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Let (f, 4, #) be a measure space and/2 be the set ofmeasurable nonnegative real functions
defined on f. Let F: [0, ] be a positive homogenous functional. Suppose that there
are two sets A, B E 4 such that 0 < F(X4) < < F(Xe) < and let b and b be continuous
bijective functions of[0, ) onto [0, ). We prove that if there is no positive real number d
such that {F(xc): C .A, F(Xc) > 0} C {dk: k e Z} and

F(xy) <_ p-1 (F( x))b-1 (F(b y))

for all x, y {aXc : F(Xc) < , a e R}, then q and b must be conjugate power
functions.

In addition, we prove that if there exists a real number d> 0 such that {F(xc): C .A,
F(Xc) > O} c {dk: k Z} then there are nonpower continuous bijective functions q and b
which the above inequality. Also we give an example which shows that the condition that q5
and b are continuous functions is essential.
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Conjugate functions
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1. INTRODUCTION

Let (Ft, .4, #) be a measure space. We denote by/2 =/2(ft, 4, #) the set
of measurable nonnegative real functions f. Let F: [0, oc] be a
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positive homogenous functional, i.e., F(Ax) AF(x), for all A > 0, x E .
Suppose that A has two sets A, B such that 0 < F(XA) < < F(Xs) <
and let 4 and be bijective functions of [0, ) onto [0, c) such that
4(0)- 0 and b(0)- 0. In [1] Matkowski proved that if F(x)’-f x d#
for x E and

F(xy) <_ gp-1 (F(gp o x))b- (F( o y))

for all #-integrable nonnegative step functions x, y, then q and b must be
conjugate power functions.

Suppose now that 4, b are continuous bijective functions of [0, )
onto [0, ). We will prove that if the following property holds

(A) There is no real number d> 0 such that

{F(xc)" C Jt, F(xc) > 0} C {d" k E Z}, (2)

and (1) is satisfied for all function x- aXc, > O, C 4,
F(Xc) < o, then and b are conjugate powerfunctions.

We want to emphasize that in this paper, we work with a class of
functions smaller than those considered in [1] and we do not use the
additive property of the integral. Also we will show that the hypotheses:

(i) the property (A) is true, and
(ii) and are continuous functions

are essential.

Remark It is easy to see that the H61der inequality holds, with the
same proof (cf. [2, p. 95]), when we have a monotone positive
homogenous functional F: [0, ]. More precisely, if F is a positive
homogenous functional which satisfies F(x)<_ F(y) for all x,y ,
x _< y, and p, q are positive real numbers with p-1 + q-1 then

F(xy) < (F(xp))l/p(F(yq)) /q for all x,y E. (3)

Note that when b(t)- p and (t)- q, (1) gives (3).
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2. THE MAIN RESULT

We begin with an auxiliary lemma.

LEMMA Let S be a subset of the positive real numbers such that:

(i) there exbt a, b E S with a < < b,
(ii) st S, for all s, S.

Then S C {dk: k Z) for some d, 0 < d or S is dense in (0, cxz).

Proof Consider the following sets U := {t S: > } and V:= {t S:
< }. Clearly, both of them are nonempty sets. Suppose that the set U

has a minimum, say d, and let v E V. By defiaition of d, we have vd < 1.
Note that there exists a k Z such that vdk= 1, otherwise we obtain
vdk < for all k N, which is a contradiction since dk , for k .
Thus we have Vc {d-k: k N}. Let dl max V. By definition of dl we
have did>_ 1. On the other hand did_< 1. It follows that dl= d-1.

Let u Uand let k E N be such that dk < u < dk + 1. Since d-ku S and
< d-ku < d we get u d. Therefore

sc {d. kZ}.

If we assume that there exists a maximum element in V, we obtain
analogously that S c {d: k Z} for some positive real number d.

Suppose that neither there is a minimum element in Unor a maximum
element in V. Let al :=sup V and bl :=infU. We will prove that

al bl 1. First we observe that albl 1. Otherwise if albl > we can

find two numbers u 6 U, v V such that < uv< albl < bl, which is a

contradiction. Analogously, the case albl < gives us a contradiction.
Next we see that bl 1. Suppose that < bl. Once again we can find
two numbers u E U, v V such that al < uv < albl 1, which is a

contradiction. So, a bl 1.
Finally we will show that S is dense in (0, ). Let w (0, ) and

define

q "-sup{t S’t < w} and p’-inf{tS’t>w}.

Clearly q <_ p. Suppose that q < p. As al --bl- 1, there exist u E U and
v Vsuch that u < (pq-1)1/2 and v > (pq-1)-1/2. By definition ofq andp
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it follows that there are r,s E S such that r < w < s, ru > q and sv < p.
Since s>_p, r<_q we have sr-1 >_pq- > uv-. Therefore we obtain
p > sv > ru > q, which is a contradiction. So q =p w. Thus S is dense
in (0, oo). This completes the proof.

The following lemma is interesting in itself.

LEMMA 2 Let F’.---+ [0, oo] be a positive homogenous functional and, b be continuous bijectivefunctions of[O, oo) onto [0, oo). Suppose that
the property (A) holds. If (1) is true for all function x= Xc, C E.A,
F(Xc) < oo, - -l(r) or/3 b-l(r), then there exists a constant c such
that

ch-1 (t)qa-(t) ct, for all > 0.

Proof Let C gt be such that F(Xc) < oo. Let x 5-(r)Xc and
y q2-1(r))o Since cb-(rXc) c/5-(r)Xc, b-l(rXc) b-(r)Xc, and F
is a positive homogenous functional, it follows from (1) that

-I (r)b- (’)F(xc) <_ -I (rF(xc))q2- (rF(xc)). (4)

Define the function f: [0, oo) --+ [0, ) byf(t)’- O-(t)qg-(t).
By (4) we have

F(xc)f(r) <_ f(rF(xc)).

Consider the following set:

S {t (0, )" tf(r) <_f(rt) for all r > 0}. (6)

If t,s S then tsf(1) <_ tf(s) <_f(ts). Hence, ts S. Further, it follows
from (5) that F(;Vc) S, for all C .A with FOc) < oo. Since we have
assumed there are sets A, B .Awhich satisfy 0 < F(XA) < < F(Xz) <
we observe that the set S satisfies the hypotheses (a) and (b) ofLemma 1.
In consequence under our hypothesis S is dense in (0, ).

Since 05 and b are continuous functions we find that f is also a

continuous function. So, S is an algebraic group. In fact, let S and
(an) be a sequence in S such that (an) converges to lit. We have
f(anr) > anf(r). Since the left member in the last inequality converges to
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fir and the right member converges to (1/t)f(r), we obtain fir
(l/Of(r). So lit E S.

If E S, then

rt) --f(r)f(r) < f(rt) < f(7
Therefore, f(rt)- tf(r) for all S and since f is continuous, we have
f(rt) tf(r) for all > 0. This concludes the proof with c qS- (1)-1(1).
THEOREM 3 Suppose that the hypothesis of Lemma 2 except that the
inequality (1) holds for allfunctions of the form x aXo a > O, C >1,
F(Xc) < zxz. Then and b are conjugate powerfunctions.

Proof By Lemma 2 we have for some c > 0

-1 (t)p- (t) ct, for all _> 0. (7)

For a > 0, fl > 0 and C 4 with F(Xc) < , let x- (fi-l(o))(c and
y--l(fl)Xc. From (1) we get

f5-1 (a)-1 (fl)F(xc) <_ -1 (aF(xc))b-1 (F(xc)). (8)

Consider the following set:

s {t (0, t4 _< (.t)
for all a > 0, fl > 0}.

As in the proof of Lemma 2 it is easy to see that S-- (0, oe) and

t4-1 (a)p- (fl) q5- (at)-1 (fit), for all a > 0, fl > 0, > 0. (9)

From (7) and (9) we get

q5-1 (ta)b- (1) q5- (t)q- (a).

In this case, it is well known that qS(t)- tp for some > 0 and p > 0.
Thus (7) implies that (t) rltq, for some r/> 0, q > 0 with 1/p + 1/q 1.

COROLLARY 4 Let ch;P be continuous bijective functions of [0, x)
onto [0,xz). Suppose that there is a real number a> such that
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for all E (0, a],

ta/3 <_ q-l(tb(a))-l(tb(/3)) (10)

for arbitrary nonnegative a,. Then d? and b are conjugate power

functions.

Proof Take 0 < s < such that logas is not a rational number. We
observe that there does not exists d> 0 satisfying {s, a} C {dk: k Z}.
Otherwise, we have s dk, a dj, for some d> 0;j, k Z. So, logas k/j,
which is a contradiction.

Let (ft,4, #) be a measure space where A= {O,A, f} with A
#(A) s, #(f) a. Clearly, (10) implies (1) with F(x) fx d/z for x
By Theorem 3 we find that b and b are conjugate power functions.

Remark Hardy et al. [3, p. 82, Theorem 101] proved the following
theorem:

Let f and g be functions of [0, cx) onto [0, ). Suppose that f is a

continuous and strictly increasing function which vanishes at x--0 and
has a second derivative continuous for x > O, and that g is its inverse

function. Supposefurther that 49 and b are defined by

dp( t) tf t), b(t) tg( t)

or

fo fodp( t) f(s) ds, 2(t) g(s) ds;

and that for every n N andfor all positive real numbers r1,..., rn such
that r +’" + rn= 1,

rlOZl/l q-’’"-- rnOZn/n
<_ q-I (rlb(Ol) -b.-’-[- rnq(OZn));-l(rl(/l) -[-’’"-[- rn(/n)) (11)

for all nonnegative real number al, an,/l,’’’,/n" Thenf is a power

function.
As a special case of Corollary 4, we obtain the following result, which

is a variation of this theorem:

Let f, g be continuous and strictly increasing functions of[O, cx) onto

[0, cx) which vanishes at x- O. Let dp and b be defined as above. Suppose
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that there exists a real number a > such that (11) holdsfor n 2 andfor
all positive real number rl, r2 with rl / r2 a. Thenf is a powerfunction.

3. TWO EXAMPLES

In this section we will give examples which show that the conditions:

(i) the property (A) is true, and
(ii) q5 and b are continuous functions

are essential in Theorem 3.

Example 1 Let (f, .A, #), [2 0 be a measure space. Let F:/2 [0, oe]
be a monotone positive homogenous functional which satisfies (2) for
some d> 1. Let f be a strictly increasing function on [1, d1/2] such
that f(1)-1, f(dl/:Z) d. Define a one to one continuous function of
[0, ) onto [0, c) by b(t) dZf(d-k/2t), if d:/2 <_ < d( + 1)/2, k E Z and
4)(0) 0. Let b. We will prove that (1) holds. For this, let C, D E 4 be
such that F(Xc) < o, F(Xz)) < c and let c > 0, /3 > 0. Consider the
functions x’-Xc and y’-/3Xz. If F(Xc)-0 or F(X/9)=0, both
members in (1) are equal to zero. Clearly if F(Xcnz)-O, (1) holds.
Suppose that F(Xc)> O, F(Xz)>0 and F(Xcnlg)>0. Then there are
integers k, such that

F(Xc) dk, F(XD) dt.

Let m, n Z be such that

dm/2 o < d(m+l)/2 and dn/2 <_ fl < d(n+l)/2.

Since d(m + k)/2 tydk/2 < d(m + k + 1)/2 and d(n + t)/2 <_ fldt/2 < d(n + + 1)/2,
we have

F(xy) xF(xcnlg) (12)

and

05-1 (F(q5 o x))/)-1 (F( o y)) -1 (qS(oz)dk)@-I (@(/3)dt)
ozdk/2tdt/2 oeF(xc)I/2F(XD) 1/2. (13)
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As F is monotone, from (12) and (13) it follows that

F(XCcD)2 _< F(xc)F(XD). (14)

Next, we give an example which shows that we cannot omit the
hypothesis of continuity of the functions 0 and ga.

Example 2 Once again we consider a measure space and a functional
F as in the beginning of this section. Suppose further that

{F(xc)" C E ,A, F(Xc) > 0} C Q+.

Let b and b be a couple of bijective functions of [0, ) onto [0, )
defined by

X if X2 E (+,qS(x) x2/2 if

and b(x) x2 for x _> 0.
Note that (1) is satisfied. Let x’-oXc and y’-fl XD be as in

Example 1. Clearly (12) is satisfied. On the other hand, we have

-1 (F(’(_;(y)) -1 ((fl)F(XD)) -1 (fl2F(XD)) fl(F(XD))I/2.

If o2 ( + then

qS-1 (F(qS(x))- 0-1 (0(o)F(xc)) 0-’ (o2F(xc))- o(F(xc)) /2.

If O2 Q + then

0- (F(O(x))- q5-1 (O(oe)F(xc))- q5- (---F(xc))-o(F(xc)) /2
In either case, we get

-’ (F(q5 o x))- (F( o y)) oflF(xc)I/2F(XD) 1/2.

Thus (1) follows from the inequality (14).
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