34)

We wish to show ĥ(p) ≤ 0 on the set S defined before, subject to the constraint p1 + · · · + pn = 1.
Suppose the maximum of ĥ(p) is in the interior of S. Applying the Lagrange multiplier method
for finding the constrained maximum of ĥ(p) on S, we deduce that any maximum p must
satisfy the following set of equations for some real number λ:

∂ĥ

∂pk
(p) = λ

∂

∂pk

(
n∑

k=1

pk − 1

)

∀k. (1.35)

This gives, for all k,

f ′(x − θ2σ2)(xk − θ2
(
x2
k − 2xxk

)) − f(xk
)
= λ. (1.36)

Each of the xk must satisfy the following equation with variable y:

f ′(x − θ2σ2)(y − θ2y2 + 2θ2xy
) − f(y) − λ = 0. (1.37)

We will consider the critical points of the left-hand side above, which are the solutions to the
equation

f ′(x − θ2σ2)(2θ2
(
x − y) + 1

)
= f ′(y). (1.38)
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a b y

Figure 2: Illustration of functions f ′(x − θ2σ2)(2θ2(x − y) + 1) and f ′(y).

Under the assumption that f ′(y) is strictly convex, there can be at most two solutions to the
equation. We will show that, under suitable conditions, there is at most one solution. The
situation is illustrated in Figure 2. We will find conditions for the following to hold, for any
admissible x and σ2:

f ′(x − θ2σ2)(2θ2
(
x − a) + 1

)
> f ′(a). (1.39)

When the xk are not all identical, σ2 /= 0. Hence, for θ2 > 0, f ′(x − θ2σ2) > f ′(x) > 0, it is enough
to consider

f ′(x
)(
2θ2

(
x − a) + 1

) ≥ f ′(a) (1.40)

which is the same as

θ2 ≥ − f ′(x
) − f ′(a)

2
(
x − a)f ′(x

) . (1.41)

We can choose θ2 as in the theorem, which satisfies θ2 ≥ π1 and

θ2 ≥ π2 = max
x∈[a,b]

− f ′(x) − f ′(a)
2(x − a)f ′(x)

. (1.42)

By Rolle’s theorem, we conclude that there can be at most two distinct roots to (1.37)
on the interval [a, b]. This contradicts our assumption that all x1, . . . , xn are distinct. Hence, it
must be true that the maximum of ĥ(p) in S subject to the constraint p1 + · · · + pn = 1 occurs on
the boundary of S, where some of the pk must be zero. At the maximum, say po, we are back
to the case of n − 1 or less, and by the induction hypothesis, ĥ(po) ≤ 0. Hence, ĥ(p) ≤ 0 for
arbitrary p ∈ S subject to the constraint p1 + · · · + pn = 1.

We now complete the proof for part (a) of Theorem 1.2 by showing the following lemma.
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Lemma 1.3. For any integer n ≥ 1, and for all x1, . . . , xn with each xk ∈ [a, b] and all p1, . . . , pn,
where each pk ≥ 0 and

∑n
k=1pk = 1,

x − θ1σ2 ≥ a, (1.43)

where θ1 is as given in Theorem 1.2.

Proof. It suffices to show

x − μ1σ
2 ≥ a. (1.44)

The case of n = 1 is trivial, since σ2 = 0. For the case n = 2, as before, write x2 = (1 + t)x1,
where 0 ≤ t ≤ (b − x1)/x1, p1 = 1 − q, and p2 = q. With these, we have x = (1 + qt)x1, and
σ2 = q(1 − q)t2x2

1. In the cases where q = 0, q = 1 or t = 0, (1.44) holds trivially. For 0 < q < 1
and t > 0, (1.44) holds if and only if

μ1 ≤ ψ(q) � (1 + qt)x1 − a
q(1 − q)t2x2

1

. (1.45)

We will show that this is indeed true for all admissible q, t, and x1. For the case x1 = a, ψ(q) =
1/((1−q)ta). Because ta ≤ b−a, ψ(q) ≥ 1/(b−a). When a < x1 ≤ b, the value of ψ(q) approaches
+∞ as q approaches 0 or 1. The minimum value must be on (0, 1). The derivative of ψ(q) is

ψ ′(q) =
q(1 − q)tx1 +

(
(1 + qt)x1 − a

)
(2q − 1)

(1 − q)2q2t2x2
1

. (1.46)

For qo that satisfies ψ ′(qo) = 0, we have the following identity:

(
1 + qot

)
x1 − a =

qo
(
1 − qo

)
tx1

1 − 2qo
. (1.47)

Hence,

ψ
(
qo
)
=

1
(
1 − 2qo

)
tx1

. (1.48)

Because tx1 ≤ b − a, we get ψ(qo) ≥ 1/(b − a). By the definition of μ1, for all admissible q, t, and
x1,

μ1 ≤
f ′(x

) − f ′((1 + t)x1
)

2(1 − q)tx1f ′(x
) ≤ 1

2(1 − q)tx1 . (1.49)

Hence, μ1 ≤ 1/(2(b − a)). Therefore, (1.45) holds for all admissible q, t, and x1.
Consider the case of n ≥ 3. Fix x1, . . . , xn and suppose they are all distinct. Let

φ(p) = x − μ1σ
2 − a =

n∑

k=1

pkxk − μ1

n∑

k=1

pkx
2
k + μ1

(
n∑

k=1

pkxk

)2

− a. (1.50)

Consider minimizing φ(p) over all possible weight vectors and suppose po is the minimum.
Then, there exists a constant λ such that, for any kwith po

k
> 0, we must have (∂φ/∂pk)(po) = λ.

That is,

xk − μ1
(
x2
k − 2x

(
po
)
xk

)
= λ, ∀k with pok > 0. (1.51)

For the given po, there can be at most two distinct xk satisfying the equation y − μ1(y2 −
2x(po)y) = λ in variable y. Hence, there can be at most two nonzero components in po. This
belongs to the n = 2 case and φ(po) ≥ 0. Therefore, for all weight vectors p, φ(p) ≥ 0.
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For part (b) of Theorem 1.2, the proof requires x(p) − θ2σ2(p) to be within the domain of
the function f for various unknownweight vectors p. This is why the statement of Theorem 1.2
makes the assumption that this is true for all possible weight vectors. The following lemma
gives a simple sufficient condition for this assumption to hold.

Lemma 1.4. Fix x1, . . . , xn on [a, b], n ≥ 2. Let θ2 be as given in Theorem 1.2. Without loss of
generality, assume x1 < x2 < · · · < xn. Then,

(a)when θ2 ≤ 1/(xn − x1),
x(p) − θ2σ2(p) ≥ x1 for all weight vectors p, (1.52)

and hence, x(p) − θ2σ2(p) ∈ [a, b] for all weight vectors p;
(b) when θ2 > 1/(xn − x1),

x(p) − θ2σ2(p) ≥ x1 −
(
θ2
(
xn − x1

) − 1
)2

4θ2
for all weight vectors p. (1.53)

Hence, if [min{a, x1 − (θ2(xn − x1) − 1)2/(4θ2)}, b] ⊆ I, then x(p) − θ2σ2(p) ∈ I for all weight
vectors p.

Proof. Write p = (p1, . . . , pn). Consider the minimization problem,

min
p≥0, ∑n

k=1pk=1
x(p) − θ2σ2(p). (1.54)

Using the same argument as in the proof of Lemma 1.3, we can conclude that the minimum
is achieved at some p with at most two nonzero components. Hence, it suffices to consider
minimization problems of the following form:

min
pi≥0, pj≥0, pi+pj=1

pixi + pjxj − θ2
(
pix

2
i + pjx

2
j −

(
pixi + pjxj

)2)
. (1.55)

It remains to be decided which i and j should be used in the above minimization.
Suppose xi < xj (here, i and j are unknown indices). We claim that i = 1. To see this, the
partial derivative of the objective function with respect to xi is pi − θ2(2pixi − 2xpi), where
x = pixi + pjxj . Since xi ≤ x, the partial derivative is nonnegative, and hence, the function is
nondecreasing in xi.

Once xi is chosen to be x1, the second partial derivative of the function with respect to
xj is −2θ2(pj − p2j ), which is nonpositive. The minimum is achieved at either xj = x1 or xj = xn.

To summarize, the original minimization problem (1.54) is achieved either at p1 = 1,
in which case the minimum value is x1, or it has the same minimum value as the following
problem:

min
p1≥0, pn≥0, p1+pn=1

p1x1 + pnxn − θ2
(
p1x

2
1 + pnx

2
n −

(
p1x1 + pnxn

)2)
. (1.56)

It is easy to show that, if θ2 ≤ 1/(xn − x1), the minimum of (1.60) is achieved at p1 = 1 and the
minimum value is x1. Otherwise, the minimum is achieved at

p1 =
1
2

(

1 +
1

θ2
(
xn − x1

)

)

, p2 =
1
2

(

1 − 1
θ2
(
xn − x1

)

)

, (1.57)

and the minimum value is x1 − (θ2(xn − x1) − 1)2/(4θ2), which is no greater than x1 for all
θ2 > 0.

We now make some remarks about Theorem 1.2.
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Remark 1.5. For part (a) of the theorem, we can chose a smaller value, −u/(2f ′(a)), for μ1 than
that in (1.4). Let u ≤ 0 be an upper bound of f ′′(x) on [a, b]. Note that

(1 + qt)x1 − (1 + t)x1 = −(1 − q)tx1. (1.58)

By the mean value theorem, there exists some η ∈ ((1 + qt)x1, (1 + t)x1) such that

f ′((1 + qt)x1
) − f ′((1 + t)x1

)

2(1 − q)tx1f ′((1 + qt)x1
) =

−f ′′(η)
2f ′((1 + qt)x1

) ≥ −u
2f ′(a)

. (1.59)

Therefore, we can choose −u/(2f ′(a)) for μ1.

Remark 1.6. For part (b) of the theorem, two simpler but less widely applicable choices for θ2
can be deduced from (1.33). Since qtx1 ≤ b − a, π1 can be relaxed to

π1
1 =

1
minx∈[a,b] 2f ′(x)/(−f ′′(x)) − (b − a) . (1.60)

We must require minx∈[a,b]2f ′(x)/(−f ′′(x)) − (b − a) > 0 for π1
1 to be useful. An even simpler

choice is, when 2f ′(b) + f ′′(a)(b − a) > 0,

π2
1 =

1
2f ′(b)/(−f ′′(a)) − (b − a) =

−f ′′(a)
2f ′(b) + f ′′(a)(b − a) . (1.61)

Note that 0 < π2
1 < ∞ implies 0 < π1

1 < ∞, which, in turn, implies 0 < π1 < ∞. In this case,
π1 ≤ π1

1 ≤ π2
1 . Similarly, if 0 < π1

1 <∞, then π1 ≤ π1
1 .

π2 as in (1.8) can also be relaxed. Since, for some ξ ∈ (a, b),

− f
′(x) − f ′(a)

2(x − a)f ′(x)
= − f ′′(ξ)

2f ′(x)
, (1.62)

a relaxation is

π1
2 =

−f ′′(a)
2f ′(b)

. (1.63)

Hence, for part (b) of the theorem, we can choose θ2 = max{π1
1 , π

1
2}, provided 0 < π1

1 < ∞.
Alternatively, we can choose θ2 = max{π2

1 , π
1
2} = π2

1 , provided 0 < π2
1 <∞.

Remark 1.7. The strength of Theorem 1.2 is in bringing the variations of xk’s into consideration,
through σ2. There are alternative methods for finding tighter upper bound of

∑n
k=1pkf(xk)

than that given by Jensen’s inequality,
∑n

k=1pkf(xk) ≤ f(x). For instance, we can apply the
arithmetic mean-geometric mean inequality. For any α,

n∏

k=1

(
eαf(xk)

)pk ≤
n∑

k=1

pke
αf(xk). (1.64)

Hence, for any α > 0,

n∑

k=1

pkf
(
xk

) ≤ 1
α
log

(
n∑

k=1

pke
αf(xk)

)

. (1.65)

Then, choose a small positive α.
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2. Special cases and examples

The following theorem is needed.

Theorem 2.1 (see [3, page 4]). Let I be a nonempty interval of R. A function h : I → R is convex if
and only if, for all xo ∈ I, (h(x) − h(xo))/(x − xo) is a nondecreasing function of x on I \ {xo}.

Corollary 2.2. Let I be a nonempty interval of R. Suppose the function h : I → R is convex, and
h(x)/= 0 for all x ∈ I. If 1/h(x) is a convex function, then, for all xo ∈ I, (h(x)−h(xo))/((x−xo)h(x))
is a nonincreasing function of x on I \ {xo}. If 1/h(x) is a concave function, then, for all xo ∈ I,
(h(x) − h(xo))/((x − xo)h(x)) is a nondecreasing function of x on I \ {xo}.

Proof. Consider

h(x) − h(xo
)

(
x − xo

)
h(x)

=
1 − h(xo

)
/h(x)

(
x − xo

) = −g(x) − g
(
xo

)

x − xo , (2.1)

where we define g(x) = h(xo)/h(x). If 1/h(x) is convex, then g(x) is convex. By Theorem 2.1,
(h(x) − h(xo))/((x − xo)h(x)) is nonincreasing. If 1/h(x) is concave, then g(x) is concave, and
hence, (h(x) − h(xo))/((x − xo)h(x)) is nondecreasing.

Theorem 2.3. Consider the function f(x) as specified in Theorem 1.2. In addition, suppose f ′(x) is
convex. If 1/f ′(x) is concave, then

θ1 = min
x∈[a,b]

−f ′′(x)
2f ′(x)

. (2.2)

If 1/f ′(x) is convex, then

θ1 =
f ′(a) − f ′(b)
2(b − a)f ′(a)

. (2.3)

Proof. If 1/f ′(x) is a concave function, then 1/f ′((1 + qt)x1) is a concave function in q for q ∈
[0, 1]. By Corollary 2.2, (f ′((1+qt)x1)−f ′((1+ t)x1))/(2(1−q)tx1f ′((1+qt)x1)) is nonincreasing
in q. Its minimum with respect to q occurs at q = 1. Substituting q = 1, we get

μ1 = min
t,x1

−f ′′((1 + t)x1
)

2f ′((1 + t)x1
) = min

q,t,x1

f ′((1 + qt)x1
) − f ′((1 + t)x1

)

2(1 − q)tx1f ′((1 + qt)x1
) = min

x∈[a,b]
−f ′′(x)
2f ′(x)

. (2.4)

On the other hand, by Corollary 2.2, −(f ′(x)−f ′(b))/(2(x−b)f ′(x)) is a nonincreasing function
of x. Hence,

μ2 = − f
′′(b)

2f ′(b)
≥ μ1. (2.5)

If 1/f ′(x) is a convex function, (f ′((1 + qt)x1) − f ′((1 + t)x1))/(2(1 − q)tx1f ′((1 + qt)x1))
achieves its minimum with respect to q at q = 0. Substituting q = 0, we get

μ1 = min
t,x1

f ′(x1
) − f ′((1 + t)x1

)

2tx1f ′(x1
) . (2.6)
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By Theorem 2.1, (f ′(x1) − f ′((1 + t)x1))/(2tx1) is a nonincreasing function of t, and hence, its
minimum occurs at t = (b − x1)/x1. Hence,

μ1 = min
x1∈[a,b]

f ′(x1
) − f ′(b)

2
(
b − x1

)
f ′(x1

) = μ2. (2.7)

By Corollary 2.2, (f ′(x1) − f ′(b))/(2(b − x1)f ′(x1)) is a nondecreasing function of x1. Its
minimum, which occurs at x1 = a, is (f ′(a) − f ′(b))/(2(b − a)f ′(a)).

Example 2.4 (f(x) = logx). Here, f ′(x) = 1/x and f ′′(x) = −1/x2. Hence, f ′(x) and 1/f ′(x) are
both convex functions. We can choose

θ1 = min
q,t,x1

f ′((1 + qt)x1
) − f ′((1 + t)x1

)

2(1 − q)tx1f ′((1 + qt)x1
) = min

t,x1

1
2(1 + t)x1

=
1
2b
,

θ2
(
q, t, x1

)
=
(

min
θ∈[0,1/(2(1−q)tx1)]

2f ′(x − θσ2)

−f ′′(x − θσ2
) − qtx1

)−1

=
(

min
θ∈[0,1/(2(1−q)tx1)]

2
(
x − θσ2) − qtx1

)−1

=
(

2
(

x − 1
2(1 − q)tx1σ

2
)

− qtx1
)−1

=
(

2
(

x1 + qtx1 −
q(1 − q)t2x2

1

2(1 − q)tx1

)

− qtx1
)−1

=
(
2x1

)−1
.

(2.8)

Maximizing over x1, we get π1 = 1/(2a). Also,

π2 = max
x∈[a,b]

− f ′(x) − f ′(a)
2(x − a)f ′(x)

=
1
2a
. (2.9)

Example 2.5 (f(x) = xα, where 0 < α < 1). Here, f ′(x) = αxα−1 is convex, and f ′′(x) = α(α −
1)xα−2. Because 1/xα−1 is a concave function, we can apply Theorem 2.3, and get

θ1 = min
x∈[a,b]

−f ′′(x)
2f ′(x)

= min
x∈[a,b]

1 − α
2x

=
1 − α
2b

,

θ2
(
q, t, x1

)
=
(

min
θ∈[0,1/(2(1−q)tx1)]

2f ′(x − θσ2)

−f ′′(x − θσ2
) − qtx1

)−1

=
(

min
θ∈[0,1/(2(1−q)tx1)]

2
(
x − θσ2)

1 − α − qtx1
)−1

=
(
2x1 + qtx1

1 − α − qtx1
)−1

=
(

2x1
1 − α +

α

1 − αqtx1
)−1

.
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Maximizing the last expression over q, we get (1−α)/(2x1). Maximizing the result over x1, we
get

π1 =
1 − α
2a

. (2.10)

Also, by Corollary 2.2, −(f ′(x) − f ′(a))/(2(x − a)f ′(x)) is a nonincreasing function of x, and
achieves its maximum at x = a. Hence,

π2 = max
x∈[a,b]

− f ′(x) − f ′(a)
2(x − a)f ′(x)

= − f
′′(a)

2f ′(a)
=
1 − α
2a

. (2.11)

Example 2.6 (f(x) = −e−x). Here, f ′(x) = e−x and f ′′(x) = −e−x. Because 1/f ′(x) is convex, we
can apply Theorem 2.3, and get

θ1 =
f ′(a) − f ′(b)
2(b − a)f ′(a)

=
1 − e−(b−a)
2(b − a) ,

θ2
(
q, t, x1

)
=
(

min
θ∈[0,1/(2(1−q)tx1)]

2f ′(x − θσ2)

−f ′′(x − θσ2
) − qtx1

)−1
=
(
2 − qtx1

)−1
.

Maximizing the last expression over qtx1, we get

π1 =
1

2 − (b − a) . (2.12)

We must require b − a < 2. Also, by Corollary 2.2, −(f ′(x) − f ′(a))/(2(x − a)f ′(x)) is a
nondecreasing function of x, and achieves its maximum at x = b. Hence,

π2 = max
x∈[a,b]

− f ′(x) − f ′(a)
2(x − a)f ′(x)

= − f
′(b) − f ′(a)

2(b − a)f ′(b)
=
eb−a − 1
2(b − a) . (2.13)

Lemma 2.7. For 0 < b − a < 2,

1
2 − (b − a) ≥ eb−a − 1

2(b − a) . (2.14)

Proof. Note that, for 0 < b − a < 2, (2.14) is equivalent to

2(b − a) ≥ 2
(
eb−a − 1

) − (b − a)eb−a + (b − a). (2.15)

Let v = b − a, and assume v ∈ [0, 2]. It suffices to show

v − 2
(
ev − 1

)
+ vev ≥ 0. (2.16)

Since at v = 0, the left hand above is 0. We need only to show that v − 2(ev − 1) + vev is
nondecreasing function of v for v ≥ 0. Its derivative is 1 − ev + vev, which is equal to zero at
v = 0. But, for v ≥ 0,

(
1 − ev + vev)′ = vev ≥ 0. (2.17)

Hence, 1 − ev + vev ≥ 0 for v ≥ 0, and (2.16) is true.
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Example 2.8 (f(x) = −1/xk where k > 0). Here, f ′(x) = k/xk+1, f ′′(x) = −k(k + 1)/xk+1. Since
1/f ′(x) = xk+1/k is convex, by Theorem 2.3,

θ1 =
f ′(a) − f ′(b)
2(b − a)f ′(a)

=
1 − (a/b)k+1

2(b − a) ,

θ2
(
q, t, x1

)
=
(

min
θ∈[0,1/(2(1−q)tx1)]

2f ′(x − θσ2)

−f ′′(x − θσ2
) − qtx1

)−1

=
(

min
θ∈[0,1/(2(1−q)tx1)]

2
(
x − θσ2)

k + 1
− qtx1

)−1

=
(
2x1 + qtx1
k + 1

− qtx1
)−1

=
(

2x1
k + 1

− k

k + 1
qtx1

)−1
.

Maximizing the last expression over q and t, we get 1/((k+2)x1/(k+1)−bk/(k+1)). Maximizing
the result over x1, we get

π1 =
k + 1

(k + 2)a − bk . (2.18)

Wemust require (k+2)a−bk > 0, or k < 2a/(b−a), for the aboveπ1 to be useful for Theorem 1.2.
Also, by Corollary 2.2, −(f ′(x) − f ′(a))/(2(x − a)f ′(x)) is a nondecreasing function of x, and
achieves its maximum at x = b:

π2 = max
x∈[a,b]

− f ′(x) − f ′(a)
2(x − a)f ′(x)

= − f
′(b) − f ′(a)

2(b − a)f ′(b)
=
(b/a)k+1 − 1
2(b − a) . (2.19)
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