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1. Introduction

In the recent years, the Lp-analogs of the projection bodies and centroid bodies have received
considerable attentions [1–7]. Lutwak et al. established the Lp-analog of the Petty projection
inequality [4]. It states that if K is a convex body in R

n, then for 1 ≤ p < ∞,

V
(
Π∗

pK
)
V (K)(n−p)/p ≤ ω

n/p
n , (1.1)

with an equality if and only if Kis an ellipsoid. Here, Π∗
pK = (ΠpK)∗ is used to denote the polar

body of the Lp-projection body,ΠpK, ofK, andwriteωn for V (Bn), the n-dimensional volume
of the unit ball Bn.

They also established the Lp-analog of the Busemann-Petty centroid inequality [4]. It
states that if K is a star body (about the origin) in R

n, then for 1 ≤ p < ∞,

V
(
ΓpK

) ≥ V (K), (1.2)



2 Journal of Inequalities and Applications

with an equality if and only if Kis a centroid ellipsoid at the origin. Here, ΓpK is the Lp-centroid
body ofK. It is also shown in [4] that the Lp-Busemann-Petty inequality (1.2) implies Lp-Petty
projection inequality (1.1). A quite different proof of the Lp-analog of the Busemann-Petty
centroid inequality is obtained by Campi and Gronchi [1].

Recently, Lutwak et al. [8] proved that there is a family of Lp-John ellipsoids, EpK,
which can be associatedwith a fixed convex bodyK: ifK contains the origin in its interior and
p > 0, among all origin-centered ellipsoids E, the unique ellipsoid EpK solves the constrained
maximization problem:

V
(
EpK

)
= max

E
V (E) subject to Vp(K,E) ≤ V (K). (1.3)

Corresponding to Lutwak et al.’s work, Yu et al. [9] proved that there is a family of dual
Lp-John ellipsoids, ẼpK, which can be associated with a fixed convex body K: if K contains
the origin in its interior and p > 0, among all origin-centered ellipsoids E, the unique ellipsoid
ẼpK solves the constrained maximization problem:

V
(
ẼpK

)
= max

E

1
V (E)

subject to Ṽ−p(K,E) ≤ V (K). (1.4)

Lutwak et al. [8] showed that the following results hold.

Theorem A. If K is a convex body in R
n that contains the origin in its interior, and 1 ≤ p, then

ωn

2n
V (K) ≤ V

(
EpK

) ≤ V (K), (1.5)

with an equality in the right inequality if and only if K is a centered ellipsoid and an equality in the
left inequality if K is a parallelotope.

Yu et al. [9] showed a theorem similar to Theorem A, and recently, Lu and Leng [10]
gave a strengthened inequality as follows.

Theorem B. If K is a convex body in R
n that contains the origin in its interior, and 1 ≤ p, then

V
(
EpK

) ≤ V
(
Γ−pK

) ≤ V (K) ≤ V
(
ΓpK

) ≤ V
(
ẼpK

)
, (1.6)

with an equality if and only if K is a centered ellipsoid. Here, V (Γ−pK) ≤ V (K) is a dual form of
Lp-Busemann-Petty centroid inequality (1.2).

One purpose of this paper is to establish the equivalence of some affine isopermetric
inequalities as follows.



Journal of Inequalities and Applications 3

Theorem 1.1. IfK is a convex body in R
n that contains the origin in its interior, and 1 ≤ p, then the

following inequalities are equivalent:

V
(
ΓpK

) ≥ V (K), (1.7)

V
(
Γ−pK

) ≤ V (K), (1.8)

V
(
Π∗

−pK
)−1

V (K)(n+p)/p ≤ ω
n/p
n , (1.9)

V
(
Π∗

pK
)
V (K)(n−p)/p ≤ ω

n/p
n , (1.10)

all above inequalities with an equality if and only if K is a centered ellipsoid.

Note that (1.7) is the Lp-Busemann-Petty centroid inequality (1.2), (1.8) is the dual
form of Lp-Busemann-Petty centroid inequality in Theorem B, (1.9) is a “dual” form of Lp-
Petty projection inequality, and (1.10) is the Lp-Petty projection inequality (1.1).

Another purpose of this paper is to establish the follow equivalence of Theorem A and
its inclusion version Theorem A’.

Theorem 1.2. If K is a convex body in R
n that contains the origin in its interior, and 1 ≤ p, then

Theorem A is equivalent to Theorem A’.

Theorem A’. There exist an ellipsoid E and a parallelotope P such that

V (E) = V (K) = V (P),

EpE ⊇ EpK ⊇ EpP,
(1.11)

where the left inclusion with an equality if and only ifK is a centered ellipsoid and the right inclusion
with an equality if and only if K is a parallelotope.

Some notation and background material contained in Section 2.

2. Notations and Background Materials

We will work in R
n equipped with a fixed Euclidean structure and write | · | for the

corresponding Euclidean norm. We denote the Euclidean unit ball and the unit sphere by
Bn and Sn−1, respectively. The volume of appropriate dimension will be denoted by V (·).
The group of nonsingular affine transformations of R

n is denoted by GL(n). The group of
special affine transformations is denoted by SL(n), these are the members of GL(n) whose
determinant is one. We will write ωn for the volume of the Euclidean unit ball in R

n. Note
that

ωn =
πn/2

Γ(1 + n/2)
(2.1)

defines ωn for all nonnegative real n (not just the positive integers). For real p ≥ 1, define
cn,p = ωn+p/ω2ωnωp−1.
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If K is a convex body in R
n that contains the origin in its interior, then we will use K∗

to denote the polar body of K, that is,

K∗ =
{
x ∈ R

n : x · y ≤ 1 ∀y ∈ K
}
. (2.2)

From the definition of the polar body, we can easily find that for λ > 0, there is

(λK)∗ =
1
λ
K∗. (2.3)

If K is a convex body in R
n, then its support function, hK(·) = h(K, ·) : R

n → R, is
defined for x ∈ R

n by h(K,x) = max{x · y : y ∈ K}. A star body in R
n is a nonempty compact

set K satisfying [o, x] ⊂ K for all x ∈ K and such that the radial function ρK(·) = ρ(K, ·),
defined by ρ(K,x) = max{λ ≥ 0 : λx ∈ K}, is positive and continuous. Two star bodiesK and
L are said to be dilates if ρK(u)/ρL(u) is independent of u ∈ Sn−1.

If K is a centered (i.e., symmetric about the origin) convex body, then it follows from
the definitions of support and radial functions, and the definition of polar body, that

h∗
K =

1
ρK

, ρ∗K =
1
hK

. (2.4)

For Lp-mixed and dual mixed volumes, those formulae are directly given as follows.
It was shown in [11] that corresponding to each convex bodyK ∈ R

n that is containing
the origin in its interior, there is a positive Borel measure, Sp(K, ·), on Sn−1, such that

Vp(K,Q) =
1
n

∫

Sn−1
hQ(u)pdSp(K,u), (2.5)

for each convex body Q.
If K,L are star bodies in R

n, then for p ≥ 1, the dual Lp mixed volume, Ṽ−p(K,L), of K
and Lwas defined by [4]

Ṽ−p(K,L) =
1
n

∫

Sn−1
ρK(u)n+pρL(u)−pdS(u), (2.6)

where the integration is with respect to spherical Lebesgue measure S on Sn−1.
From the integral representation (2.5), it follows immediately that for each convex

body K,

Vp(K,K) = V (K). (2.7)

From (2.6), of the dual Lp-mixed volume, it follows immediately the for each star body K,

Ṽ−p(K,K) = V (K). (2.8)
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We will require two basic inequalities for the Lp-mixed volume Vp and the dual Lp-
mixed volume Ṽ−p. The Lp-Minkowski inequality states that for convex bodies K,L [3],

Vp(K,L) ≥ V (K)(n−p)/nV (L)p/n, (2.9)

with an equality if and only if K and L are dilates [11]. The dual Lp-Minkowski inequality
states that for star bodies K,L [4],

Ṽ−p(K,L) ≥ V (K)(n+p)/nV (L)−p/n, (2.10)

with an equality if and only if K and L are dilates.
The Lp-projection bodies was first introduced by Lutwak et al. in [4], and is defined as

the body whose support function, for u ∈ Sn−1, is given by

h
(
ΠpK, u

)p =
1

nωncn−2,p

∫

Sn−1
|u · v|pdSp(K,v). (2.11)

If K is a star body about the origin in Rn, and p ≥ 1, the Lp-centroid body ΓpK of K is
the origin-symmetric convex body whose support function is given by [4]

h
(
ΓpK, u

)p =
1

cn,pV (K)

∫

K

|u · x|pdx. (2.12)

The normalized Lp polar projection body of K, Γ−pK, for p > 0, is defined as the body
whose radial function, for u ∈ Sn−1, is given by [8]

ρ
(
Γ−pK, u

)−p =
1

ncn−2,pV (K)

∫

Sn−1
|u · v|pdSp(K,v). (2.13)

Here, we introduce a new convex body of K, Π−pK, for p > 0, defined as the body
whose radial function, for u ∈ Sn−1, that is given by

ρ
(
Π−pK, u

)−p =
1

ωncn,p

∫

K

|u · x|pdx. (2.14)
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Noting that the normalization is chosen for the standard unit ball Bn in Rn, we have
ΠpBn = ΓpBn = Γ−pBn = Π−pBn = Bn. For general reference the reader may wish to consult the
books of Gardner [12] and Schneider [13].

3. Proof of the Results

Lemma 3.1. If K is a convex body in R
n that contains the origin in its interior, then

Π∗
pK =

(
ωn

V (K)

)1/p

Γ−pK; (3.1)

Π∗
−pK =

(
V (K)
ωn

)1/p

ΓpK. (3.2)

Proof. From the definition (2.11) and (2.13) combined with (2.4), for u ∈ Sn−1, we have

ρ
(
Π∗

pK, u
)−p

=
V (K)
ωn

ρ
(
Γ−pK, u

)−p
. (3.3)

So we get

Π∗
pK =

(
ωn

V (K)

)1/p

Γ−pK. (3.4)

From the definition (2.12) and (2.14) combined with (2.4), for u ∈ Sn−1, we have

h
(
Π∗

−pK, u
)p

=
V (K)
ωn

h
(
ΓpK, u

)p
. (3.5)

So we get

Π∗
−pK =

(
V (K)
ωn

)1/p

ΓpK. (3.6)

Corollary 3.2. If K is a convex body in R
n that contains the origin in its interior, let p(K) =

V (Π∗
−pK)−1V (K)(n+p)/p, then for φ ∈ GL(n),

p
(
φK
)
= p(K). (3.7)
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Proof. Since for φ ∈ GL(n), Γp(φK) = φΓpK (see [4]), combined with (3.2) and V (φK) =
|detφ|V (K), we know that for φ ∈ GL(n),

p
(
φK
)
= V
(
Π∗

−p
(
φK
))−1

V
(
φK
)(n+p)/p

= V

⎛
⎝
(

V
(
φK
)

ωn

)1/p

Γp
(
φK
)
⎞
⎠

−1

V
(
φK
)(n+p)/p

= V

⎛
⎝
(∣∣detφ∣∣V (K)

ωn

)1/p

φΓpK

⎞
⎠

−1
(∣∣detφ∣∣V (K)

)(n+p)/p

= V

((
V (K)
ωn

)1/p

ΓpK

)−1
V (K)(n+p)/p

= V
(
Π∗

−pK
)−1

V (K)(n+p)/p

= p(K).

(3.8)

From Corollary 3.2, we know that (1.9) is an affine isoperimetric inequality.

Lemma 3.3. IfK, L are convex bodies inR
n that contain the origin in their interior, then the following

equalities are equivalent:

Vp

(
L,ΓpK

)
=

ωn

V (K)
Ṽ−p
(
K,Π∗

pL
)
, (3.9)

Vp

(
L,ΓpK

)

V (L)
=

Ṽ−p
(
K,Γ−pL

)

V (K)
, (3.10)

Vp

(
L,Π∗

−pK
)
=

V (L)
ωn

Ṽ−p
(
K,Γ−pL

)
, (3.11)

Vp

(
L,Π∗

−pK
)
= Ṽ−p

(
K,Π∗

pL
)
. (3.12)

Proof. First, from Lemma 3.1, we know that

Π∗
pL =

(
ωn

V (L)

)1/p

Γ−pL. (3.13)

From (2.5) and (2.6), we have for λ > 0,

Vp(K, λL) = λpVp(K,L), (3.14)

Ṽ−p(K, λL) = λ−pṼ−p(K,L). (3.15)
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Substitute (3.13) in (3.9) and combine (3.15) to just get (3.10); substitute (3.2) in (3.10)
and combine (3.14) to just get (3.11); substitute (3.13) in (3.11) and combine (3.15) to just get
(3.12); substitute (3.2) in (3.12) and combine (3.14) to just get (3.9).

Note. Equation (3.9) is proved in [4] and (3.10) is proved in [10].

Proof of Theorem 1.1. (1.7)⇒(1.8): substitutingK = Γ−pL in (3.10), followed by (2.8), (2.9), and
(1.7), we have for each convex body L that contains the origin in its interior,

1 =
Ṽ−p
(
Γ−pL,Γ−pL

)

V
(
Γ−pL

)

=
Vp

(
L,ΓpΓ−pL

)

V (L)

≥ V (L)(n−p)/nV
(
ΓpΓ−pL

)p/n
V (L)

≥ V (L)−(p/n)V
(
Γ−pL

)p/n
.

(3.16)

(1.8)⇒(1.9): substituting L = Π∗
−pK in (3.11), followed by (2.7), (2.9), and (1.8), we

have

ωn =
ωn

V
(
Π∗

−pK
)Vp

(
Π∗

−pK,Π∗
−pK
)

= Ṽp

(
K,Γ−pΠ∗

−pK
)

≥ V (K)(n+p)/nV
(
Γ−pΠ∗

−pK
)−p/n

≥ V (K)(n+p)/nV
(
Π∗

−pK
)−p/n

.

(3.17)

(1.9)⇒(1.10): substituting K = Π∗
pL in (3.12), followed by (2.9), we get

V
(
Π∗

pL
)
= Vp

(
L,Π∗

−pΠ
∗
pL
)
≥ V (L)(n−p)/nV

(
Π∗

−pΠ
∗
pL
)p/n

, (3.18)

that is,

V (L)(n−p)/p ≤ V
(
Π∗

−pΠ
∗
pL
)−1

V
(
Π∗

pL
)n/p

. (3.19)

So, we have

V
(
Π∗

pL
)
V (L)(n−p)/p ≤ V

(
Π∗

−pΠ
∗
pL
)−1

V
(
Π∗

pL
)(n+p)/p ≤ ω

n/p
n . (3.20)
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(1.10)⇒(1.7): substituting L = ΓpK in (3.9), followed by (2.7), (2.10), we have

V
(
ΓpK

)
= Vp

(
ΓpK,ΓpK

)

=
ωn

V (K)
Ṽ−p
(
K,Π∗

pΓpK
)

≥ ωn

V (K)
V (K)(n+p)/nV

(
Π∗

pΓpK
)−p/n

= ωnV (K)p/nV
(
Π∗

pΓpK
)−p/n

,

(3.21)

that is,

V
(
ΓpK

)n/p
V
(
Π∗

pΓpK
)
V (K)−1 ≥ ω

n/p
n . (3.22)

Combined with (1.10), we get

V
(
ΓpK

)n/p
V
(
Π∗

pΓpK
)
V (K)−1 ≥ ω

n/p
n ≥ V

(
ΓpK

)(n−p)/p
V
(
Π∗

pΓpK
)
, (3.23)

that is,

V
(
ΓpK

) ≥ V (K). (3.24)

Lemma 3.4 (see [8]). If K is a convex body in R
n that contains the origin in its interior, and p > 0,

then for φ ∈ GL(n),

EpφK = φEpK. (3.25)

Proof of Theorem 1.2. Firstly, we prove that Theorem A implies Theorem A’.

From V (EpK) ≤ V (K), taking E = (V (K)/V (EpK))1/nEpK, since V (λK) = λnV (K) for
λ > 0, we know that V (E) = V (K) and followed by Lemma 3.4,

EpE =

(
V (K)

V
(
EpK

)
)1/n

EpK ⊇ EpK, (3.26)

where the inclusion with an equality if and only if K is a centered ellipsoid.
Suppose that EpK = φ̂Bn, for some φ̂ ∈ GL(n), then

V
(
EpK

)
=
∣∣∣det φ̂

∣∣∣ωn. (3.27)
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Take P = (φ̂/|det φ̂|1/n)(V (K)1/n/2)Q, here Q is the unit cube [−1, 1]n. Since Lutwak et al.
[8] proved that the Lp-John ellipsoid of the unit cube is Bn, that is, EpQ = Bn, so we have
V (K) = V (P) by the fact V (Q) = 2n. Following Lemma 3.4, EpQ = Bn, EpK = φ̂Bn, (3.27) and
the left inequality of Theorem A, we have

EpP =

⎛
⎝ V (K)

2n
∣∣∣det φ̂

∣∣∣

⎞
⎠

1/n

φ̂EpQ

=

⎛
⎝ V (K)

2n
∣∣∣det φ̂

∣∣∣

⎞
⎠

1/n

φ̂Bn

=

(
V (K)ωn

2nV
(
EpK

)
)1/n

EpK

⊆ EpK,

(3.28)

where the inclusion with an equality if and only if K is a parallelotope. By (3.26) and (3.28),
we know that Theorem A implies Theorem A’.

Secondly, we prove that Theorem A’ implies Theorem A.
On the one hand, since EpE ⊇ EpK and EpE = E by Lemma 3.4, we have

V (K) = V (E) = V
(
EpE
) ≥ V

(
EpK

)
, (3.29)

with an equality holds if and only if K is a centered ellipsoid. On the other hand, suppose
that P = φQ for some φ ∈ GL(n), then V (K) = V (P) = |detφ|V (Q) = |detφ|2n, so |detφ| =
V (K)/2n. Following Theorem A’ and Lemma 3.4, we have

EpK ⊇ EpP = EpφQ = φEpQ = φBn, (3.30)

that is,

V
(
EpK

) ≥ V
(
φBn

)
=
∣∣detφ∣∣V (Bn) =

V (K)
2n

ωn, (3.31)

with an equality if and only if K is a parallelotope. By (3.29) and (3.31), we know that
Theorem A’ implies Theorem A.
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