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1. Introduction

Let & denote the class of functions of the form
f(2)=z+ > a,z" (1.1)
n=2

which are analytic in the open unitdisk U= {z € C: |z| <1},and S := {f € # : f is univalent
in U}.
For f € &4, Al-Oboudi [1] introduced the following operator:

Df(z) = f(2), (1.2)
D'f(z) = (1- V) f(z) + Azf (z) = Dif(2), 120, (1.3)

D*f(z) = Dy (D*'f(z)), (keN:={1,23,...}). (1.4)
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If f is given by (1.1), then from (1.3) and (1.4) we see that

D<f(z) =z + iu + (n-1)A]%a,z", (ke No=Nu{0}), (1.5)

n=2

with DX £(0) = 0.

Remark 1.1. When A = 1, we get Salagean’s differential operator [2].
Now we introduce new classes Si(6,b, 1) and X (6,b,A) as follows.
A function f € &4 is in the classes S, (6,b, 1), where 6 € [0,1),b € C-{0},A >0, k € Ny,

if and only if
1 Dk”f(z)
or equivalently
\ [ 2(D¥f(z)

forall z € U.
A function f € & is in the classs K (6,b, 1), where 6 € [0,1),b e C-{0},1 >0,k € Ny,
if and only if

Re{1+&z(l)ki)),}>6 (1.8)
b (D¥f(2))

forall z € U.
We note that f € X (6,b,)) if and only if zf' € Sk(6,b,1).

Remark 1.2. (i) For k = 0 and A = 1, we have the classes

S0(6,b,1) = S5(b), Ko(6,b,1) =Cs(b) (1.9)

introduced by Frasin [3].
(ii) For b =1 and A = 1, we have the class

Sik(6,1,1) = Sk(6) (1.10)

of k-starlike functions of order 6 defined by Sildgean [2].
(iii) In particular, the classes

30(6,1,1) = 8*(5), Ko(5,1,1) = X(6) (1.11)
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are the classes of starlike functions of order 6 and convex functions of order 6 in U, resp-

ectively.
(iv) Furthermore, the classes

50(0,1,1) =38, KXo(0,1,1) =KX (1.12)

are familiar classes of starlike and convex functions in U, respectively.
(v) For A =1, we get

Ki(6,b,1) = Sr1(6,b,1). (1.13)
Let us introduce the new subclasses USi(a,6,b, 1), UKy (a,6,b,A) and SHi(a,b,N),

KH(a,b, L) as follows.
A function f € & is in the class USi(a, 6, b, \) if and only if f satisfies

1 Dk+1f(z) 1 Dk+1f(z)
wefij (5AS ) ooy (5efs 1)

or equivalently

A (2(DY () A (2D (=)
Re{1+5<w—l>}>a)g<w—l +6, (].15)

+6 (zeU) (1.14)

wherea >0,6 € [-1,1),a+6>0,beC-{0},1 >0, k € Np.
A function f € & is in the class UK (a, 6,b, A) if and only if f satisfies

Re{l + iw} >a
b (D*f(2))

1z(D*f(2))"

b (Do) +6, (1.16)

wherea >0,6 € [-1,1),a+6>0,beC-{0},1 >0, k € Np.
We note that f € UKk (a, 6,b, 1) if and only if zf’ € USk(a,6,b,10).

Remark 1.3. (i) For « = 0, we have
USK(0,6,b,1) = Sk(6,b,1), UKK(0,6,b,1) = Ki(6,b,1). (1.17)
(ii) For b =1 and A = 1, we have the class

USi(a,6,1,1) = USy(a, 6). (1.18)

of k-uniform starlike functions of order 6 and type a, [4].
(iii) For A = 1, we have

UK (a,6,b,1) = USki1(a,6,D,1). (1.19)
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(iv) Forb=1and A = 1, we have

MJCk(“, 6/ 1/1) = M-Sk+l ((X,(S). (120)

Geometric Interpretation

f € USi(a,6,b,)) and f € UKy (a,6,b,1) if and only if 1 + (A/b)((z(D* f(z)) /D*f(2)) - 1)
and 1+ (A/b)(z(D*f (z))" /(DX f (z))'), respectively, take all the values in the conic domain
R. s which is included in the right-half plane such that

Ru,5={u+iv:u>a\/m+6}. (1.21)

From elementary computations we see that OR,s represents the conic sections
symmetric about the real axis. Thus Ry is an elliptic domain for a > 1, a parabolic domain
for a = 1, a hyperbolic domain for 0 < & < 1 and a right-half plane u > 6 for a = 0.

A function f € &4 is in the class SH . (a, b, 1) if and only if f satisfies

1/D*f(z) (D)

+2a(vV2-1) (zel),

wherea >0,be C—-{0},1>0, k € Ny.
A function f € & is in the class XH#(a, b, \) if and only if f satisfies

‘1 + 1 2(DH (=) —2a(V2-1)| < Re{ﬁ<1 + &—Z(Dkf(z)), > }
b (D*f(2)) (1.23)

b (D*f(2))
+2a(vV2-1) (z€l),

wherea >0,be C—-{0},1>0, k € Ny.
We note that f € XH(a,b,\) if and only if zf € SHy(a,b, \).

Remark 1.4. (i) For b =1and A = 1, we have the classes

SHi(a,1,1) = SHi(a),
KHy(a,1,1) = SHya(a,1,1) = SHiia(a)

(1.24)

defined in [5].
(ii) For A = 1, we have

KH(a,b,1) = SHi1(a, b, 1). (1.25)
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D. Breaz and N. Breaz [6] introduced and studied the integral operator

- Hi Hn
e [(B0Y (B0Y w2

where f; € # and p; > Oforalli € {1,...,n}.
By using the Al-Oboudi differential operator, we introduce the following integral
operator. So we generalize the integral operator F,,.

Definition 1.5. Let k € Ny, I = (y,...,I,) € N, and p; > 0,1 < i < n. One defines the integral
operator I ppy : A" — A,

Ik,n,l,y(flr---/fn) = F/

: /h m \ o (1.27)
DkF(z)=f <Dl{1(t)> ...(Dl{”(t)> dt,
0

where fi,..., fn € # and D is the Al-Oboudi differential operator.

Remark 1.6. In Definition 1.5, if we set
(i) A = 1, then we have [7, Definition 1].

(i) A =1, k=0and l; =--- =1, = 0, then we have the integral operator defined
by (1.26).
(iii) k =0, =--- =1, =1 € Ny, then we have [8, Definition 1.1].

2. Main Results

The following lemma will be required in our investigation.

Lemma 2.1. For the integral operator Iy 1, (f1,..., fn) = F, defined by (1.27), one has

A2(DF@)" S DG g
(D¥F(z))’ _z= "Dlifi(z) Z (2.1)

i=1

Proof. By (1.27), we get

1 H n Hn
(D*F(2)) = <_Dl J;l(z)> <_Dl Z"(Z)> . (22)

Also, using (1.3) and (1.4), we obtain

D¥1F(2) - (1= )D¥F(z).

(DFF(z))' = =

(2.3)
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On the other hand, from (2.2) and (2.3), we find

n ; Hi Dl ; ,_Dli ; n Dl f- Hi
-3 (P (s g .

i1 =1
(G#9)

u=Dk+2P(z) (2-M)D*'F(z) + (1 - )L)DkF(z)

(D*F(z)) o0 (2.5)
Thus by (2.2) and (2.4), we can write
(D"F(2))" i <z(D’f fi(z)) - D" fl-<z>>
DKF(z) zD'i fi(z)
ot D' fi(z) - D' fi(2) >
LG it fi(z) = D' fi(z
= ;I‘z( /\Zlefi(z) >
Finally, we obtain
\z(DFF(z))" & D'*lfi(z)
“DFR) 21: < 5T 1>, 2.7)
which is the desired result. O

Theorem 2.2. Let a; > 0,06, € [-1,1), a; +6; >0 (1 <i<m),and b e C—- {0}, A > 0. Also suppose
that

2 i e ST (28)

If fi € US;, (i, 6i,b,A)(1 <i < n), then the integral operator Iy 1, = F, defined by (1.27), is in the
class Ki(y,b, \), where

=1- Z P TTx (2.9)

Proof. Since f; € US;,(a;, 6i,b,1)(1 <i < n), by (1.14) we have

1/ D" fi(z) a + 6;
Re{l + E< DI (2) 1>} > 1 (2.10)
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forall z € U. By (2.1), we get

"B (D () _“Z‘” ’b<leﬁ~<z> '

o (2.11)
1S (PAE Y Dy
_1+i=21‘u1|:1+b<Dlifi(Z) 1>] g,ul.
So, (2.10) and (2.11) give us
10z(D*F(2))" | . & " 1/ D" fi(z)

for all z € U. Hence, we obtain F € Kk (y,b, 1), where y =1 - 37, ui((1 - 6i) /(1 + ai)). O

Corollary 2.3. Let a; >0, 6; € [-1,1), a; + 6; > 0(1 <i < n), and b € C - {0}. Also suppose that

Lo1-6
Z//Lil — <1 (2.13)

i=1

If fi € USy (ai, 6;,b,1) (1 <i< n), then the integral operator Iy 1, = F, defined by (1.27), is in the
class Si+1(y, b, 1), where y is defined as in (2.9).

Proof. In Theorem 2.2, we consider A = 1. O
From Corollary 2.3, we immediately get Corollary 2.4.

Corollary 2.4. Let a; >0, 6; € [-1,1), i +6; >0 (1 <i <), and b € C— {0}. Also suppose that

o 1-6
i <1 (2.14)
; 1+ a;

If fi € USy (a;, 6;,b,1) (1 <i < n), then the integral operator Iy 1, = F, defined by (1.27), is in the
class Sk.+1(0,b,1).

Remark 2.5. If we set b = 1 in Corollary 2.4, then we have [7, Theorem 1]. So Corollary 2.4 is
an extension of Theorem 1.

Corollary 2.6. Let 6; € [0,1)(1 <i<m)and b e C—- {0}, A > 0. Also suppose that

i=1
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If fi € 51,(6i,b,1)(1 < i < n), then the integral operator Iy, = F, defined by (1.27), is in the class
Ki(p,b,\), where

n

p=1-u(l-6). (2.16)

i=1

Proof. In Theorem 2.2, we consider a4y = ap = --- = a, = 0. O

Corollary 2.7. Let 6; € [0,1) (1 <i<n)andb e C - {0}. Also suppose that
> wi(1-6)<1. (2.17)
i=1

If fi € 81,(6:,b,1) (1 <i< n), then the integral operator Iy, 1, = F, defined by (1.27), is in the class
Sk+1(p, b, 1), where p is defined as in (2.16).

Proof. In Corollary 2.6, we consider A = 1. O
Corollary 2.8 readily follows from Corollary 2.7.

Corollary 2.8. Let 6; € [0,1) (1 <i<n),and b e C— {0}. Also suppose that
n
> wi(1-6)<1. (2.18)
i=1

If fi € 81,(6:,b,1) (1 <i < n), then the integral operator Iy 1, = F, defined by (1.27), is in the class
-Sk+1 (0/ b/ 1)

Remark 2.9. If we set b = 1 in Corollary 2.8, then we have [7, Corollary 1].

Theorem 2.10. Let a; >0,6; € [-1,1), a;+6; >0 (1 <i<m)and b e C- {0}, A > 0. Also suppose
that

En: pi <1, (2.19)

i=1

If fi € US; (@i, 6i,b,A) (1 <i< n),then the integral operator Iy, = F , defined by (1.27), is in the
class Ki(y,b, \), where y is defined as in (2.9).

Proof. The proof is similar to the proof of Theorem 2.2. O

Corollary 2.11. Let a; >0, 6; € [-1,1), a; + 6; >0 (1 < i < m) and b € C - {0}. Also suppose that

i< (2.20)
i=1
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If fi € USy (ai, 6;,b,1) (1 <i < n), then the integral operator Iy 1, = F, defined by (1.27), is in the
class Si41(y, b, 1), where y is defined as in (2.9).

Proof. In Theorem 2.10, we consider A = 1. O
Remark 2.12. If we set b = 1 in Corollary 2.11, then we have [7, Theorem 2].

Corollary 2.13. Let 6; € [0,1)(1 < i <m)and b e C— {0}, A > 0. Also suppose that
D> oui<l (2.21)
i=1

If fi € 81,(6;,b, 1) (1 < i< n), then the integral operator Iy, = F, defined by (1.27), is in the class
Ki(p,b, \), where p is defined as in (2.16).

Proof. In Theorem 2.10, we consider &y =ay = -+ =a,, = 0. O

Corollary 2.14. Let 6; € [0,1)(1 <i < n)and b € C— {0}. Also suppose that
> wi<l (2.22)
i=1

If fi € 81,(6:,b,1) (1 <i < n), then the integral operator Iy 1, = F, defined by (1.27), is in the class
Sk+1(p, b, 1), where p is defined as in (2.16).

Proof. In Corollary 2.13, we consider A = 1. O
Remark 2.15. 1If we set b = 1 in Corollary 2.14, then we have [7, Corollary 2].

Theorem 2.16. Let a > 0,6 € [-1,1), a+ 6 >0and b € C - {0}, A > 0. Also suppose that
i< (2.23)
i=1

If fi € US (a0, 6,b,\) (1 < i< n), then the integral operator Iy 1, = F, defined by (1.27), is in the
class UK (a,6,b,)).

Proof. Since f; € US;,(a,6,b,1) (1 <i<n), by (1.14) we have

1 Dl,-+1fi(z) 1 Dli+1fi(z)

forall z € U.
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On the other hand, from (2.1), we obtain

Journal of Inequalities and Applications

)Lz(DkF(z)) L1/ D" fi(z) >
b (DKF(z)) 21: b< Dlifi(z) !
~ n n 1 Dl+1f
_1—§#i+§‘ui|:l+5< D

Considering (1.16) with the above equality, we find
DFF(
Re{l )LZ( z)) }—a

&z(DkF(z))" ~
b (D*F(2))

b (DFF(z))

~ n n 1 Dl+1fl(z)
_1—§ﬂi+§#iRe{1+ <D’f1(Z) 1>
n n Dl+1fl(z)
21—§yi+i§=;yzRe{1+ <lel(z) 1>>
n n 1 Dl+1f(z) )
>1—§y,~+§yi[ —< DA (=) 1> +6‘

for all z € U. This completes proof.

Corollary 2.17. Leta >0, 6 € [-1,1),a+ 6 >0,and be C -

Z ui <1,
i1

|
R
M-

1
‘ulb
|1
b
|1
/’llb

DH1fi(z)

(2.25)
(z)
z)

1>]

Dliﬂfi(z)
Difi(z)
Dl +1f (Z)
Dlfi(z)

Dl fi(z)

{0}. Also suppose that

(2.27)

If fi € US.(a,6,b,1) (1 <i < n), then the integral operator Iy 1, = F, defined by (1.27), is in the

class USy1(a,6,b,1).

Proof. In Theorem 2.16, we consider A = 1.

O

Remark 2.18. 1f we set b = 1 in Corollary 2.17, then we have [7, Theorem 3].

Theorem 2.19. Leta >0,be C -

i ui <1,
i1

{0}, and X > 0. Also suppose that

(2.28)

If fi € SHy,(a,b,1) (1 < i< n), then the integral operator Iy, = F, defined by (1.27), is in the

class KH(a,b,)).
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Proof. Since f; € SH;,(a,b, 1) (1 <i<n), by (1.22) we have

1 D’f“fi(z)
1+ E< D) -1> -2a(v2-1)

Dl,~+1fi(z)

Re{\@+§< D7) —1>}+2a(\f2—1)— >0

(2.29)

for all z € U. Considering this inequality and (2.1), we obtain

Re{fuﬁ)‘z(Dk—F(z)?}+2a(\f2—1)—‘1+1W—F(Z),)—2a(f2—1)‘
b (D*F(2)) b (D*F(z))

=Re{ﬁ+ ‘ggy(% -1>} +2a(v2-1)
|egs ,1,@;;{23 _1> —2a(\@—1)‘
—V2+ > yiRe{g<[§ZlfiféS) -1>} +2a(vV2-1)
_ 1+gﬂ%<%l+;f(g) _1> —2a(\@—1)‘
_ \ﬁ+§‘u,~Re{\/§+ g<%j}f((;)) -1>} —\fzgyﬁza(ﬁ—n

n 1 Dl,-+1 ; n Y
1+i_21yi[1+5< Dlif{(S) _1> —20{(\@—1)]—gyi+2a(ﬁ—1)§ﬂi—2a(ﬁ_1)‘

_ \fz<1 _gﬂl) +2a(vV2-1) +§P‘iRe4 V2 §<D[l):;{2(zz)) _1>}

n n [ Li+1 (=
_‘[1—20((\@—1)] <1—§yi> +§,¢i _1+%<€)T{l((z))_1> —2a(\/§—1)”

> \/§<1 - i#i) +2a(V2-1) + i#iRe V2+ g <Dli+1fi(z) 1> }
i=1 i=1

Difi(z)
- |1—2a(\f2—1)|<1—iz::‘ui> —g,u,- 1+%<€;Z;ﬁ(§) _1> -2a(v2-1)

+2a(V2 - 1)5] pi —2a(V2 - 1)zn: Wi
i=1 i=1
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= [V2+2a(vV2-1) - |1—2a(\f2—1)|]<1—_§n:w>

i=1

I V2 [ D' fi(z)
+§ Hi [Re{\/i+7 <W —1) }+2tx(\f2—1)—

1/ D" fi(z)
1+E<W{‘(Z) —1> —2“(&-1)}]

> [V2+2a(v2-1) - |1—2a(f2—1)|]<1—im>

> <1—iﬂi> min {(v2-1)(1 +4a),V2+1} >0
i=1

(2.30)
for all z € U. Hence by (1.23), we have F € XH(a,b, ). O
Corollary 2.20. Let a > 0 and b € C — {0}. Also suppose that
PWTESE (2.31)
i=1

If fi € SH#i,(a,b,1) (1 < i < n), then the integral operator Iy, = F, defined by (1.27), is in the
class SHy1(a, b, 1).

Proof. In Theorem 2.19, we consider A = 1. O
Remark 2.21. If we set b = 1 in Corollary 2.20, then we have [7, Theorem 4].

Theorem 2.22. Let a >0,b € C— {0} and A > 0. Also suppose that
(1+vV2a(v2-1)) D i < 1. (2.32)
i=1

If fi € SHy,(a,b,1) (1 < i< n), then the integral operator Iy, = F, defined by (1.27), is in the
class K, (0,b,A).

Proof. Since f; € SH;,(a,b, 1) (1 <i<n), by (1.22) we have

Dl,~+1 ;
Re{ﬁ+ g<ﬁ—l>}+2a(\f2—l) >

1 Dl,~+1fi(z)
1+ E<m—1> —ZIX(\/E—].)’
(2.33)
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for all z € U. Considering this inequality and (2.1), we obtain

\ﬁRe{l + &Z(Dkf(z))” }
b (Dkf(z))

~ \/Q n Dli+1fi(z)
ez T (5 1))

i=1

- n n \/E Dl,~+1fi(z)
_\fZ—\ﬁ;‘ui+§‘uiRe{\@+T<W—l>}

n n n ﬁ Dli+1 ;
= \@—\@i:zl ‘ui—Za(\@—l)i:Zl‘uﬁi:Zl Wi I:Re{\@+7 <ﬁ —1> }+2a(\@—1)]

> \/§<1 - (1+ \/ia(\ﬁ—l))iy,) >0

(2.34)
for all z € U. Hence, by (1.8), we have F € X (0,b, \). ]
Corollary 2.23. Let a > 0 and b € C — {0}. Also suppose that

(1+vV2a(vV2-1)) > i< 1. (2.35)
i=1

If fi € SH,(a,b,1) (1 < i < n), then the integral operator Iy, = F, defined by (1.27), is in the
class Si+1(0,b,1).

Proof. In Theorem 2.22, we consider A = 1. O

Remark 2.24. 1f we set b = 1 in Corollary 2.23, then we have [7, Theorem 5].
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