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We introduce a new iterative scheme for finding a common element of the set of solutions of
the equilibrium problems, the set of solutions of variational inequality for a relaxed cocoercive
mapping, and the set of fixed points of a nonexpansive mapping. The results presented in this
paper extend and improve some recent results of Ceng and Yao (2008), Yao (2007), S. Takahashi
andW. Takahashi (2007), Marino and Xu (2006), Iiduka and Takahashi (2005), Su et al. (2008), and
many others.

1. Introduction

Throughout this paper, we always assume that H is a real Hilbert space with inner product
〈·, ·〉 and norm ‖ · ‖, respectively, C is a nonempty closed and convex subset of H, and PC is
the metric projection of H onto C. In the following, we denote by “→ ” strong convergence,
by “⇀” weak convergence, and by “R” the real number set. Recall that a mapping S : C → C
is called nonexpansive if

‖Sx − Sy‖ ≤ ‖x − y‖, ∀x, y ∈ C. (1.1)

We denote by F(S) the set of fixed points of the mapping S.
For a given nonlinear operator A, consider the problem of finding u ∈ C such that

〈Au, v − u〉 ≥ 0, ∀v ∈ C, (1.2)
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which is called the variational inequality. For the recent applications, sensitivity analysis,
dynamical systems, numerical methods, and physical formulations of the variational
inequalities, see [1–24] and the references therein.

For a given z ∈ H, u ∈ C satisfies the inequality

〈u − z, v − u〉 ≥ 0, ∀v ∈ C, (1.3)

if and only if u = PCz, where PC is the projection of the Hilbert space onto the closed convex
set C.

It is known that projection operator PC is nonexpansive. It is also known that PC

satisfies

〈x − y, PCx − PCy〉 ≥ ‖PCx − PCy‖2, ∀x, y ∈ H. (1.4)

Moreover, PCx is characterized by the properties PCx ∈ C and 〈x − PCx, PCx − y〉 ≥ 0 for all
y ∈ C.

Using characterization of the projection operator, one can easily show that the
variational inequality (1.2) is equivalent to finding the fixed point problem of finding u ∈ C
which satisfies the relation

u = PC[u − λAu], (1.5)

where λ > 0 is a constant.
This fixed-point formulation has been used to suggest the following iterative scheme.

For a given u0 ∈ C,

un+1 = PC[un − λAun], n = 1, 2, . . . , (1.6)

which is known as the projection iterative method for solving the variational inequality
(1.2). The convergence of this iterative method requires that the operator Amust be strongly
monotone and Lipschitz continuous. These strict conditions rule out their applications in
many important problems arising in the physical and engineering sciences. To overcome
these drawbacks, Noor [2, 3] used the technique of updating the solution to suggest the two-
step (or predictor-corrector) method for solving the variational inequality (1.2). For a given
u0 ∈ C,

wn = PC[un − λAun],

un+1 = PC[wn − λAwn], n = 0, 1, 2, . . . ,
(1.7)

which is also known as the modified double-projection method. For the convergence analysis
and applications of this method, see the works of Noor [3] and Y. Yao and J.-C. Yao [16].

Numerous problems in physics, optimization, and economics reduce to find a
solution of (2.12). Some methods have been proposed to solve the equilibrium problem;
see [4, 5]. Combettes and Hirstoaga [4] introduced an iterative scheme for finding the best
approximation to the initial data when EP(F) is nonempty and proved a strong convergence
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theorem. Very recently, S. Takahashi and W. Takahashi [6] also introduced a new iterative
scheme,

F
(
yn, u

)
+

1
rn
〈u − yn, yn − xn〉 ≥ 0, ∀u ∈ C,

xn+1 = αnf(xn) + (1 − αn)Tyn,

(1.8)

for approximating a common element of the set of fixed points of a nonexpansive nonself
mapping and the set of solutions of the equilibrium problem and obtained a strong
convergence theorem in a real Hilbert space.

Iterative methods for nonexpansive mappings have recently been applied to solve
convex minimization problems; see [7–11] and the references therein. A typical problem is
to minimize a quadratic function over the set of the fixed points of a nonexpansive mapping
on a real Hilbert space H:

min
x∈C

1
2
〈Ax, x〉 − 〈x, b〉, (1.9)

where A is a linear bounded operator, C is the fixed point set of a nonexpansive mapping S,
and b is a given point in H. In [10, 11], it is proved that the sequence {xn} defined by the
iterative method below, with the initial guess x0 ∈ H chosen arbitrarily,

xn+1 = (I − αnA)Sxn + αnb, n ≥ 0, (1.10)

converges strongly to the unique solution of the minimization problem (1.9) provided the
sequence {αn} satisfies certain conditions. Recently, Marino and Xu [8] introduced a new
iterative scheme by the viscosity approximation method [12]:

xn+1 = (I − αnA)Sxn + αnγf(xn), n ≥ 0. (1.11)

They proved that the sequence {xn} generated by the above iterative scheme converges
strongly to the unique solution of the variational inequality

〈(A − γf
)
x∗, x − x∗〉 ≥ 0, x ∈ C, (1.12)

which is the optimality condition for the minimization problem

min
x∈C

1
2
〈Ax, x〉 − h(x), (1.13)

where C is the fixed point set of a nonexpansive mapping S and h a potential function for γf
(i.e., h′(x) = γf(x) for x ∈ H).
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For finding a common element of the set of fixed points of nonexpansive mappings
and the set of solution of variational inequalities for α-cocoercive map, Takahashi and Toyoda
[13] introduced the following iterative process:

xn+1 = αnxn + (1 − αn)SPC(xn − λnAxn), (1.14)

for every n = 0, 1, 2, . . ., where A is α-cocoercive, x0 = x ∈ C, {αn} is a sequence in (0,1),
and {λn} is a sequence in (0, 2α). They showed that, if F(S) ∩ VI(C,A) is nonempty, then the
sequence {xn} generated by (1.14) converges weakly to some z ∈ F(S) ∩ VI(C,A). Recently,
Iiduka and Takahashi [14] proposed another iterative scheme as follows:

xn+1 = αnx + (1 − αn)SPC(xn − λnAxn), (1.15)

for every n = 0, 1, 2, . . ., where A is α-cocoercive, x0 = x ∈ C, {αn} is a sequence in (0,1),
and {λn} is a sequence in (0, 2α). They proved that the sequence {xn} converges strongly to
z ∈ F(S) ∩ VI(C,A).

Recently, Chen et al. [15] studied the following iterative process:

xn+1 = αnf(xn) + (1 − αn)SPC(xn − λnAxn) (1.16)

and also obtained a strong convergence theorem by viscosity approximation method.
Inspired and motivated by the ideas and techniques of Noor [2, 3] and Y. Yao and J.-C.

Yao [16] introduce the following iterative scheme.
Let C be a closed convex subset of real Hilbert spaceH. LetA be an α-inverse strongly

monotone mapping of C into H, and let S be a nonexpansive mapping of C into itself such
that z ∈ F(S) ∩ VI(C,A)/= ∅. Suppose that x1 = u ∈ C and {xn}, {yn} are given by

yn = PC(xn − λnAxn),

xn+1 = αnu + βnxn + γnSPC

(
yn − λnAyn

)
,

(1.17)

where {αn}, {βn}, and {γn} are the sequences in [0, 1] and {λn} is a sequence in [0, 2α]. They
proved that the sequence {xn} defined by (1.17) converges strongly to common element of
the set of fixed points of a nonexpansive mapping and the set of solutions of the variational
inequality for α-inverse-strongly monotone mappings under some parameters controlling
conditions.

In this paper motivated by the iterative schemes considered in [6, 15, 16], we introduce
a general iterative process as follows:

F
(
yn, u

)
+

1
rn
〈u − yn, yn − xn〉 ≥ 0, ∀u ∈ C,

xn+1 = αnγf(xn) + βnxn +
((
1 − βn

)
I − αnA

)
SPC(I − snB)yn,

(1.18)

whereA is a linear bounded operator and B is relaxed cocoercive. We prove that the sequence
{xn} generated by the above iterative scheme converges strongly to a common element of
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the set of fixed points of a nonexpansive mapping, the set of solutions of the variational
inequalities for a relaxed cocoercive mapping, and the set of solutions of the equilibrium
problems (2.12), which solves another variational inequality

〈γf(q) −Aq, q − P〉 ≤ 0, ∀p ∈ F, (1.19)

where F = F(S) ∩ VI(C,B) ∩ EP(F) and is also the optimality condition for the minimization
problem minx∈F(1/2)〈Ax, x〉−h(x), where h is a potential function for γf (i.e., h′(x) = γf(x)
for x ∈ H). The results obtained in this paper improve and extend the recent ones announced
by S. Takahashi and W. Takahashi [6], Iiduka and Takahashi [14], Marino and Xu [8], Chen
et al. [15], Y. Yao and J.-C. Yao [16], Ceng and Yao [22], Su et al. [17], and many others.

2. Preliminaries

For solving the equilibrium problem for a bifunction F : C × C → R, let us assume that F
satisfies the following conditions:

(A1) F(x, x) = 0 for all x ∈ C;

(A2) F is monotone, that is, F(x, y) + F(y, x) ≤ 0 for all x, y ∈ C;

(A3) for each x, y, z ∈ C, limt→ 0F(tz + (1 − t)x, y) ≤ F(x, y);

(A4) for each x ∈ C, y �→ F(x, y) is convex and lower semicontinuous.

Recall the following.
(1) B is called ν-strong monotone if for all x, y ∈ C, we have

〈Bx − By, x − y〉 ≥ ν‖x − y‖2, (2.1)

for a constant ν > 0. This implies that

‖Bx − By‖ ≥ ν‖x − y‖, (2.2)

that is, B is ν-expansive, and when ν = 1, it is expansive.
(2) B is said to be μ-cocoercive [2, 3] if for all x, y ∈ C, we have

〈
Bx − By, x − y

〉 ≥ μ‖Bx − By‖2, for a constant μ > 0. (2.3)

Clearly, every μ-cocoercive map B is 1/μ-Lipschitz continuous.
(3) B is called −μ-cocoercive if there exists a constant μ > 0 such that

〈Bx − By, x − y〉 ≥ −μ‖Bx − By‖2, ∀x, y ∈ C. (2.4)

(4) B is said to be relaxed (μ, ν)-cocoercive if there exists two constants μ, ν>0 such that

〈Bx − By, x − y〉 ≥ −μ‖Bx − By‖2 + ν‖x − y‖2, ∀x, y ∈ C, (2.5)
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for μ = 0, B is ν-strongly monotone. This class of maps are more general than the class of
strongly monotone maps. It is easy to see that we have the following implication: ν-strongly
monotonicity ⇒ relaxed (μ, ν)-cocoercivity.

We will give the practical example of the relaxed (μ, ν)-cocoercivity and Lipschitz
continuous operator.

Example 2.1. Let Tx = κx, for all x ∈ C, for a constant κ > 1; then, T is relaxed (μ, ν)-cocoercive
and Lipschitz continuous. Especially, T is ν-strong monotone.

Proof. 1. Since Tx = κx, for all x ∈ C, we have T : C → C. For for all x, y ∈ C, for all μ ≥ 0, we
also have the below

〈Tx − Ty, x − y〉 = κ‖x − y‖2

≥ −μ‖Tx − Ty‖2 + (κ − 1)‖x − y‖2.
(2.6)

Taking ν = κ − 1, it is clear that T is relaxed (μ, ν)-cocoercive.
2. Obviously, for for all x, y ∈ C

‖Tx − Ty‖ ≤ (κ + 1)‖x − y‖. (2.7)

Then, T is κ + 1 Lipschitz continuous.
Especially, Taking μ = 0, we observe that

〈Tx − Ty, x − y〉 ≥ (κ − 1)‖x − y‖2. (2.8)

Obviously, T is ν-strong monotone.
The proof is completed.

(5) A mapping f : H → H is said to be a contraction if there exists a coefficient
α (0 ≤ α < 1) such that

‖f(x) − f
(
y
)‖ ≤ α‖x − y‖, ∀x, y ∈ H. (2.9)

(6) An operator A is strong positive if there exists a constant γ > 0 with the property

〈Ax, x〉 ≥ γ‖x‖2, ∀x ∈ H. (2.10)

(7) A set-valued mapping T : H → 2H is called monotone if for all x, y ∈ H, f ∈ Tx,
and g ∈ Ty imply 〈x − y, f − g〉 ≥ 0. A monotone mapping T : H → 2H is maximal if the
graph of G(T) of T is not properly contained in the graph of any other monotone mapping.
It is well known that a monotone mapping T is maximal if and only if for (x, f) ∈ H × H,
〈x − y, f − g〉 ≥ 0 for every (y, g) ∈ G(T) implies f ∈ Tx.
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Let B be a monotone map of C into H and let NCv be the normal cone to C at v ∈ C,
that is, NCv = {w ∈ H : 〈v − u,w〉 ≥ 0, ∀u ∈ C} and define

Tv =

⎧
⎨

⎩

Bv +NCv, v ∈ C,

∅, v ∈C.
(2.11)

Then T is the maximal monotone and 0 ∈ Tv if and only if v ∈ VI(C,B); see [1].
Related to the variational inequality problem (1.2), we consider the equilibrium

problem, which was introduced by Blum and Oettli [19] and Noor and Oettli [20] in 1994. To
be more precise, let F be a bifunction of C × C into R, where R is the set of real numbers.

For given bifunction F(·, ·) : C × C → R, we consider the problem of finding x ∈ C
such that

F
(
x, y

) ≥ 0, ∀y ∈ C (2.12)

which is known as the equilibrium problem. The set of solutions of (2.12) is denoted by EP(F).
Given a mapping T : C → H, let F(x, y) = 〈Tx, y − x〉 for all x, y ∈ C. Then x ∈ EP(F) if
and only if 〈Tx, y − x〉 ≥ 0 for all y ∈ C, that is, x is a solution of the variational inequality.
That is to say, the variational inequality problem is included by equilibrium problem, and the
variational inequality problem is the special case of equilibrium problem.

Assume that T is a potential function for T (i.e., ∇T(x) = T(x) for all x ∈ C), it is well
known that x ∈ C satisfies the optimality condition 〈Tx, y − x〉 ≥ 0 for all y ∈ C if and only if

find a point x ∈ C such that Tx = min
y∈C

T
(
y
)
. (2.13)

We can rewrite the variational inequality 〈Tx, y − x〉 ≥ 0 for all y ∈ C as, for any γ > 0,

〈
x − (

x − γTx
)
, y − x

〉 ≥ 0 ∀y ∈ C. (2.14)

If we introduce the nearest point projection PC from H onto C,

PCx = argmin
u∈C

1
2
‖x − u‖2, x ∈ H, (2.15)

which is characterized by the inequality

C � x̂ = PCx ⇐⇒ 〈x − x̂, y − x̂〉 ≤ 0, ∀y ∈ C, (2.16)

then we see from the above (2.14) that the minimization (2.13) is equivalent to the fixed point
problem

PC

(
x − γTx

)
= x. (2.17)
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Therefore, they have a relation as follows:

finding x ∈ C, x ∈ EP(F)

�
Finding x ∈ C, F

(
x, y

) ≥ 0, ∀y ∈ C, let F
(
x, y

)
= 〈γTx, y − x〉 ≥ 0, ∀γ > 0, ∀y ∈ C.

�

min
y∈C

T
(
y
)
, where ∇T(x) = T(x), ∀x ∈ C.

�
x ∈ Fix

(
PC

(
I − γT

))
.

(2.18)

In addition to this, based on the result (3) of Lemma 2.7, Fix(Tr) = EP(F), we know if
the element x ∈ F := Fix(S) ∩ EP(F) ∩ VI(C,B), we have x is the solution of the nonlinear
equation

x − SPC

(
I − γB

)
Trx = 0, ∀γ > 0, (2.19)

where Tr is defined as in Lemma 2.7. Once we have the solutions of the equation (2.19),
then it simultaneously solves the fixed points problems, equilibrium points problems, and
variational inequalities problems. Therefore, the constrained set F := Fix(S)∩EP(F)∩VI(C,B)
is very important and applicable.

We now recall some well-known concepts and results. It is well-known that for all
x, y ∈ H and λ ∈ [0, 1] there holds

‖λx + (1 − λ)y‖2 = λ‖x‖2 + (1 − λ)‖y‖2 − λ(1 − λ)‖x − y‖2. (2.20)

A space X is said to satisfy Opial’s condition [18] if for each sequence {xn} in X which
converges weakly to point x ∈ X, we have

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

‖xn − y‖, ∀y ∈ X, y /=x. (2.21)

Lemma 2.2 (see [9, 10]). Assume that {αn} is a sequence of nonnegative real numbers such that

αn+1 ≤
(
1 − γn

)
αn + δn, (2.22)

where γn is a sequence in (0,1) and {δn} is a sequence such that
(i)

∑∞
n=1 γn = ∞;

(ii) lim supn→∞δn/γn ≤ 0 or
∑∞

n=1 |δn| < ∞.

Then limn→∞αn = 0.
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Lemma 2.3. In a real Hilbert spaceH, the following inequality holds:

‖x + y‖2 ≤ ‖x‖2 + 2
〈
y, x + y

〉
, ∀x, y ∈ H. (2.23)

Lemma 2.4 (Marino and Xu [8]). Assume that B is a strong positive linear bounded operator on a
Hilbert spaceH with coefficient γ > 0 and 0 < ρ ≤ ‖B‖−1. Then ‖I − ρB‖ ≤ 1 − ργ .

Lemma 2.5 (see [21]). Let {xn} and {yn} be bounded sequences in a Banach spaceX and let {βn} be
a sequence in [0, 1] with 0 < lim infn→∞βn ≤ lim supn→∞βn < 1. Suppose xn+1 = (1−βn)zn +βnxn

for all integers n ≥ 0 and lim supn→∞(‖zn+1 − zn‖ − ‖xn+1 −xn‖) ≤ 0. Then, limn→∞‖zn −xn‖ = 0.

Lemma 2.6 (Blum and Oettli [19]). Let C be a nonempty closed convex subset of H and let F be a
bifunction of C × C into R satisfying (A1)–(A4). Let r > 0 and x ∈ H. Then, there exists z ∈ C such
that

F
(
z, y

)
+
1
r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C. (2.24)

Lemma 2.7 (Combettes and Hirstoaga [4]). Assume that F : C×C → R satisfies (A1)–(A4). For
r > 0 and x ∈ H, define a mapping Tr : H → C as follows:

Tr(x) =
{
z ∈ C : F

(
z, y

)
+
1
r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C

}
(2.25)

for all z ∈ H. Then, the following hold:

(1) Tr is single-valued;

(2) Tr is firmly nonexpansive, that is, for any x, y ∈ H, ‖Trx − Try‖2 ≤ 〈Trx − Try, x − y〉;
(3) F(Tr) = EP(F);

(4) EP(F) is closed and convex.

3. Main Results

Theorem 3.1. Let C be a nonempty closed convex subset of a Hilbert space H. Let F be a bifunction
of C×C into R which satisfies (A1)–(A4), let S be a nonexpansive mapping of C intoH, and let B be a
λ-Lipschitzian, relaxed (μ, ν)-cocoercive map of C intoH such that F = F(S)∩EP(F)∩VI(C,B)/= ∅.
Let A be a strongly positive linear bounded operator with coefficient γ > 0. Assume that 0 < γ < γ/α.
Let f be a contraction of H into itself with a coefficient α (0 < α < 1) and let {xn} and {yn} be
sequences generated by x1 ∈ H and

F
(
yn, η

)
+

1
rn
〈η − yn, yn − xn〉 ≥ 0, ∀η ∈ C,

xn+1 = αnγf(xn) + βnxn +
((
1 − βn

)
I − αnA

)
SPC(I − snB)yn

(3.1)
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for all n, where {αn}, {βn} ⊂ (0, 1) and {rn}, {sn} ⊂ [0,∞) satisfy

(C1) limn→∞αn = 0;

(C2)
∑∞

n=1 αn = ∞;

(C3) 0 < lim infn→∞βn ≤ lim supn→∞βn < 1;

(C4)
∑∞

n=1 |αn+1 − αn| < ∞,
∑∞

n=1 |rn+1 − rn| < ∞ and
∑∞

n=1 |sn+1 − sn| < ∞;

(C5) lim infn→∞rn > 0;

(C6) {sn} ∈ [a, b] for some a, b with 0 ≤ a ≤ b ≤ 2(ν − μλ2)/λ2.

Then, both {xn} and {yn} converge strongly to q ∈ F, where q = PF(γf + (I −A))(q), which
solves the following variational inequality:

〈γf(q) −Aq, p − q〉 ≤ 0, ∀p ∈ F. (3.2)

Proof. Note that from the condition (C1), we may assume, without loss of generality, that
αn ≤ (1 − βn)‖A‖−1. Since A is a strongly positive bounded linear operator onH, then

‖A‖ = sup{|〈Ax, x〉| : x ∈ H, ‖x‖ = 1}. (3.3)

observe that

〈((1 − βn
)
I − αnA

)
x, x〉 = 1 − βn − αn〈Ax, x〉

≥ 1 − βn − αn‖A‖

≥ 0,

(3.4)

that is to say (1 − βn)I − αnA is positive. It follows that

‖(1 − βn
)
I − αnA‖ = sup

{〈((1 − βn
)
I − αnA

)
x, x〉 : x ∈ H, ‖x‖ = 1

}

= sup
{
1 − βn − αn〈Ax, x〉 : x ∈ H, ‖x‖ = 1

}

≤ 1 − βn − αnγ.

(3.5)
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First, we show that I − snB is nonexpansive. Indeed, from the relaxed (μ, ν)-cocoercive and
λ-Lipschitzian definition on B and condition (C6), we have

‖(I − snB)x − (I − snB)y‖2 = ‖(x − y
) − sn

(
Bx − By

)‖2

= ‖x − y‖2 − 2sn〈x − y, Bx − By〉 + s2n‖Bx − By‖2

≤ ‖x − y‖2 − 2sn
[
−μ‖Bx − By‖2 + ν‖x − y‖2

]
+ s2n‖Bx − By‖2

≤ ‖x − y‖2 + 2snλ2μ‖x − y‖2 − 2snν‖x − y‖2 + λ2s2n‖x − y‖2

=
(
1 + 2snλ2μ − 2snν + λ2s2n

)
‖x − y‖2

≤ ‖x − y‖2,
(3.6)

which implies that the mapping I − snB is nonexpansive.
Now, we observe that {xn} is bounded. Indeed, take p ∈ F, since yn = Trnxn, we have

‖yn − p‖ = ‖Trnxn − Trnp‖ ≤ ‖xn − p‖. (3.7)

Put ρn = PC(I − snB)yn, since p ∈ VI(C,B), we have p = PC(I − snB)p. Therefore, we have

‖ρn − p‖ = ‖PC(I − snB)yn − PC(I − snB)p‖
≤ ‖(I − snB)yn − (I − snB)p‖
≤ ‖yn − p‖ ≤ ‖xn − p‖.

(3.8)

Due to (3.5), it follows that

‖xn+1 − p‖ = ‖αn

(
γf(xn) −Ap

)
+ βn

(
xn − p

)
+
((
1 − βn

)
I − αnA

)(
Sρn − p

)‖
≤ (

1 − βn − αnγ
)‖xn − p‖ + βn‖xn − p‖ + αn‖γf(xn) −Ap‖

≤ (
1 − αnγ

)‖xn − p‖ + αnγ‖f(xn) − f
(
p
)‖ + αn‖γf

(
p
) −Ap‖

≤ (
1 − αnγ

)‖xn − p‖ + αnγα‖xn − p‖ + αn‖γf
(
p
) −Ap‖

=
(
1 − (

γ − γα
)
αn

)‖xn − p‖ + αn‖γf
(
p
) −Ap‖.

(3.9)

It follows from (3.9) that

‖xn − p‖ ≤ max

{

‖x0 − p‖, γf
(
p
) −Ap‖

γ − γα

}

, n ≥ 0. (3.10)

Hence, {xn} is bounded, so are {f(xn)}, yn, and ρn.
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Next, we show that

lim
n→∞

‖xn+1 − xn‖ = 0. (3.11)

Observing that yn = Trnxn and yn+1 = Trn+1xn+1, we have

F
(
yn, η

)
+

1
rn
〈η − yn, yn − xn〉 ≥ 0, ∀η ∈ C, (3.12)

F
(
yn+1, η

)
+

1
rn+1

〈
η − yn+1, yn+1 − xn+1

〉 ≥ 0, ∀η ∈ C. (3.13)

Putting η = yn+1 in (3.12) and η = yn in (3.13), we have

F
(
yn, yn+1

)
+

1
rn
〈yn+1 − yn, yn − xn〉 ≥ 0, ∀η ∈ C,

F
(
yn+1, yn

)
+

1
rn+1

〈
yn − yn+1, yn+1 − xn+1

〉 ≥ 0, ∀η ∈ C.
(3.14)

It follows from (A2) that

〈
yn+1 − yn,

yn − xn

rn
− yn+1 − xn+1

rn+1

〉
≥ 0. (3.15)

That is,

〈
yn+1 − yn, yn − yn+1 + yn+1 − xn − rn

rn+1

(
yn+1 − xn+1

)
〉

≥ 0. (3.16)

Without loss of generality, let us assume that there exists a real numberm such that rn > m > 0
for all n. It follows that

‖yn+1 − yn‖2 ≤ ‖yn+1 − yn‖
(
‖xn+1 − xn‖ +

(
1 − rn

rn+1

)
‖(yn+1 − xn+1

)‖
)
. (3.17)

It follows that

‖yn+1 − yn‖ ≤ ‖xn+1 − xn‖ +
(
1 − rn

rn+1

)
‖(yn+1 − xn+1

)‖

≤ ‖xn+1 − xn‖ + M1

m
|rn+1 − rn+1|,

(3.18)
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where M1 is an appropriate constant such that supn≥1‖yn − xn‖ ≤ M1. Note that

‖ρn+1 − ρn‖ = ‖PC(I − sn+1B)yn+1 − PC(I − snB)yn‖
≤ ‖(I − sn+1B)yn+1 − (I − snB)yn‖
= ‖(I − sn+1B)yn+1 − (I − sn+1B)yn + (sn − sn+1)Byn‖
≤ ‖yn+1 − yn‖ + |sn − sn+1|‖Byn‖.

(3.19)

Substituting (3.18) into (3.19) yields that

‖ρn+1 − ρn‖ ≤ ‖xn+1 − xn‖ +M2(|rn+1 − rn| + |sn+1 − sn|), (3.20)

where M2 is an appropriate constant such that M2 = max{supn≥1‖Byn‖,M1/m}.
Define

xn+1 =
(
1 − βn

)
zn + βnxn, n ≥ 0. (3.21)

Observe that from the definition of yn, we obtain

zn+1 − zn =
xn+2 − βn+1xn+1

1 − βn+1
− xn+1 − βnxn

1 − βn

=
αn+1γf(xn+1) +

((
1 − βn+1

)
I − αn+1A

)
Sρn+1

1 − βn+1

− αnγf(xn) +
((
1 − βn

)
I − αnA

)
Sρn

1 − βn

=
αn+1

1 − βn+1
γf(xn+1) − αn

1 − βn
γf(xn) +

αn

1 − βn
ASρn

− αn+1

1 − βn+1
ASρn+1 + Sρn+1 − Sρn

=
αn+1

1 − βn+1

(
γf(xn+1) −ASρn+1

)
+

αn

1 − βn

(
ASρn − γf(xn)

)
Sρn+1

− Sρn.

(3.22)
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It follows that with

‖zn+1 − zn‖ − ‖xn+1 − xn‖ ≤ αn+1

1 − βn+1

(‖γf(xn+1)‖ + ‖ASρn+1‖
)
+

αn

1 − βn

(‖γf(xn)‖ + ‖ASρn‖
)

+ ‖ρn+1 − ρn‖ − ‖xn+1 − xn‖

≤ αn+1

1 − βn+1

(‖γf(xn+1)‖ + ‖ASρn+1‖
)
+

αn

1 − βn

(‖γf(xn)‖ + ‖ASρn‖
)

+M2(|rn+1 − rn| + |sn+1 − sn|).
(3.23)

This together with (C1), (C3), and (C4) implies that

lim sup
n→∞

(‖zn+1 − zn‖ − ‖xn+1 − xn‖) ≤ 0. (3.24)

Hence, by Lemma 2.5, we obtain ‖zn − xn‖ → 0 as n → ∞.
Consequently,

lim
n→∞

‖xn+1 − xn‖ = lim
n→∞

(
1 − βn

)‖zn − xn‖ = 0. (3.25)

Note that

‖xn+1 − xn‖ = ‖αn

(
γf(xn) −Axn

)
+
((
1 − βn

)
I − αnA

)(
Sρn − xn

)‖
≤ αn‖γf(xn) −Axn‖ +

(
1 − βn − αnγ

)‖Sρn − xn‖.
(3.26)

This together with (3.25) implies that

‖Sρn − xn‖ −→ 0. (3.27)

For p ∈ F, we have

‖yn − p‖2 = ‖Trnxn − Trnp‖2

≤ 〈Trnxn − Trnp, xn − p〉
= 〈yn − p, xn − p〉

=
1
2

(
‖yn − p‖2 + ‖xn − p‖2 − ‖xn − yn‖2

)

(3.28)

and hence

‖yn − p‖2 ≤ ‖xn − p‖2 − ‖xn − yn‖2. (3.29)
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Set λ > 0 as a constant such that

λ > sup
k

{‖γf(xk) −ASρk‖, ‖xk − p‖}. (3.30)

By (3.29) and (3.30), we have

‖xn+1 − p‖2 = ‖αnγf(xn) + βnxn +
((
1 − βn

)
I − αnA

)
Sρn − p‖2

= ‖[(1 − βn
)
I − αnA

](
Sρn − p

)
+ βn

(
xn − p

)
+ αn

(
γf(xn) −Ap

)‖2

= ‖(1 − βn
)(
Sρn − p

) − αnA
(
Sρn − p

)
+ βn

(
xn − p

)
+ αn

(
γf(xn) −Ap

)‖2

= ‖(1 − βn
)(
Sρn − p

)
+ βn

(
xn − p

)
+ αn

(
γf(xn) −ASρn

)‖2

≤ ‖(1 − βn
)(
Sρn − p

)
+ βn

(
xn − p

)‖2

+ 2αn〈γf(xn) −ASρn, xn+1 − p〉

≤ ‖(1 − βn
)(
Sρn − p

)
+ βn

(
xn − p

)‖2 + 2αnλ
2

≤ (
1 − βn

)‖Sρn − p‖2 + βn‖xn − p‖2 + 2αnλ
2

≤ (
1 − βn

)‖ρn − p‖2 + βn‖xn − p‖2 + 2αnλ
2

≤ (
1 − βn

)‖yn − p‖2 + βn‖xn − p‖2 + 2αnλ
2

≤ ‖xn − p‖2 − (
1 − βn

)‖yn − xn‖2 + 2αnλ
2.

(3.31)

It follows that

‖yn − xn‖2 ≤ 1
1 − βn

(
‖xn − p‖2 − ‖xn+1 − p‖2 + 2αnλ

2
)

=
1

1 − βn

((‖xn − p‖ − ‖xn+1 − p‖)(‖xn − p‖ + ‖xn+1 − p‖) + 2αnλ
2
)

≤ 1
1 − βn

(
(‖xn − xn+1‖)

(‖xn − p‖ + ‖xn+1 − p‖) + 2αnλ
2
)
.

(3.32)

By ‖xn − xn+1‖ → 0 and αn → 0, as n → ∞, and {xn} is bounded, we obtain that

lim
n→∞

‖yn − xn‖ = 0. (3.33)



16 Journal of Inequalities and Applications

For p ∈ F, we have

‖ρn − p‖2 = ‖PC(I − snB)yn − PC(I − SnB)p‖2

≤ ‖(yn − p
) − sn

(
Byn − Bp

)‖2

= ‖yn − p‖2 − 2sn〈yn − p, Byn − Bp〉 + s2n‖Byn − Bp‖2

≤ ‖xn − p‖2 − 2sn
[
−μ‖Byn − Bp‖2 + ν‖yn − p‖2

]
+ s2n‖Byn − Bp‖2

≤ ‖xn − p‖2 + 2snμ‖Byn − Bp‖2 − 2snν‖yn − p‖2 + s2n‖Byn − Bp‖2

≤ ‖xn − p‖2 +
(
2snμ + s2n −

2snν
λ2

)
‖Byn − Bp‖2.

(3.34)

Observe (3.31) that

‖xn+1 − p‖2 ≤ (
1 − βn

)‖ρn − p‖2 + βn‖xn − p‖2 + 2αnλ
2. (3.35)

Substituting (3.34) into (3.35), we have

‖xn+1 − p‖2 ≤ ‖xn − p‖2 +
(
2snμ + s2n −

2snν
λ2

)
‖Byn − Bp‖2 + 2αnλ

2. (3.36)

It follows from condition (C6) that

(
2aν
λ2

− 2bμ − b2
)
‖Byn − Bp‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + 2αnλ

2

≤ ‖xn − xn+1‖
(‖xn − p‖ + ‖xn+1 − p‖) + 2αnλ

2.

(3.37)

From condition (C1) and (3.25), we have that

lim
n→∞

‖Byn − Bp‖ = 0. (3.38)
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On the other hand, we have

‖ρn − p‖2 = ‖PC(I − snB)yn − PC(I − SnB)p‖2

≤ 〈(I − snB)yn − (I − SnB)p, ρn − p〉

=
1
2

{
‖(I − snB)yn − (I − SnB)p‖2 + ‖ρn − p‖2

−‖(I − snB)yn − (I − SnB)p − (
ρn − p

)‖2
}

≤ 1
2

{
‖yn − p‖2 + ‖ρn − p‖2 − ‖(yn − ρn

) − sn
(
Byn − Bp

)‖2
}

≤ 1
2

{
‖xn − p‖2 + ‖ρn − p‖2 − ‖yn − ρn‖2 − s2n‖Byn − Bp‖2

+2sn
〈
yn − ρn,Ayn −Ap

〉}
,

(3.39)

which yields that

‖ρn − p‖2 ≤ ‖xn − p‖2 − ‖yn − ρn‖2 + 2sn‖yn − ρn‖‖Byn − Bp‖. (3.40)

Substituting (3.40) into (3.35) yields that

‖xn+1 − p‖2 ≤ ‖xn − p‖2 − (
1 − βn

)‖yn − ρn‖2

+ 2sn‖yn − ρn‖‖Byn − Bp‖ + 2αnλ
2.

(3.41)

It follows that

‖yn − ρn‖2 ≤ 1
1 − βn

(
‖xn − p‖2 − ‖xn+1 − p‖2

)

+
2sn

1 − βn
‖yn − ρn‖‖Byn − Bp‖ + 2αnλ

2

1 − βn

≤ 1
1 − βn

‖xn+1 − xn‖
(‖xn − p‖ + ‖xn+1 − p‖)

+
2sn

1 − βn
‖yn − ρn‖‖Byn − Bp‖ + 2αnλ

2

1 − βn
.

(3.42)

From condition (C1), (3.25), and (3.38), we have that

lim
n→∞

‖yn − ρn‖ = 0. (3.43)
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Observe that

‖yn − Syn‖ ≤ ‖yn − xn‖ + ‖xn − Sρn‖ + ‖Sρn − Syn‖
≤ ‖yn − xn‖ + ‖xn − Sρn‖ + ‖ρn − yn‖.

(3.44)

From (3.27), (3.33), and (3.43), we have

lim
n→∞

‖yn − Syn‖ = 0. (3.45)

Observe that PF(γf + (I −A)) is a contraction. Indeed, for all x, y ∈ H, we have

‖PF

(
γf + (I −A)

)
x − PF

(
γf + (I −A)

)
y‖ ≤ ‖(γf + (I −A)

)
x − (

γf + (I −A)
)
y‖

≤ γ‖f(x) − f
(
y
)‖ + ‖I −A‖‖x − y‖

≤ γα‖x − y‖ + (
1 − γ

)‖x − y‖
=
[
1 − (

γ − γα
)]‖x − y‖.

(3.46)

Banach’s Contraction Mapping Principle guarantees that PF(γf + (I −A)) has a unique fixed
point, say q ∈ H, that is, q = PF(γf + (I −A))q.

Next, we show that

lim sup
n→∞

〈γf(q) −Aq, xn − q〉 ≤ 0. (3.47)

To see this, we choose a subsequence {xni} of {xn} such that

lim sup
n→∞

〈γf(q) −Aq, xn − q〉 = lim sup
i→∞

〈γf(q) −Aq, xni − q〉. (3.48)

Correspondingly, there exists a subsequence {yni} of {yn}. Since {yni} is bounded, there exists
a subsequence {ynij

} of {yni}which converges weakly tow. Without loss of generality, we can
assume that yni ⇀ w.

Next, we show that w ∈ F. First, we prove w ∈ EP(F). Since yn = Trnxn, we have

F
(
yn, η

)
+

1
rn
〈η − yn, yn − xn〉 ≥ 0, ∀η ∈ C. (3.49)

It follows from (A2) that,

〈
η − yn,

yn − xn

rn

〉
≥ F

(
η, yn

)
. (3.50)
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It follows that

〈
η − yni ,

yni − xni

rni

〉
≥ F

(
η, yni

)
. (3.51)

Since (yni − xni)/rni → 0, yni ⇀ w, and (A4), we have F(η,w) ≤ 0 for all η ∈ C. For t with
0 < t ≤ 1 and η ∈ C, let ηt = tη + (1 − t)w. Since η ∈ C and w ∈ C, we have ηt ∈ C and hence
F(ηt,w) ≤ 0. So, from (A1) and (A4), we have

0 = F
(
ηt, ηt

) ≤ tF
(
ηt, η

)
+ (1 − t)F

(
ηt,w

) ≤ tF
(
ηt, η

)
. (3.52)

That is, F(ηt, η) ≤ 0. It follows from (A3) that F(w, η) ≥ 0 for all η ∈ C and hence w ∈ EP(F).
Since Hilbert spaces satisfy Opial’s condition, from (3.43), suppose w/=Sw; we have

lim inf
i→∞

‖yni −w‖ < lim inf
i→∞

‖yni − Sw‖

= lim inf
i→∞

‖yni − Syni + Syni − Sw‖

≤ lim inf
i→∞

‖Syni − Sw‖

< lim inf
i→∞

‖yni −w‖

(3.53)

which is a contradiction. Thus, we have w ∈ F(S).
Next, let us show that w ∈ VI(C,B). Put

Tw1 =

⎧
⎨

⎩

Bw1 +NCw1, w1 ∈ C,

∅, w1 ∈C.
(3.54)

Since B is relaxed (μ, ν)-cocoercive and from condition (C6), we have

〈Bx − By, x − y〉 ≥ (−μ)‖Bx − By‖2 + ν‖x − y‖2 ≥
(
ν − μλ2

)
‖x − y‖2 ≥ 0, (3.55)

which yields that B is monotone. Thus T is maximal monotone. Let (w1, w2) ∈ G(T). Since
w2 − Bw1 ∈ NCw1 and ρn ∈ C, we have

〈w1 − ρn,w2 − Bw1〉 ≥ 0. (3.56)
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On the other hand, from ρn = PC(I − snB)yn, we have

〈
w1 − ρn, ρn − (I − snB)yn

〉 ≥ 0. (3.57)

and hence

〈
w1 − ρn,

ρn − yn

sn
+ Byn

〉
≥ 0. (3.58)

It follows that

〈
w1 − ρni ,w2

〉 ≥ 〈
w1 − ρni , Bw1

〉

≥ 〈
w1 − ρni , Bw1

〉 −
〈
w1 − ρni ,

ρni − yni

sni

+ Byni

〉

=
〈
w1 − ρni , Bw1 −

ρni − yni

sni

− Byni

〉

=
〈
w1 − ρni , Bw1 − Bρni

〉
+
〈
w1 − ρni , Bρni − Byni

〉

−
〈
w1 − ρni ,

ρni − yni

sni

〉

≥ 〈
w1 − ρni , Bρni − Byni

〉 −
〈
w1 − ρni ,

ρni − yni

sni

〉
,

(3.59)

which implies that 〈w1 − w,w2〉 ≥ 0, We have w ∈ T−10 and hence w ∈ VI(C,B). That is,
w ∈ F.

Since q = PF(γf + (I −A))q, we have

lim sup
n→∞

〈γf(q) −Aq, xn − q〉 = lim sup
i→∞

〈γf(q) −Aq, xni − q〉

= 〈γf(q) −Aq,w − q〉 ≤ 0.
(3.60)

That is, (3.47) holds.
Finally, we show that xn → q, where q = PF(γf +(I −A))q, which solves the following

variational inequality:

〈γf(q) −Aq, p − q〉 ≤ 0, ∀p ∈ F. (3.61)
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We consider

‖xn+1 − q‖2 = ‖((1 − βn
)
I − αnA

)(
Sρn − q

)
+ βn

(
xn − q

)
+ αn

(
γf(xn) −Aq

)‖2

= ‖((1 − βn
)
I − αnA

)(
Sρn − q

)
+ βn

(
xn − q

)‖2 + α2
n‖γf(xn) −Aq‖2

+ 2βnαn〈xn − q, γf(xn) −Aq〉

+ 2αn〈
((
1 − βn

)
I − αnA

)(
Sρn − q

)
, γf(xn) −Aq〉

≤ ((
1 − βnI − αnγ

)‖Sρn − q‖ + βn‖xn − q‖)2 + α2
n‖γf(xn) −Aq‖2

+ 2βnγαn〈xn − q, f(xn) − f
(
q
)〉 + 2βnαn〈xn − q, γf

(
q
) −Aq〉

+ 2
(
1 − βn

)
γαn〈Sρn − q, f(xn) − f

(
q
)〉

+ 2
(
1 − βn

)
αn

〈
Sρn − q, γf

(
q
) −Aq

〉 − 2α2
n

〈
A
(
Sρn − q

)
, γf

(
q
) −Aq

〉
,

(3.62)

which implies that

‖xn+1 − q‖2 ≤
[(
1 − αnγ

)2 + 2αβnγαn + 2α
(
1 − βn

)
γαn

]
‖xn − q‖2

+ α2
n‖γf(xn) −Aq‖2 + 2βnαn〈xn − q, γf

(
q
) −Aq〉

+ 2
(
1 − βn

)
αn〈Sρn − q, γf

(
q
) −Aq〉 − 2α2

n〈A
(
Sρn − q

)
, γf

(
q
) −Aq〉

≤ [
1 − 2

(
γ − αγ

)
αn

]‖xn − q‖2 + γ2α2
n‖xn − q‖2 + α2

n‖γf(xn) −Aq‖2

+ 2βnαn〈xn − q, γf
(
q
) −Aq〉 + 2

(
1 − βn

)
αn〈Sρn − q, γf

(
q
) −Aq〉

− 2α2
n‖A

(
Sρn − q

)‖ · ‖γf(q) −Aq‖

=
[
1 − 2

(
γ − αγ

)
αn

]‖xn − q‖2

+ αn

{
αn

(
γ2‖xn − q‖2 + ‖γf(xn) −Aq‖2 + 2‖A(

Sρn − q
)‖ · ‖γf(q) −Aq‖

)

+ 2βn〈xn − q, γf
(
q
) −Aq〉+2(1 − βn

)〈
Sρn − q, γf

(
q
) −Aq

〉}
.

(3.63)

Since {xn}, {f(xn)}, and {Sρn} are bounded, we can take a constant M2 > 0 such that

M2 ≥ γ2‖xn − q‖2 + ‖γf(xn) −Aq‖2 + 2‖A(
Sρn − q

)‖ · ‖γf(q) −Aq‖ (3.64)
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for all n ≥ 0. It then follows that

‖xn+1 − q‖2 ≤ [
1 − 2

(
γ − αγ

)
αn

]‖xn − q‖2 + αnξn, (3.65)

where

ξn = 2βn〈xn − q, γf
(
q
) −Aq〉 + 2

(
1 − βn

)〈Sρn − q, γf
(
q
) −Aq〉 + αnM2. (3.66)

From (3.27) and (3.47), we also have

lim sup
n→∞

〈γf(q) −Aq, Sρn − q〉 = lim sup
n→∞

〈γf(q) −Aq, Sρn − xn〉 + lim sup
n→∞

〈γf(q) −Aq, xn − q〉

≤ lim sup
n→∞

〈γf(q) −Aq, xn − q〉

≤ 0.
(3.67)

By (C1), (3.47), and (3.67), we get lim supn→∞ξn ≤ 0. Now applying Lemma 2.2 to (3.65)
concludes that xn → q (n → ∞).

This completes the proof.

Remark 3.2. Some iterative algorithms were presented in Yamada [11], Combettes [24], and
Iiduka-Yamada [25], for example, the steepest descent method, the hybrid steepest descent
method, and the conjugate gradient methods; these methods have common form

xn+1 = xn +ωndn, (3.68)

where xn is the nth approximation to the solution, ωn > 0 is a step size, and dn is a search
direction. In this paper, We define T := SPC(I − sB)Tr ; the method (3.1) will be changed as

xn+1 = αnγf(xn) + βnxn +
((
1 − βn

)
I − αnA

)
SPC(I − snB)Txn

= xn +
(
1 − βn

)
(−xn + Txn) + αn

[
γf(xn) −ATxn

]
.

(3.69)

Take ωndn = (1 − βn)(−xn + Txn) + αn[γf(xn) − ATxn], the method (3.1) will be changed as
(3.68).

Remark 3.3. The computational possibility of the resolvent, Tr , of F in Lemma 2.7 and
Theorem 3.1 is well defined mathematically, but, in general, the computation of Tr is very
difficult in large-scale finite spaces and infinite spaces.
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4. Applications

Theorem 4.1. Let C be a nonempty closed convex subset of a Hilbert space H. Let F be a bifunction
of C × C into R which satisfies (A1)–(A4); let S be a nonexpansive mapping of C into H such that
F = F(S)∩EP(F)∩VI(C,B)/= ∅. LetA be a strongly positive linear bounded operator with coefficient
γ > 0. Assume that 0 < γ < γ/α. Let f be a contraction ofH into itself with a coefficient α (0 < α < 1)
and let {xn} and {Yn} be sequences generated by x1 ∈ H and

F
(
yn, η

)
+

1
rn
〈η − yn, yn − xn〉 ≥ 0, ∀η ∈ C,

xn+1 = αnγf(xn) + βnxn +
((
1 − βn

)
I − αnA

)
Syn,

(4.1)

for all n, where {αn}, {βn} ⊂ (0, 1) and {rn}, {sn} ⊂ [0,∞) satisfy

(C1) limn→∞αn = 0;

(C2)
∑∞

n=1 αn = ∞;

(C3) 0 < lim infn→∞βn ≤ lim supn→∞βn < 1;

(C4)
∑∞

n=1 |αn+1 − αn| < ∞ and
∑∞

n=1 |γn+1 − γn| < ∞;

(C5) lim infn→∞γn > 0.

Then, both {xn} and {yn} converge strongly to q ∈ F, where q = PF(γf + (I −A))(q), which
solves the following variational inequality:

〈γf(q) −Aq, p − q〉 ≤ 0, ∀p ∈ F. (4.2)

Proof. Taking {sn} = 0 in Theorem 3.1, we can get the desired conclusion easily.

Theorem 4.2. LetC be a nonempty closed convex subset of a Hilbert spaceH, let S be a nonexpansive
mapping of C into H, and let B be a λ-Lipschitzian, relaxed (μ, ν)-cocoercive map of C into H such
that F = F(S) ∩ VI(C,B)/= ∅. Let A be a strongly positive linear bounded operator with coefficient
γ > 0. Assume that 0 < γ < γ/α. Let f be a contraction ofH into itself with a coefficient α (0 < α < 1)
and let {xn} and {yn} be sequences generated by x1 ∈ H and

xn+1 = αnγf(xn) + βnxn +
((
1 − βn

)
I − αnA

)
SPC(I − snB)PCxn, (4.3)

for all n, where {αn}, {βn} ⊂ (0, 1) and {rn}, {sn} ⊂ [0,∞) satisfy

(C1) limn→∞αn = 0;

(C2)
∑∞

n=1 αn = ∞;

(C3) 0 < lim infn→∞βn ≤ lim supn→∞βn < 1;

(C4)
∑∞

n=1 |αn+1 − αn| < ∞ and
∑∞

n=1 |sn+1 − sn| < ∞;

(C5) lim infn→∞γn > 0;

(C6) {sn} ∈ [a, b] for some a, b with 0 ≤ a ≤ b ≤ 2(ν − μλ2)/λ2.



24 Journal of Inequalities and Applications

Then, both {xn} and {yn} converge strongly to q ∈ F, where q = PF(γf + (I −A))(q), which
solves the following variational inequality:

〈γf(q) −Aq, p − q〉 ≤ 0, ∀p ∈ F. (4.4)

Proof. Put F(x, y) = 0 for all x, y ∈ C and γn = 1 for all n in Theorem 3.1. Then we have
yn = PCxn. we can obtain the desired conclusion easily.
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