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Let K = {k1, k2, . . . , kr} and L = {l1, l2, . . . , ls} be sets of nonnegative integers. Let F =
{F1, F2, . . . , Fm} be a family of subsets of [n] with [Fi] ∈ K for each i and |Fi ∩ Fj | ∈ L for any
i /= j. Every subset Fe of [n] can be represented by a binary code a = (a1, a2, . . . , an) such that ai = 1
if i ∈ Fe and ai = 0 if i /∈Fe. Alon et al. made a conjecture in 1991 in modular version. We prove
Alon-Babai-Sukuki’s Conjecture in nonmodular version. For any K and L with n ≥ s + max ki,

|F| ≤
(

n−1
s

)
+
(

n−1
s−1

)
+ · · · +

(
n−1

s−2r+1

)
.

1. Introduction

In this paper, F stands for a family of subsets of [n] = {1, 2, . . . , n}, K = {k1, . . . , kr}, and
L = {l1, . . . , ls}, where |Fi| ∈ K for all Fi ∈ F, |Fi ∩ Fj | ∈ L for all Fi, Fj ∈ F, i /= j. The variable
x will stand as a shorthand for the n-dimensional vector variable (x1, x2, . . . , xn). Also, since
these variables will take the values only 0 and 1, all the polynomials wewill work with will be
reduced modulo the relation x2

i = xi. We define the characteristic vector vi = (vi1, vi2, . . . , vin)
of Fi such that vij = 1 if j ∈ Fi and vij = 0 if j /∈Fi. We will present some results in this paper
that give upper bounds on the size of F under various conditions. Below is a list of related
results by others.

Theorem 1.1 (Ray-Chaudhuri and Wilson [1]). If K = {k}, and L is any set of nonnegative
integers with k > max lj , then |F| ≤

(
n

s

)
.
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Theorem 1.2 (Alon et al. [2]). If K and L are two sets of nonnegative integers with ki > s − r, for
every i, then |F| ≤

(
n

s

)
+
(

n

s−1

)
+ · · · +

(
n

s−r+1

)
.

Theorem 1.3 (Snevily [3]). If K and L are any sets such that min ki > max lj , then |F| ≤
(

n−1
s

)
+(

n−1
s−1

)
+ · · · +

(
n−1
0

)
.

Theorem 1.4 (Snevily [4]). Let K and L be sets of nonnegative integers such that min ki > max lj .

Then, |F| ≤
(

n−1
s

)
+
(

n−1
s−1

)
+ · · · +

(
n−1

s−2r+1

)
.

Conjecture 1.5 (Snevily [5]). For any K and L withmin ki > max lj , |F| ≤
(

n

s

)
.

In the same paper in which he stated the above conjecture, Snevily mentions that it
seems hard to prove the above bound and states the following weaker conjecture.

Conjecture 1.6 (Snevily [5]). For anyK and L withmin ki > max lj , |F| ≤
(

n−1
s

)
+
(

n−1
s−1

)
+ · · ·+(

n−1
s−r

)
.

Hwang and Sheikh [6] proved the bound of Conjecture 1.6 when K is a consecutive
set. The second theorem we prove is a special case of Conjecture 1.6 with the extra condition
that

⋂m
i=1 Fi /= ∅. These two theorems are stated hereunder.

Theorem 1.7 (Hwang and Sheikh [6]). Let K = {k1, k2, . . . , kr} where ki = k1 + i − 1, k1 > s − r,
and L = {l1, l2, . . . , ls}. Let F = {F1, F2, . . . , Fm} be such that |Fi| ∈ K for each i, |Fi|/∈L, and
|Fi ∩ Fj | ∈ L for any i /= j. Then |F| ≤

(
n−1
s

)
+
(

n−1
s−1

)
+ · · · +

(
n−1
s−r

)
.

Theorem 1.8 (Hwang and Sheikh [6]). Let K = {k1, k2, . . . , kr}, L = {l1, l2, . . . , ls}, and F =
{F1, F2, . . . , Fm} be such that |Fi| ∈ K for each i, |Fi ∩ Fj | ∈ L for any i /= j, and ki > s − r. If⋂m

i=1 Fi /= ∅, then |F| ≤
(

n−1
s

)
+
(

n−1
s−1

)
+ · · · +

(
n−1
s−r

)
.

Theorem 1.9 (Alon et al. [2]). Let K and L be subsets of {0, 1, ..., p − 1} such that K ∩ L = ∅,
where p is a prime and F = {F1, F2, . . . , Fm} a family of subsets of [n] such that |Fi|(mod p) ∈ K
for all Fi ∈ F and |Fi ∩ Fj |(mod p) ∈ L for i /= j. If r(s − r + 1) ≤ p − 1, and n ≥ s +max ki, then

|F| ≤
(

n

s

)
+
(

n

s−1

)
+ · · · +

(
n

s−r+1

)
.

Conjecture 1.10 (Alon et al. [2]). Let K and L be subsets of {0, 1, . . . , p − 1} such that K ∩ L = ∅,
where p is a prime and F = {F1, F2, . . . , Fm} a family of subsets of [n] such that |Fi|(modp) ∈ K for
all Fi ∈ F and |Fi∩Fj |(mod p) ∈ L for i /= j. If n ≥ s+max ki, then |F| ≤

(
n

s

)
+
(

n

s−1

)
+· · ·+

(
n

s−r+1

)
.

In [2], Alon et al. proved their conjectured bound under the extra conditions that r(s−
r +1) ≤ p−1 and n ≥ s+max ki. Qian and Ray-Chaudhuri [7] proved that if n > 2s− r instead
of n ≥ s +max ki, then the above bound holds.

We prove an Alon-Babai-Suzuki’s conjecture in non-modular version.

Theorem 1.11. Let K = {k1, k2, . . . , kr}, L = {l1, l2, . . . , ls} be two sets of nonnegative integers and
letF = {F1, F2, . . . , Fm} be such that |Fi| ∈ K for each i, |Fi∩Fj | ∈ L for any i /= j, and n ≥ s+maxi|Fi|.
then |F| ≤

(
n

s

)
+
(

n

s−1

)
+ · · · +

(
n

s−r+1

)
.
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2. Proof of Theorem

Proof of Theorem 1.11. For each Fi ∈ F, consider the polynomial

fi(x) =
∏
j

lj<|Fi|

(
vi · x − (

ki − lj
))
,

(2.1)

where vi is the characteristic vector of Fi and v∗
i is the characteristic vector of F∗

i = Fi − {1}.
Let vi the characteristic vector of Fc

i , and vi
∗ be the characteristic vector of (Fc

i )
∗.

We order {Fi} by size of Fi, that is, |Fj | ≤ |Fk| if j < k. We substitute the characteristic
vector vi of Fc

i by order of size of Fi. Clearly, fi(vi)/= 0 for 1 ≤ i ≤ m and fi(vj) = 0 for
1 ≤ j < i ≤ m. Assume that

∑
i

αifi(x) = 0. (2.2)

We prove that {fi(x)} is linearly independent. Assume that this is false. Let i0 be the smallest
index such that αi0 /= 0. We substitute vi0 into the above equation. Then we get αi0fi0(vi0) = 0.
We get a contradiction. So {fi(x)} is linearly independent. Let E = {E1, . . . , Ee} be the family
of subsets of [n] with size at most s − r, which is ordered by size, that is, |Ei| ≤ |Ej | if i < j,

where e =
∑s−r

i=0

(
n

i

)
. Let ui denote the characteristic vector of Ei. We define the multilinear

polynomial gi in n variables for each Ei:

gi(x) =
r∏
l=1

(
n∑
t=1

xt − (n − kl)

)∏
j∈Ei

xj . (2.3)

We prove that {gi(x)} is linearly independent. Assume that

∑
i

βigi(x) = 0. (2.4)

Choose the smallest size of Ei. Let ui be the characteristic vector of Ei. We substitute ui into
the above equation. We know that gi(ui)/= 0 and gj(ui) = 0 for any i < j. Since n ≥ s +max ki,
we get βi = 0. If we follow the same process, then the family {gi(x)} is linearly independent.
Next, we prove that {fi(x), gi(x)} is linearly independent. Now, assume that

∑
i

αifi(x) +
∑
i

βigi(x) = 0. (2.5)

Let F1 be the smallest size of Fi. We substitute the characteristic vector v1 of Fc
1 into the above

equation. Since |Fc
i | = n − kl, gi(v1) = 0 for all i. We only get α1f1(v1) = 0. So α1 = 0. By the

same way, choose the smallest size from {Fi} after deleting F1. We do the same process. We
also can get α2 = 0. By the same process, we prove that all αi = 0. We prove that {fi(x), gi(x)}
is linearly independent.
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Any polynomial in the set {fi(x), gi(x)} can be represented by a linear combination
of multilinear monomials of degree ≤ s. The space of such multilinear polynomials has
dimension

∑s
i=0

(
n

i

)
. We found |F|+∑s−r

i=0

(
n

i

)
linearly independent polynomials with degree

at most s. So |F| +∑s−r
i=0

(
n

i

)
≤ ∑s

i=0

(
n

i

)
. Thus |F| ≤

(
n

s

)
+
(

n

s−1

)
+ · · · +

(
n

s−r+1

)
.
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The authors thank Zoltán Füredi for encouragement to write this paper. The present research
has been conducted by the research grant of the Kwangwoon University in 2009.

References

[1] D. K. Ray-Chaudhuri and R. M. Wilson, “On t-designs,”Osaka Journal of Mathematics, vol. 12, no. 3, pp.
737–744, 1975.

[2] N. Alon, L. Babai, and H. Suzuki, “Multilinear polynomials and Frankl-Ray-Chaudhuri–Wilson type
intersection theorems,” Journal of Combinatorial Theory. Series A, vol. 58, no. 2, pp. 165–180, 1991.

[3] H. S. Snevily, “On generalizations of the de Bruijn-Erdős theorem,” Journal of Combinatorial Theory.
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