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We study the set of all spreading models generated by weakly null sequences in Orlicz sequence
spaces equipped with partial order by domination. A sufficient and necessary condition for the
above-mentioned set whose cardinality is equal to one is obtained.

1. Introduction

Let X be a separable infinite dimensional real Banach space. There are three general types of
questions we often ask. In general, not much can be said in regard to this question “what can
be said about the structure of X itself” and not much more can be said about the question
“does X embedded into a nice subspace”. The source of the research on spreading models
was mainly from the question “finding a nice subspace Y ⊆ X” [1]. The spreading models
usually have a simpler and better structure than the class of subspaces of X [2, 3]. In this
paper, we study the question concerning the set of all spreading models whose cardinality is
equal to one.

The notion of a spreading model is one of the application of Ramsey theory. It is a
useful tool of digging asymptotic structure of Banach space, and it is a class of asymptotic
unconditional basis. In 1974, Brunel and Sucheston [4] introduced the concept of spreading
model and gave a result that every normalized weakly null sequence contains an asymptotic
unconditional subsequence, they call the subsequence spreading model. It was not until the
last ten years that the theory of spreading models was developed, especially in recent five
years. In 2005, Androulakis et al. in [2] put forward several questions on spreading models
and solved some of them. Afterwards, Sari et al. discussed some problems among them and
obtained fruitful results. This paper is mainly motivated by some results obtained by Sari et
al. in their papers [3, 5].
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2. Preliminaries and Observations

AnOrlicz functionM is a real-valued continuous nondecreasing and convex function defined
for t ≥ 0 such that M(0) = 0 and limt→∞M(t) = ∞. If M(t) = 0 for some t > 0, M is said to
be a degenerate function. M(u) is said to satisfy the Δ2 condition (M ∈ Δ2) if there exist K,
u0 > 0 such that M(2u) ≤ KM(u) for 0 ≤ u ≤ u0. We denote the modular of a sequence of
numbers x = {x(i)}∞i=1 by ρM(x) =

∑∞
i=1 M(x(i)). It is well known that the space

lM =

{

x = {x(i)}∞i=1 : ρM(λx) =
∞∑

i=1

M(λx(i)) < ∞ for some λ > 0

}

(2.1)

endowed with the Luxemburg norm

‖x‖ = inf
{
λ > 0 : ρM

(x

λ

)
≤ 1

}
(2.2)

is a Banach sequence space which is called Orlicz sequence space. The space

hM =

{

x = {x(i)} : ρM(λx) =
∞∑

i=1

M(λx(i)) < ∞ for each λ > 0

}

(2.3)

is a closed subspace of lM. It is easy to verify that the spaces lp(1 ≤ p < ∞) are just Orlicz
sequence spaces, and Orlicz sequence spaces are the generalization of the spaces lp(1 ≤ p <
∞). Furthermore, if M is a degenerate Orlicz function, then lM ∼= l∞ and hM

∼= c0 [6]. In the
context, the Orlicz functions considered are nondegenerate. Let

EM,1 =
{
M(λt)
M(λ)

: 0 < λ < 1
}

, CM,1 = convEM,1. (2.4)

They are nonvoid norm compact subsets of C(0, 1) consisting entirely of Orlicz functions
which might be degenerate [6, lemma 4.a.6].

Definition 2.1. Let X be a separable infinite dimensional Banach space. For every normalized
basic sequence (yi) in a Banach space and for every εn ↓ 0, there exist a subsequence (xi) and a
normalized basic sequence (x̃i) such that for all n ∈ N, (ai)

n
i=1 ∈ [−1, 1]n and n ≤ k1 < · · · < kn,

∣
∣
∣
∣
∣

∥
∥
∥
∥
∥

n∑

i=1

aixki

∥
∥
∥
∥
∥
−
∥
∥
∥
∥
∥

n∑

i=1

aix̃i

∥
∥
∥
∥
∥

∣
∣
∣
∣
∣
< εn. (2.5)

The sequence (x̃i) is called the spreadingmodel of (xi) and it is a suppression-1 unconditional
basic sequence if (yi) is weakly null [4].

The following theorem guarantees the existence of a spreading model of X. We shall
give a detailed proof.
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Theorem 2.2. Let (xn) be a normalized basic sequence in X and let εn ↓ 0. Then there exists a
subsequence (yn) of (xn) so that for all n, (ai)

n
i=1 ⊆ [−1, 1] and integers n ≤ k1 < k2 < · · · kn, n ≤

i1 < i2 < · · · in,

∣
∣
∣
∣
∣
∣

∥
∥
∥
∥
∥
∥

n∑

j=1

ajykj

∥
∥
∥
∥
∥
∥
−
∥
∥
∥
∥
∥
∥

n∑

j=1

ajyij

∥
∥
∥
∥
∥
∥

∣
∣
∣
∣
∣
∣
< εn. (2.6)

In order to prove Theorem 2.2, we should have to recall the following definitions and theorem.

For k ∈ N, [N]k is the set of all subsets of N of size k. We may take it as the set of
subsequences of length k, (ni)

k
i=1 with n1 < · · · < nk. [N]ω denotes all subsequences of N.

Similar definitions apply to [M]k and [M]w if M ∈ [N]w.

Definition 2.3 (see [1]). Let I1 and I2 be two disjoint intervals. For any (k1, . . . , kn), (i1, . . . , in) ∈
[N]k and scalars (ai)

n
i=1 if

∥
∥
∥
∥
∥
∥

n∑

j=1

ajykj

∥
∥
∥
∥
∥
∥
∈ Ii,

∥
∥
∥
∥
∥
∥

n∑

j=1

ajyij

∥
∥
∥
∥
∥
∥
∈ Ii (i = 1 or 2), (2.7)

then we call Ii (i = 1 or 2) “color” (k1, . . . , kn) and (i1, . . . , in). Meanwhile, we say
(k1, . . . , kn) has the same “color” as (i1, i2, . . . , in), where (yi) is a sequence of a Banach space.
We identify the same “color” subsets of [N]k, saying they are 1-colored.

Definition 2.4 (see [1]). The family of [N]k (k ∈ N) is called finitely colored provided that it
only contains finite subsets in “color” sense, and each subset is 1-colored.

Theorem 2.5 (see [1]). Let k ∈ N and let [N]k be finitely colored. Then there exists M ∈ [N]ω so
that [M]k is 1-colored.

Proof of Theorem 2.2. We accomplish the proof in two steps.

Step 1. We shall prove that for any n ∈ Z+, there exists (yi) ⊆ (xi) such that for any (ai)
n
i=1 ⊆

[−1, 1], n ≤ k1 < k2 < · · · kn, n ≤ i1 < i2 < · · · in,

∣
∣
∣
∣
∣
∣

∥
∥
∥
∥
∥
∥

n∑

j=1

ajykj

∥
∥
∥
∥
∥
∥
−
∥
∥
∥
∥
∥
∥

n∑

j=1

ajyij

∥
∥
∥
∥
∥
∥

∣
∣
∣
∣
∣
∣
< εn(∗). (2.8)

Firstly, for fixed (ai)
n
i=1 ⊆ [−1, 1], by the Definition 2.4, we can prove that the above inequality

holds. In fact, we partition [0, n] into subintervals (Ij)
m
j=1 of length < εn and “color”
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(k1, k2, . . . kn) by Il if

∥
∥
∥
∥
∥
∥

n∑

j=1

ajykj

∥
∥
∥
∥
∥
∥
∈ Il. (2.9)

In the same way, we can also “color” (i1, i2, · · · in) by Il.
We can take [−1, 1]n as the unit ball in finite-dimensional space ln1 ; then [−1, 1]n is

sequentially compact; moreover, it is totally bounded and complete. Under ln1 -metric, take
N = {z(n)1 , z

(n)
2 , . . . z

(n)
m } for (εn/4)-net of [−1, 1]n. For any element of net N, repeat the above

process, and let z(n)
k

= (z(n)
kj

)nj=1, k = 1, 2, . . . m. We partition [0, n] into subintervals (Il)
m
l=1 of

length < εn/2 and “color” (k1, k2, . . . , kn) by Il if

∥
∥
∥
∥
∥
∥

n∑

j=1

z
(n)
kj

yij

∥
∥
∥
∥
∥
∥
∈ Il. (2.10)

Since the length of Il < εn/2, we have

∣
∣
∣
∣
∣
∣

∥
∥
∥
∥
∥
∥

n∑

j=1

z
(n)
kj

ykj

∥
∥
∥
∥
∥
∥
−
∥
∥
∥
∥
∥
∥

n∑

j=1

z
(n)
kj

yij

∥
∥
∥
∥
∥
∥

∣
∣
∣
∣
∣
∣
<

εn
2

(k = 1, 2, . . . , m). (2.11)

Secondly, we shall prove that for any (ai)
n
i=1 ⊆ [−1, 1]n, (∗) holds. SinceN = {z(n)1 , z

(n)
2 , . . . z

(n)
m }

is the (εn/4)-net of [−1, 1]n, there exists z(n)k0
= (z(n)k0j

)nj=1 such that

∥
∥
∥(ai)ni=1 − z

(n)
k0

∥
∥
∥ =

n∑

j=1

∣
∣
∣
∣aj − z

(n)
k0j

∣
∣
∣
∣ <

εn
4
. (2.12)

Therefore, we have

∥
∥
∥
∥
∥
∥

n∑

j=1

ajykj

∥
∥
∥
∥
∥
∥
≤
∥
∥
∥
∥
∥
∥

n∑

j=1

(

aj − z
(n)
k0j

)

ykj

∥
∥
∥
∥
∥
∥
+

∥
∥
∥
∥
∥
∥

n∑

j=1

z
(n)
k0j

ykj

∥
∥
∥
∥
∥
∥

≤
n∑

j=1

∣
∣
∣
∣aj − z

(n)
k0j

∣
∣
∣
∣ ·

∥
∥
∥ykj

∥
∥
∥ +

∥
∥
∥
∥
∥
∥

n∑

j=1

z
(n)
k0j

ykj

∥
∥
∥
∥
∥
∥

=
n∑

j=1

∣
∣
∣
∣aj − z

(n)
k0j

∣
∣
∣
∣ +

∥
∥
∥
∥
∥
∥

n∑

j=1

z
(n)
k0j

ykj

∥
∥
∥
∥
∥
∥

<
εn
4

+

∥
∥
∥
∥
∥
∥

n∑

j=1

z
(n)
k0j

ykj

∥
∥
∥
∥
∥
∥
.

(2.13)
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Hence,

∣
∣
∣
∣
∣
∣

∥
∥
∥
∥
∥
∥

n∑

j=1

ajykj

∥
∥
∥
∥
∥
∥
−
∥
∥
∥
∥
∥
∥

n∑

j=1

z
(n)
k0j

ykj

∥
∥
∥
∥
∥
∥

∣
∣
∣
∣
∣
∣
<

εn
4
. (2.14)

Similarly, we obtain

∣
∣
∣
∣
∣
∣

∥
∥
∥
∥
∥
∥

n∑

j=1

ajyij

∥
∥
∥
∥
∥
∥
−
∥
∥
∥
∥
∥
∥

n∑

j=1

z
(n)
k0j

yij

∥
∥
∥
∥
∥
∥

∣
∣
∣
∣
∣
∣
<

εn
4
. (2.15)

Thus

∣
∣
∣
∣
∣
∣

∥
∥
∥
∥
∥
∥

n∑

j=1

ajykj

∥
∥
∥
∥
∥
∥
−
∥
∥
∥
∥
∥
∥

n∑

j=1

ajyij

∥
∥
∥
∥
∥
∥

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

∥
∥
∥
∥
∥
∥

n∑

j=1

ajykj

∥
∥
∥
∥
∥
∥
−
∥
∥
∥
∥
∥
∥

n∑

j=1

z
(n)
k0j

ykj

∥
∥
∥
∥
∥
∥
+

∥
∥
∥
∥
∥
∥

n∑

j=1

z
(n)
k0j

ykj

∥
∥
∥
∥
∥
∥
−
∥
∥
∥
∥
∥
∥

n∑

j=1

ajyij

∥
∥
∥
∥
∥
∥
+

∥
∥
∥
∥
∥
∥

n∑

j=1

z
(n)
k0j

yij

∥
∥
∥
∥
∥
∥
−
∥
∥
∥
∥
∥
∥

n∑

j=1

z
(n)
k0j

yij

∥
∥
∥
∥
∥
∥

∣
∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣
∣

∥
∥
∥
∥
∥
∥

n∑

j=1

ajykj

∥
∥
∥
∥
∥
∥
−
∥
∥
∥
∥
∥
∥

n∑

j=1

z
(n)
k0j

ykj

∥
∥
∥
∥
∥
∥

∣
∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣
∣

∥
∥
∥
∥
∥
∥

n∑

j=1

z
(n)
k0j

ykj

∥
∥
∥
∥
∥
∥
−
∥
∥
∥
∥
∥
∥

n∑

j=1

ajyij

∥
∥
∥
∥
∥
∥

∣
∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
∣

∥
∥
∥
∥
∥
∥

n∑

j=1

z
(n)
k0j

ykj

∥
∥
∥
∥
∥
∥
−
∥
∥
∥
∥
∥
∥

n∑

j=1

z
(n)
k0j

yij

∥
∥
∥
∥
∥
∥

∣
∣
∣
∣
∣
∣

<
εn
4

+
εn
4

+
εn
2

= εn.

(2.16)

Step 2. We apply diagonal argument to prove that there exists (yi) ⊆ (xi) such that for any
n ∈ Z+, (ai)

n
i=1 ⊆ [−1, 1], n ≤ k1 < k2 < · · · kn, n ≤ i1 < i2 < · · · in,

∣
∣
∣
∣
∣
∣

∥
∥
∥
∥
∥
∥

n∑

j=1

ajykj

∥
∥
∥
∥
∥
∥
−
∥
∥
∥
∥
∥
∥

n∑

j=1

ajyij

∥
∥
∥
∥
∥
∥

∣
∣
∣
∣
∣
∣
< εn. (2.17)

By Step 1, in view of n = 1, there exists (y(1)
i ) ⊆ (xi) such that for any a ∈ [−1, 1], for any

k1 ∈ Z+, i1 ∈ Z+, n ≤ k1, n ≤ i1, we have

∣
∣
∣
∥
∥
∥ay

(1)
k1

∥
∥
∥ −

∥
∥
∥ay

(1)
i1

∥
∥
∥
∣
∣
∣ < ε1. (2.18)
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Obviously, {y(1)
i } is also a normalized basic sequence. So in view of n = 2, there exists (y(2)

i ) ⊆
(y(1)

i ) such that for any (ai)
2
i=1 ⊆ [−1, 1], n ≤ k1 < k2, n ≤ i1 < i2,

∣
∣
∣
∣
∣
∣

∥
∥
∥
∥
∥
∥

2∑

j=1

ajy
(2)
kj

∥
∥
∥
∥
∥
∥
−
∥
∥
∥
∥
∥
∥

2∑

j=1

ajy
(2)
ij

∥
∥
∥
∥
∥
∥

∣
∣
∣
∣
∣
∣
< ε2. (2.19)

Repeating the above process, for any n, there exists (y(n)
i ) ⊆ (y(n−1)

i ) such that for any (ai)
n
i=1 ⊆

[−1, 1], n ≤ k1 < k2 < · · · kn, n ≤ i1 < i2 < · · · in, we have

∣
∣
∣
∣
∣
∣

∥
∥
∥
∥
∥
∥

n∑

j=1

ajy
(n)
kj

∥
∥
∥
∥
∥
∥
−
∥
∥
∥
∥
∥
∥

n∑

j=1

ajy
(n)
ij

∥
∥
∥
∥
∥
∥

∣
∣
∣
∣
∣
∣
< εn. (2.20)

Finally, we choose the diagonal subsequence (y(i)
i ) ⊂ (xi); for any n, (ai)

n
i=1 ⊆ [−1, 1], n ≤ k1 <

k2 < · · · kn, n ≤ i1 < i2 < · · · in, we obtain that

∣
∣
∣
∣
∣
∣

∥
∥
∥
∥
∥
∥

n∑

j=1

ajy
(kj )
kj

∥
∥
∥
∥
∥
∥
−
∥
∥
∥
∥
∥
∥

n∑

j=1

ajy
(ij )
ij

∥
∥
∥
∥
∥
∥

∣
∣
∣
∣
∣
∣
< εn. (2.21)

Definition 2.6. Let X be a separable infinite-dimensional Banach space. A normalized basic
sequence (xi) ⊂ X generates a spreading model (x̃i) if for some εn ↓ 0, for all n ∈ N, n ≤ k1 <
· · · < kn, and (ai)

n
1 ⊆ [−1, 1],

(1 + εn)−1
∥
∥
∥
∥
∥

n∑

i=1

aix̃i

∥
∥
∥
∥
∥
≤
∥
∥
∥
∥
∥

n∑

i=1

aixki

∥
∥
∥
∥
∥
≤ (1 + εn)

∥
∥
∥
∥
∥

n∑

i=1

aix̃i

∥
∥
∥
∥
∥
. (2.22)

Theme 2.7. Definition 2.6 is equivalent to Definition 2.1.

Proof. We can easily conclude Definition 2.1 from Definition 2.6
By the Definition 2.1, we know that (x̃i) is a spreading model generated by (xi). For

any fixed (ai)
n
i=1 ⊆ [−1, 1], we partition [0, n] into some subintervals (Ij)

m
j=1 of length < ερ and

“color” (k1, k2, . . . kn) by Il if

∥
∥
∥
∥
∥

n∑

i=1

ajyki

∥
∥
∥
∥
∥
∈ Il (1 ≤ l ≤ m). (2.23)

Let ρ ∈ Z+, ρ ≥ n and ρ ≤ k1 < · · · < ki0 < · · · kn; then

∣
∣
∣
∣
∣

∥
∥
∥
∥
∥

n∑

i=1

aixki

∥
∥
∥
∥
∥
−
∥
∥
∥
∥
∥

n∑

i=1

aix̃i

∥
∥
∥
∥
∥

∣
∣
∣
∣
∣
< δρ, (2.24)
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where δρ ↓ 0, δρ > 0. Using the same procedure of Theorem 2.2, we can get that for any
(ai)

n
i=1 ⊆ [−1, 1], εn ↓ 0,

∣
∣
∣
∣
∣

∥
∥
∥
∥
∥

n∑

i=1

1
1 + εn

aixki

∥
∥
∥
∥
∥
−
∥
∥
∥
∥
∥

n∑

i=1

1
1 + εn

aix̃i

∥
∥
∥
∥
∥

∣
∣
∣
∣
∣
< δρ. (2.25)

Thus

∥
∥
∥
∥
∥

n∑

i=1

1
1 + εn

aixki

∥
∥
∥
∥
∥
< δρ +

∥
∥
∥
∥
∥

n∑

i=1

1
1 + εn

aix̃i

∥
∥
∥
∥
∥
= δρ +

1
1 + εn

∥
∥
∥
∥
∥

n∑

i=1

aix̃i

∥
∥
∥
∥
∥
≤ δρ +

∥
∥
∥
∥
∥

n∑

i=1

aix̃i

∥
∥
∥
∥
∥
. (2.26)

Letting ρ → ∞, then

∥
∥
∥
∥
∥

n∑

i=1

1
1 + εn

aixki

∥
∥
∥
∥
∥
≤
∥
∥
∥
∥
∥

n∑

i=1

aix̃i

∥
∥
∥
∥
∥
. (2.27)

That is,

∥
∥
∥
∥
∥

n∑

i=1

aixki

∥
∥
∥
∥
∥
≤ (1 + εn)

∥
∥
∥
∥
∥

n∑

i=1

aix̃i

∥
∥
∥
∥
∥
. (2.28)

Similarly,

(1 + εn)−1
∥
∥
∥
∥
∥

n∑

i=1

aix̃i

∥
∥
∥
∥
∥
≤
∥
∥
∥
∥
∥

n∑

i=1

aixki

∥
∥
∥
∥
∥
. (2.29)

Hence, we obtain that

(1 + εn)−1
∥
∥
∥
∥
∥

n∑

i=1

aix̃i

∥
∥
∥
∥
∥
≤
∥
∥
∥
∥
∥

n∑

i=1

aixki

∥
∥
∥
∥
∥
≤ (1 + εn)

∥
∥
∥
∥
∥

n∑

i=1

aix̃i

∥
∥
∥
∥
∥
. (2.30)

Let SPw(X) be the set of all spreading models (x̃i) generated by weakly null sequences
(xi) in X endowed with order relation by domination, that is, (x̃i) ≤ (ỹi) if there exists a
constant K ≥ 1 such that ‖∑aix̃i‖ ≤ K‖∑aiỹi‖ for scalars (ai); then (SPw(X),≤) is a partial
order set. If (x̃i) ≤ (ỹi) and (ỹi) ≤ (x̃i), we call (x̃i) equivalent to (ỹi), denoted by (x̃i) ∼ (ỹi).
We identify (x̃i) and (ỹi) in SPw(X) if (x̃i) ∼ (ỹi).

Lemma 2.8 (see [5]). If an Orlicz sequence space hM does not contain an isomorphic copy of l1, then
the sets SPw(hM) and CM,1 coincide. That is, SPw(hM) = CM,1.
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3. Orlicz Sequence Spaces with Equivalent Spreading Models

Definition 3.1 (see [7]). Let (xn) be a normalized Schauder basis of a Banach space X. (xn) is
said to be lower (resp., upper) semihomogeneous if every normalized block basic sequence
of the basis dominates (resp., is dominated by) (xn).

Lemma 3.2 (see [7]). LetM be an Orlicz function withM(1) = 1, M ∈ Δ2, and let (ei) denote the
unit vector basis of the space hM. The basis is

(a) lower semi-homogeneous if and only if CM(st) ≥ M(s)M(t) for all s, t ∈ [0, 1] and some
C ≥ 1,

(b) upper semi-homogeneous if and only ifM(st) ≤ CM(s)M(t) for s, t, C as above.

Lemma 3.3 (see [6]). The space lp, or c0 if p = ∞, is isomorphic to a subspace of an Orlicz sequence
space hM if and only if p ∈ [αM, βM], where

αM = sup

⎧
⎪⎨

⎪⎩
q : sup

0<λ,
t≤1

M(λt)
M(λ)tq

< ∞

⎫
⎪⎬

⎪⎭
, (3.1)

βM = inf

⎧
⎪⎨

⎪⎩
q : sup

0<λ,
t≤1

M(λt)
M(λ)tq

> 0

⎫
⎪⎬

⎪⎭
. (3.2)

Lemma 3.4 (see [5]). Let M ∈ Δ2, lM be an Orlicz sequence space which is not isomorphic to l1.
Suppose that SPw(lM) is countable, up to equivalence. Then

(i) the unit vector basis of lM is the upper bound of SPw(lM);

(ii) the unit vector basis of lp is the lower bound of SPw(lM), where p ∈ [αM, βM].

Theorem 3.5. Let M ∈ Δ2, and let (ei) be the unit basis of the space lM. If (ei) is lower semi-
homogeneous, then |SPw(lM)| = 1 if and only if lM is isomorphic to lp, p ∈ [αM, βM].

Proof. Sufficiency. Since M ∈ Δ2, SPw(lM) is countable, then by Lemma 3.4, lM is the upper
bound of SPw(lM), and lp, p ∈ [αM, βM] is the lower bound of SPw(lM). Since lM is isomorphic
to lp, p ∈ [αM, βM], we get |SPw(lM)| = 1.

Necessity. If |SPw(lM)| = 1, then |CM,1| = 1 by Lemma 2.8, that is, all the functions in CM,1 are
equivalent toM.

For p ∈ [αM, βM], we define the function Mn(t) [6] as follows:

Mn(t) = A−1
n

∫1

un/ωn

M(tsωn)s−p−1ds, (3.3)
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where 0 < un < vn < ωn ≤ 1 with ωn → 0, un/vn → 0, An =
∫1
un/ωn

M(sωn)s−p−1ds.
Obviously, Mn(t) ∈ CM,1; next we shall prove that Mn(t) is equivalent to M

Mn(t)
M(t)

= A−1
n

∫1

un/wn

M(tswn)
M(t)

s−p−1ds. (3.4)

Since s ≤ 1, swn ≤ wn, and M is nondecreasing convex function, therefore, M(tswn) ≤
M(twn); then

Mn(t)
M(t)

= A−1
n

∫1

un/wn

M(tswn)
M(t)

s−p−1ds

≤ A−1
n

∫1

un/wn

M(twn)
M(t)

s−p−1ds

=
1
p
A−1

n

M(twn)
M(t)

(

1 −
(
un

wn

)−p)
.

(3.5)

Since twn < t and M(twn) < M(t), we have

Mn(t)
M(t)

≤ A−1
n

M(twn)
M(t)

(

1 −
(
un

wn

)−p)
≤ 1

p
A−1

n

(

1 −
(
un

wn

)−p)
. (3.6)

Notice that for any fixed n, the right side of the above inequality is a constant; then we obtain
Mn ≤ M

Mn(t)
M(t)

= A−1
n

∫1

un/wn

M(tswn)
M(t)

s−p−1ds. (3.7)

By un/wn ≤ s ≤ 1, we have s−p−1 ≥ (un/wn)
−p−1 andM(tswn) ≥ M(tun); hence

Mn(t)
M(t)

≥ A−1
n

M(tun)
M(t)

(
un

wn

)−p−1(
1 − un

wn

)

. (3.8)

Since ϕ(t) = M(t)/tp, nϕ(wn) < ϕ(vn/2), and

nM(un)

w
p
n

<
M(vn/2)
(vn/2)

p . (3.9)

Moreover,

w
p
n

v
p
n

>
n2−pM(wn)
M(vn/2)

. (3.10)
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We obtain that

Mn(t)
M(t)

≥ A−1
n

M(tun)
M(t)

(
un

wn

)−p−1(
1 − un

wn

)

> A−1
n

(

1 − un

wn

)
w

p
n

v
p
n

M(tun)
M(t)

> n · 2−pA−1
n

(

1 − un

wn

)
M(wn)
M(vn/2)

M(tun)
M(t)

.

(3.11)

Since 0 < t, un ≤ 1, {ei} is lower semihomogeneous; then by Lemma 3.2, we have for some
C ≥ 1

CM(tun) ≥ M(t)M(un). (3.12)

Therefore,

Mn(t)
M(t)

> n · 2−pC−1A−1
n

(

1 − un

wn

)
M(wn)
M(vn/2)

M(un). (3.13)

Thus we get Mn ≥ M.
So by (3.4) and (3.7), we can know that Mn is equivalent to M. By Lemma 3.3 and

its proof ([6], Theorem 4.a.9), we obtain that Mn(t) uniformly converges to tp on [0, 1/2].
Since CM,1 is the closed subset of C[0, 1/2], we have that tp ∈ CM,1, tp is equivalent toM, and
therefore lM is isomorphic to lp.
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