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1. Introduction

In [1], Malkowsky and Savaş defined a new sequence space by using generalized weighted
means and they studied β-dual and matrix transformations of this space.

Recently, Altay and Başar [2] constructed a new paranormed sequence space inspired
by the sequence space defined in [1].

On the other hand, Shue [3] first defined the Cesáro sequence spaces with a norm.
Many authors studied the Cesáro sequence spaces with several properties. In [4], it is shown
that the Cesáro sequence spaces cesp (1 ≤ p < ∞) have Kadec-Klee and local uniform
rotundity properties.Cui et al. [5] showed that Banach-Saks of type p property holds in these
spaces.

Quite recently, Sanhan and Suantai [6] generalized normed Cesáro sequence spaces
to paranormed sequence spaces by making use of Köthe sequence spaces. They also defined
and investigated modular structure and some geometrical properties of these generalized
sequence spaces. Besides, Petrot and Suantai [7] studied the uniform Opial property of these
spaces.
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Our goal is first to introduce modular sequence space lρ(u, v; p) obtained from
paranormed ones by generalized weighted means on Köthe sequence spaces.

In special cases, the sequence space lρ(u, v; p) includes the well-known Cesàro and
Nörlund sequence spaces that are normed and paranormed spaces having modular structure
(see [8]). We also show that the modular space lρ(u, v; p) is a Banach space when it is
equipped with Luxemburg norm.

The main purpose of this study is to show that the Kadec-Klee and Opial properties
hold in the lρ(u, v; p) space.

The organization of this paper is as follows. In the first section, we introduce some
definitions and the concepts that are used throughout the paper. In the second section, we
construct the modular space lρ(u, v; p) which was obtained by paranormed space l(u, v; p)
and we investigate the Kadec-Klee property of this space. We also show that the modular
space lρ(u, v; p) is a Banach space under the Luxemburg norm. Finally, in the third section,
uniform Opial property of the space lρ(u, v; p) is investigated by using some topological
structures.

We denote by N, R, and F the set of natural numbers, the set of real numbers and the
scalar field, respectively. Let (X, ‖ · ‖) be a real Banach space and let B(X)(S(X)) be the closed
unit ball (the unit sphere) of X. The space of all real sequences x = (x(i))∞i=1 is denoted by �0.

A Banach space X = (X, ‖ · ‖) is said to be a Köthe sequence space if X is a subspace
of �0 such that (see [9]): (i) If x ∈ �0, y ∈ X, and |x(i)| ≤ |y(i)| for all i ∈ N, then x ∈ X and
‖x‖ ≤ ‖y‖. (ii) There is an element x ∈ X such that x(i) > 0 for all i ∈ N.

We say that x ∈ X is order continuous if for any sequence (xn) in X such that xn(i) ≤
|x(i)| for each i ∈ N and xn(i) → 0(n → ∞), we have ‖xn‖ → 0 holds.

A Köthe sequence spaceX is said to be order continuous if all sequences inX are order
continuous. It is easy to see that x ∈ X is order continuous if and only if ‖(0, 0, . . . , 0, x(n +
1), x(n + 2), . . .)‖ → 0 as n → ∞.

A Banach space X is said to have the Kadec-Klee property (or property (H)) if every
weakly convergent sequence on the unit sphere with the weak limit in the sphere is
convergent in norm.

Let X be a real Banach space. We say that X has the Opial property if for any weakly
null sequence {xn} in X and any x in X \ {0}, the inequality

lim inf
n→∞

‖xn‖ < lim inf
n→∞

‖xn + x‖ (1.1)

holds (see [10]). Opial [10] has proved that �p space (1 < p < ∞) has this property.
Franchetti [11] has shown that any infinite dimensional Banach space has an

equivalent norm that satisfies the Opial property.
We say that X has the uniform Opial property (see [10]) if for any ε > 0 there exists r > 0

such that for any x fromX with ‖x‖ ≥ ε and any weakly null sequence {xn} in the unit sphere
S(X) of X, the following inequality

1 + r ≤ lim inf
n→∞

‖xn + x‖ (1.2)
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holds. It is well known that the Opial property of a Banach space X plays an important role
in the fixed point theory and in the theory of differential and integral equations (see e.g [12–
15]). Also the geometrical properties of some modular sequence spaces have been studied in
([16, 17]).

For a real vector space X, a function ρ : X → [0,∞] is called amodular if it satisfies the
following conditions:

(i) ρ(x) = 0 ⇔ x = 0,

(ii) ρ(αx) = ρ(x) for all α ∈ F with |α| = 1,

(iii) ρ(αx + βy) ≤ ρ(x) + ρ(y) for all x, y ∈ X and all α, β ≥ 0 with α + β = 1.

Further, the modular ρ is called convex if

(iv) ρ(αx + βy) ≤ αρ(x) + βρ(y) holds for all x, y ∈ X and all α, β ≥ 0 with α + β = 1.

For any modular ρ on X, the space

Xρ =
{
x ∈ X : ρ(λx) −→ 0 as λ −→ 0+

}
(1.3)

is called the modular space.
A sequence (xn) of elements of Xρ is called modular convergent to x ∈ Xρ if there exists

a λ > 0 such that ρ(λ(xn − x)) → 0 as n → ∞. If ρ is a convex modular, then the following
formulas:

‖x‖L = inf
{
λ > 0 : ρ

(x
λ

)
≤ 1

}
,

‖x‖A = inf
λ>0

1
λ

(
1 + ρ(λx)

)
(1.4)

define two norms on Xρ which are called the Luxemburg norm and the Amemiya norm,
respectively. In addition

‖x‖L ≤ ‖x‖A ≤ 2‖x‖L (1.5)

for all x ∈ Xρ holds (see [18]).

Proposition 1.1. Let (xn) ⊂ Xρ. Then ||xn||L → 0 (or equivalently ||x||A → 0) if and only if
ρ(λ(xn)) → 0 as n → ∞, for every λ > 0.

Proof. See [19, page 15, Theorem].

Throughout this paper, the sequence p = (pr) is a bounded sequence of positive real
numbers with pr > 1, also H = sup pr and M = max(1,H).

For x ∈ �0, i ∈ N, we denote

ei = (0, 0, . . . 0, 1, 0, 0, . . .)
(
1 seats-in ith place of ei

)
,

x|i = (x(1), x(2), . . . , x(i), 0, 0, . . .),

x|N−i = (0, 0, . . . , 0, 0, x(i + 1), x(i + 2), . . .),

(1.6)
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and supp(x) = {i ∈ N : x(i)/= 0}. Also let E be the set of all sequences with finite number of
coordinates different from zero. Besides we will need the following inequality in the sequel:

|ar + br |pr ≤ K
(|ar |pr + |br |pr

)
, (1.7)

where K = max{1, 2H−1}, with H = suprpr .
By using the sequence space defined in [1], Altay and Başar [2] defined the sequence

space l(u, v; p) as

l
(
u, v; p

)
=

⎧
⎨

⎩
x = (xk) ∈ �0 :

∞∑

k=0

∣
∣
∣
∣
∣
∣

k∑

j=0

ukvjxj

∣
∣
∣
∣
∣
∣

pk

< ∞
⎫
⎬

⎭
. (1.8)

We write U for the set of all sequences u such that uk /= 0 for all k ∈ N. Let u, v ∈ U
and define the matrix G(u, v) = (gnk) by

gnk =

⎧
⎨

⎩

unvk,

0,

0 ≤ k ≤ n,

k > n
(1.9)

for all k, n ∈ N where un depends only on n and vk depends only on k.
They also showed that the space l(u, v; p) is a complete linear metric space

paranormed by

h(x) =

⎛

⎝
∞∑

k=0

∣∣∣∣∣∣

k∑

j=0

ukvjxj

∣∣∣∣∣∣

pk⎞

⎠

1/M

. (1.10)

We now introduce a generalized modular sequence space lρ(u, v; p) by

lρ
(
u, v; p

)
=
{
x ∈ �0 : ρ(λx) < ∞, for some λ > 0

}
, (1.11)

where

ρ(x) =
∞∑

k=0

⎛

⎝
k∑

j=0

ukvj |x
(
j
)|
⎞

⎠

pk

. (1.12)

It can be seen that ρ : lρ(u, v; p) → [0,∞] is a modular on lρ(u, v; p).
Note that the Luxemburg norm on the sequence space lρ(u, v; p) is defined as follows:

‖x‖L = inf
{
λ > 0 : ρ

(x
λ

)
≤ 1

}
, ∀x ∈ lρ

(
u, v; p

)
(1.13)
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or equally

‖x‖L = inf

⎧
⎨

⎩
λ > 0 : ρ

(x
λ

)
=

∞∑

k=0

⎛

⎝
k∑

j=0

ukvj

∣
∣
∣
∣
∣
x
(
j
)

λ

∣
∣
∣
∣
∣

⎞

⎠

pk

≤ 1

⎫
⎬

⎭
. (1.14)

In the same way we can introduce the Amemiya norm on the sequence space lρ(u, v; p) as
follows:

‖x‖A = inf
λ>0

1
λ

(
1 + ρ(λx)

)
, ∀x ∈ lρ

(
u, v; p

)
. (1.15)

By combining special case of uk and vj , we get the following modular spaces: if uk =
1/(k + 1) and vj = 1 for all k, j ∈ N, then the space lρ(u, v; p) reduces to the modular space
ces(p) (see [7]) normed by

‖x‖L,ces(p) = inf

⎧
⎨

⎩
λ > 0 : ρ

(x
λ

)
=

∞∑

k=0

⎛

⎝ 1
k + 1

k∑

j=0

∣∣∣∣∣
x
(
j
)

λ

∣∣∣∣∣

⎞

⎠

pk

≤ 1

⎫
⎬

⎭
. (1.16)

If uk = 1/Pk , vj = pj , and Pk =
∑k

j=0 pj for all k, j ∈ N, then the space lρ(u, v; p) reduces to the
modular space Nρ(p) (see [8]), normed by

‖x‖L,Nρ(p) = inf

⎧
⎨

⎩
λ > 0 : ρ

(x
λ

)
=

∞∑

k=0

⎛

⎝ 1
Pk

k∑

j=0

pj

∣∣∣∣∣
x
(
j
)

λ

∣∣∣∣∣

⎞

⎠

pk

≤ 1

⎫
⎬

⎭
. (1.17)

2. Kadec-Klee Property and Modular Structure of lρ(u, v; p)

In this section we will give some basic properties of the modular ρ on the space lρ(u, v; p).
Also wewill investigate some relationships between the modular ρ and the Luxemburg norm
on lρ(u, v; p).

Proposition 2.1. The functional ρ is a convex modular on lρ(u, v; p).

Proof. The proof is obvious. Hence we omitted it.

Proposition 2.2. For any x ∈ lρ(u, v; p), the following assertions are satisfied:

(i) If 0 < a < 1 and ||x||L > a, then ρ(x) > aH ,

(ii) if a ≥ 1 and ||x||L < a, then ρ(x) < aH ,

(iii) if ||x||L ≤ 1, then ρ(x) ≤ ||x||L,
(iv) ||x||L = 1 if and only if ρ(x) = 1.

Proof. It can be proved with standard techniques in a similar way as in [16, 20].
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Proposition 2.3. Let (xn) be a sequence in lρ(u, v; p). Then

(i) if limn→∞||xn||L = 1, then limn→∞ρ(xn) = 1,

(ii) if limn→∞ρ(xn) = 0, then limn→∞||xn||L = 0.

Proof. (i) Suppose that limn→∞||xn||L = 1 and let ε ∈ (0, 1). Then there exists n0 such that
1 − ε < ||xn||L < 1 + ε for all n ≥ n0. By Proposition 2.2(i) and (ii), for all n ≥ n0, the inequality
(1 − ε)H < ||xn||L < (1 + ε)H implies that limn→∞ρ(xn) = 1.

(ii) Suppose that ||xn||L � 0. Then there is an ε ∈ (0, 1) and a subsequence (xnk) of (xn)
such that ||xnk ||L > ε for all k ∈ N. By Proposition 2.2(i), we obtain that ρ(xnk) > εH for all
k ∈ N, which means that ρ(xnk) � 0 as n → ∞. Hence ρ(xn) � 0.

Now we have the following.

Theorem 2.4. The space lρ(u, v; p) is a Banach space with respect to the Luxemburg norm defined by

‖x‖L = inf
{
λ > 0 : ρ

(x
λ

)
≤ 1

}
. (2.1)

Proof. Let (xn(j)) be a Cauchy sequence in lρ(u, v; p) and ε ∈ (0, 1). Thus, there exists n0 such
that

‖xn − xm‖L < ε, (2.2)

for all m,n ≥ n0. By Proposition 2.2(iii)we have

ρ(xn − xm) < ‖xn − xm‖L < ε, (2.3)

for all n,m ≥ n0, which means that

∞∑

k=0

⎛

⎝
k∑

j=0

ukvj

∣∣xn(j) − xm(j)
∣∣

⎞

⎠

pk

< ε, (2.4)

for m,n ≥ n0. For fixed k, the last inequality gives that

∣∣xn

(
j
) − xm

(
j
)∣∣ < ε, (2.5)

Hence we obtain that the sequence (xn(j)) is a Cauchy sequence in R. Since R is
complete, xm(j) → x(j) as m → ∞. Therefore, for fixed k

k∑

j=0

ukvj

∣∣xn

(
j
) − x

(
j
)∣∣ < ε (2.6)

asm → ∞ and for all n ≥ n0.
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It remains to show that the sequence (x(j)) is an element of lρ(u, v; p). From the
inequality (2.3), we can write

∞∑

k=0

⎛

⎝
k∑

j=0

ukvj

∣
∣xn

(
j
) − xm

(
j
)∣∣

⎞

⎠

pk

< ε (2.7)

for all m,n ≥ n0. So we obtain

ρ(xn − xm) −→ ρ(xn − x), (2.8)

asm → ∞ for all n ≥ n0. Since for all n ≥ n0,

∞∑

k=0

⎛

⎝
k∑

j=0

ukvj

∣∣xn

(
j
) − xm

(
j
)∣∣

⎞

⎠

pk

−→
∞∑

k=0

⎛

⎝
k∑

j=0

ukvj

∣∣xn

(
j
) − x

(
j
)∣∣

⎞

⎠

pk

, (2.9)

as m → ∞, then by (2.3) we have ρ(xn − x) < ‖xn − x‖L < ε for all n ≥ n0. This means that
xn → x as n → ∞. So we have (xn0 − x) ∈ lρ(u, v; p). Since lρ(u, v; p) is a linear space, we
have x = xn0 − (xn0 −x) ∈ lρ(u, v; p). Therefore the sequence space lρ(u, v; p) is a Banach space
with respect to Luxemburg norm. This completes the proof.

Now, we give a proposition concerning Kadec-Klee property of the space lρ(u, v; p).

Proposition 2.5. Let x ∈ lρ(u, v; p) and (xn) ⊆ lρ(u, v; p). If ρ(xn) → ρ(x) as n → ∞ and
xn(j) → x(j) as n → ∞ for all j ∈ N, then xn → x as n → ∞.

Proof. Let ε > 0. Since ρ(x) =
∑∞

k=0 (
∑k

j=0 ukvj |x(j)|)
pk

< ∞ , we have

∞∑

k=k0+1

⎛

⎝
k∑

j=0

ukvj

∣∣x
(
j
)∣∣

⎞

⎠

pk

<
ε

6K
, (2.10)

where H = sup pk,K = max{1, 2H−1}.
Since ρ(xn) −

∑k0
k=0 (

∑k
j=0 ukvj |xn(j)|)

pk → ρ(x) −∑k0
k=0 (

∑k
j=0 ukvj |x(j))|)

pk as n → ∞
and xn(j) → x(j) as n → ∞ for all j ∈ N, there exists n0 ∈ N such that

∣∣∣∣∣∣

∞∑

k=k0+1

⎛

⎝
k∑

j=0

ukvj

∣∣xn

(
j
)∣∣

⎞

⎠

pk

−
∞∑

k=k0+1

⎛

⎝
k∑

j=0

ukvj

∣∣x
(
j
)∣∣

⎞

⎠

pk
∣∣∣∣∣∣
<

ε

3K
(2.11)

for all n ≥ n0. Also since xn(j) → x(j) for all j ∈ N, we have

k0∑

k=0

⎛

⎝
k∑

j=0

ukvj

∣∣xn

(
j
) − x

(
j
)∣∣

⎞

⎠

pk

<
ε

3
(2.12)
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for all n ≥ n0. It follows from (2.3), (2.10), and (2.11) that for n ≥ n0,

ρ(xn − x) =
∞∑

k=0

⎛

⎝
k∑

j=0

ukvj

∣
∣xn

(
j
) − x

(
j
)∣∣

⎞

⎠

pk

=
k0∑

k=0

⎛

⎝
k∑

j=0

ukvj

∣
∣xn

(
j
) − x

(
j
)∣∣

⎞

⎠

pk

+
∞∑

k=k0+1

⎛

⎝
k∑

j=0

ukvj

∣
∣xn

(
j
) − x

(
j
)∣∣

⎞

⎠

pk

<
ε

3
+K

⎡

⎣
∞∑

k=k0+1

⎛

⎝
k∑

j=0

ukvj

∣
∣xn

(
j
)∣∣

⎞

⎠

pk

+
∞∑

k=k0+1

⎛

⎝
k∑

j=0

ukvj

∣
∣x
(
j
)∣∣

⎞

⎠

pk⎤

⎦

=
ε

3
+K

⎡

⎣ρ(xn) −
k0∑

k=0

⎛

⎝
k∑

j=0

ukvj

∣
∣xn

(
j
)∣∣

⎞

⎠

pk

+
∞∑

k=k0+1

⎛

⎝
k∑

j=0

ukvj

∣
∣x
(
j
)∣∣

⎞

⎠

pk⎤

⎦

<
ε

3
+K

⎡

⎣ρ(x) −
k0∑

k=0

⎛

⎝
k∑

j=0

ukvj

∣∣x
(
j
)∣∣

⎞

⎠

pk

+
ε

3K
+

∞∑

k=k0+1

⎛

⎝
k∑

j=0

ukvj

∣∣x
(
j
)∣∣

⎞

⎠

pk⎤

⎦

=
ε

3
+K

⎡

⎣
∞∑

k=k0+1

⎛

⎝
k∑

j=0

ukvj

∣∣x
(
j
)∣∣

⎞

⎠

pk

+
ε

3K
+

∞∑

k=k0+1

⎛

⎝
k∑

j=0

ukvj

∣∣x
(
j
)∣∣

⎞

⎠

pk⎤

⎦

<
ε

3
+
ε

3
+
ε

3

= ε.

(2.13)

This shows that ρ(xn−x) → 0 as n → ∞.Hence by Proposition 2.3(ii), we have ||xn−x||L → 0
as n → ∞, that is, xn → x. This completes the proof.

Now, we give the main results of this paper involving geometric properties of the
space lρ(u, v; p).

Theorem 2.6. The space lρ(u, v; p) has the Kadec-Klee property.

Proof. Let x ∈ S(lρ(u, v; p)) and (xn) ⊆ B(lρ(u, v; p)) such that ||xn||L → 1 and xn
w→ x as

n → ∞. From Proposition 2.2(iv), we have ρ(x) = 1, so it follows from Proposition 2.3(i) that
ρ(xn) → ρ(x) as n → ∞. Since xn

w→ x and the ith-coordinate mapping πj : lρ(u, v; p) → R

defined by πj(x) = x(j) is continuous linear function on lρ(u, v; p), it follows that xn(j) →
x(j) as n → ∞ for all j ∈ N. Thus, by Proposition 2.5, xn → x as n → ∞.

3. Uniform Opial Property of lρ(u, v; p)

In this section, we give some topological properties of lρ(u, v; p) and investigate its uniform
opial property.

We introduce the notation lAρ (u, v; p) = (lρ(u, v; p), || · ||A) for brevity.
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Theorem 3.1. S(lAρ (u, v; p)) is a closed subspace of l
A
ρ (u, v; p).

Proof. Let us recall the definitions of S(lAρ (u, v; p)) and lAρ (u, v; p), that is,

S
(
lAρ
(
u, v; p

))
=
{
x ∈ �0 : ρ(λx) < ∞ ∀λ > 0

}
,

lAρ
(
u, v; p

)
=
{
x ∈ �0 : ρ(λx) < ∞ for some λ > 0

}
.

(3.1)

It is easy to see that S(lAρ (u, v; p)) is a subspace of lAρ (u, v; p). Next we must prove that
S(lρ(u, v; p)) is closed in lAρ (u, v; p). In order to establish this fact, we show that if xn ⊂
S(lAρ (u, v; p)) for each n ∈ N and xn → x ∈ lAρ (u, v; p), then x ∈ S(lAρ (u, v; p)).

Take any c > 0. Since xn → x ∈ lAρ (u, v; p), by Proposition 1.1, ||xn − x||A → 0 and
ρ(2c(xn − x)) < ∞ for some c > 0. Besides, since xn ∈ S(lAρ (u, v; p)), ρ(2cxn) < ∞ for every
c > 0. We must show that ρ(cx) < ∞ for every c > 0. We put

ρ(x) =
∞∑

k=0

⎛

⎝
k∑

j=0

ukvj

∣∣x
(
j
)∣∣

⎞

⎠

pk

, (3.2)

and take the sequence cx(j) such that

cx
(
j
)
=

2c
(
x
(
j
) − xn

(
j
))

2
+
2cxn

(
j
)

2
. (3.3)

Thus

ρ(cx) =
∞∑

k=0

⎛

⎝
k∑

j=0

ukvj

∣∣cx
(
j
)∣∣

⎞

⎠

pk

=
∞∑

k=0

⎛

⎝1
2

k∑

j=0

ukvj

∣∣2c
(
xn

(
j
) − x

(
j
)) − 2c

(
xn

(
j
))∣∣

⎞

⎠

pk

≤
∞∑

k=0

⎛

⎝1
2

k∑

j=0

ukvj

∣∣2c
(
xn

(
j
) − x

(
j
))∣∣ +

1
2

k∑

j=0

ukvj

∣∣2c
(
xn

(
j
))∣∣

⎞

⎠

pk

≤ K

2

∞∑

k=0

⎛

⎝
k∑

j=0

ukvj

∣∣2c
(
xn

(
j
) − x

(
j
))∣∣

⎞

⎠

pk

+
K

2

∞∑

k=0

⎛

⎝
k∑

j=0

ukvj

∣∣2c
(
xn

(
j
))∣∣

⎞

⎠

pk

≤ K

2
ρ(2c(xn − x)) +

K

2
ρ(2cxn),

(3.4)

where K = max(1, 2H−1). Since ρ(2c(xn − x)) < ∞ and ρ(2cxn) < ∞ for every c > 0, we obtain
ρ(cx) < ∞ for every c > 0. So x ∈ S(lAρ (u, v; p)).
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Lemma 3.2. If ρ(x) < ∞, then the distance from x to E, d(x, E), is less than or equal to 1.

Proof. See [7, Lemma 2.2]

Theorem 3.3. If limj→∞ inf pj > 1, and uk
∑m

j=0 vj = 1, then the following assertions are true:

(i) S(lAρ (u, v; p)) = cl(E), the closure of the set E,

(ii) S(lAρ (u, v; p)) is the subspace of all order continuous elements of lAρ (u, v; p),

(iii) S(lAρ (u, v; p)) is a separable space.

Proof. (i) Suppose that S(lAρ (u, v; p)) ⊆ cl(E). Then for any x ∈ S(lAρ (u, v; p)) and r ≥ 1, we
have rx ∈ S(lAρ (u, v; p)). Therefore by Lemma 3.2 we get d(rx, E) ≤ 1 or d(x, E) ≤ 1/r. Since
r was arbitrary, we have that x ∈ cl(E).

Conversely, we have to show that S(lAρ (u, v; p)) ⊇ cl(E). By Theorem 3.1, S(lAρ (u, v; p))
is a closed linear subspace of lAρ (u, v; p). To complete the proof, it remains to show that cl(E) ⊆
S(lAρ (u, v; p)). So it suffices to show that em ∈ S(lAρ (u, v; p)) for each m ∈ N.

Let β = lim inf pk > 1. Fix k ∈ N and take any r > 0. If the sequence (vm) is monotone,
we have ukvm < 1/m for fixed m/= 0. Choose k0 such that k0 ≥ max{m, r} so that pk ≥ β for
all k ≥ k0. Thus we get

ρ(rem) =
k0∑

k=m

(ukvmr)pk +
∞∑

k=k0+1

(ukvmr)pk ≤
k0∑

k=m

(
r

k

)pk

+
∞∑

k=k0+1

(
r

k

)β

< ∞. (3.5)

Hence em ∈ S(lAρ (u, v; p)).
(ii) From (i) S(lAρ (u, v; p)) is a closed subspace of lAρ (u, v; p). We only need to show

that each element of S(lAρ (u, v; p)) is an order continuous element of lAρ (u, v; p). For x ∈
S(lAρ (u, v; p)) and ε > 0, there exists i0 ∈ N such that ρ((x − x|i)/ε) < ε for all i > i0. Therefore,

∥∥∥∥
x − x|i

ε

∥∥∥∥
A

≤ 1 + ρ

(
x − x|i

ε

)
≤ 1 + ε (3.6)

for all i > i0. ‖x − x|i‖A → 0 as i → ∞ holds since ε is arbitrary.
(iii) From the definition of E it can be seen that E is a countable dense. From (i)

S(lAρ (u, v; p)) has at least one countable dense subset, that is, E. Hence S(lAρ (u, v; p)) is
separable.

Now, we establish some conditions for lAρ (u, v; p) to posses the uniformOpial property.

Theorem 3.4. If pk > 1 for all k ∈ N and lim supk→∞pk < ∞, then lAρ (u, v; p) has the uniform
Opial property.

Proof. Take any ε > 0 and x ∈ lAρ (u, v; p) such that ||x||A ≥ ε. Let (xn) be a weakly
null sequence in S(lAρ (u, v; p)). Since lim supk→∞pk < ∞, by Theorem 2.6, there exists δ ∈
(0, 2/3) independent of x such that ρ(x/2) > δ. Also since lim supk→∞pk < ∞, we have
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S(lAρ (u, v; p)) = lAρ (u, v; p). By Theorem 3.3(ii) x is an order continuous element. Hence we
can find k0 ∈ N such that

∥
∥x|N−k0

∥
∥
A <

δ

4
,

∞∑

k=k0+1

⎛

⎝
k∑

j=0

ukvj

∣
∣
∣
∣
x(j)
2

∣
∣
∣
∣

⎞

⎠

pk

<
δ

8
.

(3.7)

It follows that

δ ≤
k0∑

k=0

⎛

⎝
k∑

j=0

ukvj

∣
∣
∣
∣∣
x
(
j
)

2

∣
∣
∣
∣∣

⎞

⎠

pk

+
∞∑

k=k0+1

⎛

⎝
k∑

j=0

ukvj

∣
∣
∣
∣∣
x
(
j
)

2

∣
∣
∣
∣∣

⎞

⎠

pk

δ ≤
k0∑

k=0

⎛

⎝
k∑

j=0

ukvj

∣∣∣∣∣
x
(
j
)

2

∣∣∣∣∣

⎞

⎠

pk

+
δ

8
,

(3.8)

which implies

7δ
8

≤
k0∑

k=0

⎛

⎝
k∑

j=0

ukvj

∣∣∣∣∣
x
(
j
)

2

∣∣∣∣∣

⎞

⎠

pk

. (3.9)

From xn
w→ 0 , it follows that xn(j) → 0 for all j ∈ N. So there exists n0 ∈ N such that

∥∥∥xn|k0

∥∥∥
A
<

δ

4
(3.10)

for all n > n0.We must show that

1 + δ ≤ lim inf
n→∞

‖xn + x‖A. (3.11)

We have

‖x + xn‖A =
∥∥∥(x + xn)|k0 + (x + xn)|N−k0

∥∥∥
A

≥ ∥∥x|k0 + xn|N−k0
∥∥
A − ∥∥x|N−k0

∥∥
A −

∥∥∥xn|k0

∥∥∥
A

≥ ∥∥x|k0 + xn|N−k0
∥∥
A − δ

2
.

(3.12)
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We now consider ‖x|k0 + xn|N−k0‖A. Since pk > 1 for all k ∈ N, we have that there exists
cn > 0 such that

∥
∥x|k0 + xn|N−k0

∥
∥
A =

1
cn

[
1 + ρ

(
cn
(
x|k0 + xn|N−k0

))]
. (3.13)

Combining this fact with (3.12) and considering the fact that ρ(x+y) ≥ ρ(x)+ρ(y) if supp(x)∩
supp(y) = ∅, we get

‖x + xn‖A ≥ 1
cn

+
1
cn

ρ
(
cnx|k0

)
+

1
cn

ρ
(
cnx|N−k0

) − δ

2
=
∥
∥xn|N−k0

∥
∥
A +

1
cn

ρ
(
cnx|k0

) − δ

2
. (3.14)

It suffices to consider the case cn ≥ 1/2, since in the other case we have ||x + xn||A > 2 − δ/2 >
1 + δ. Since 2cn ≥ 1, by convexity of the function t → |t|pk , we have ρ(cnx|k0) ≥ 2cnρ(x|k0).
Thus, inequalities (3.9) and (3.12) imply that

‖x + xn‖A ≥ ∥∥x|N−k0
∥∥
A + 2ρ

(
x|k0
2

)
− δ

2

=
∥∥x|N−k0

∥∥
A + 2

k0∑

k=0

⎛

⎝
k∑

j=0

ukvj

∣∣∣∣∣
x
(
j
)

2

∣∣∣∣∣

⎞

⎠

pk

− δ

2

> 1 − δ

4
+
14δ
8

− δ

2
= 1 + δ,

(3.15)

which implies that lim infn→∞||xn + x||A ≥ 1 + δ. This completes the proof .

Corollary 3.5. If pk > 1 for all k ∈ N and lim supk→∞pk < ∞, then Nρ(p) has the uniform Opial
property.
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[3] J. S. Shue, “Cesáro sequence spaces,” Tamkang Journal of Mathematics, vol. 1, pp. 143–150, 1970.
[4] Y. Q. Liu, B. E. Wu, and Y. P. Lee, Method of Sequence Spaces, Guangdong of Science and Technology

Press, 1996.
[5] Y. Cui, H. Hudzik, and R. Płuciennik, “Banach-Saks property in some Banach sequence spaces,”

Annales Polonici Mathematici, vol. 65, no. 2, pp. 193–202, 1997.



Journal of Inequalities and Applications 13

[6] W. Sanhan and S. Suantai, “Some geometric properties of Cesáro sequence space,” Kyungpook
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