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Let f be a polynomial with only real zeros having -1, -F as consecutive zeros. It was
proved by P. Erd6s and T. Griinwald that iff(x) > 0 on (-1, 1), then the ratio of the area
under the curve to the area ofthe tangential rectangle does not exceed 2/3. The main result
of our paper is a multidimensional version of this result. First, we replace the class of
polynomials considered by Erd6s and Griinwald by the wider class consisting of
functions of the formf(x) := (1 -x2)b(x), where I1 is logarithmically concave on (- 1, 1),
and show that their result holds for all functions in . More generally, we show that iffE
and max_l <x< llf(x)l <_ 1, then for all p > 0, the integral f.11_ If(x)lp dx does not exceed
fl (1 xZ)p dx. It is this result that is extended to higher dimensions. Our consideration of
the class is crucial, since, unlike the narrower one of Erd6s and Grtinwald, its definition
does not involve the distribution ofzeros ofits elements; besides, the notion oflogarithmic
concavity makes perfect sense for functions of several variables.
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1. INTRODUCTION

For any continuous functionf: [- 1, 1]- C and any p E (0, ), let

)",Ilfllp f(x)lpdx
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besides, let

Ilfll := max If(x) l.
-l<x<l

If 0 <p < andf is an arbitrary polynomial, then the trivial inequality

Ilfllp IIf[l ()

is also the best possible one. In fact, it becomes an equality for any
constant.
For rn _> 2 let om be the class of all polynomials of degree at most m

having only real zeros and -1, as consecutive zeros. Furthermore,
let p "-UmZ=2 m. It was proved by Erd6s and Grtinwald [3] that if

fE fO, then

Ilflll -< I1 x21 dx II/ll NIIfII, (2)

where equality holds if and only iff(x) c(1 X2), E C. We extend
this result by proving that under the same condition

Ilfllp -< I1 x2lp dx Ilfll,

not only for p but for all p > 0. In fact, we shall prove more.
One of the most important properties of a polynomial f with only

real zeros is that Ifl is logarithmically concave between two consecutive
rnzeros. Indeed, iff(x) c I-L= (x x,), then

m

[,f(x) #=1

is negative at each point of the real line where it is defined. We extend
the class p by considering the class of all functions of the form
f(x) := (1- x2)(x), where I1 is logarithmically concave on (-1, 1).
Note that p is a subset of ft. The following result holds.
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THEOREM
x2, then

Let f belong to Z. Iff(x) is not a constant multiple of

[If lip < l1 X21p dx [Iflloo, 0 < p < o. (3)

Note It may be added that the coefficient of Ilflloo in this inequality
is equal to

(r(P +__ l_.!(!p + 1))liP4\ P(2p + 2)

Some Remarks

1. Not only p is a subset of but more generally, if

m

b(x) H(1 xuu).
#=1

where the numbers uu belong to [-1, 1] and the numbers a, are all
positive, thenf(x) := c (1 x2)(x) belongs to for all c 0. Indeed, for
all x E (-1, 1), we have

j -< o.
= (1 xu

For the relevance of such functions see [11].
2. Let

m

II(z- x.
#=1

(lyl-< Ixl- 1,

Setting I,(x)’= Ib(x)[, we see that for -1 _< x _< 1,

it, (X) }’ rn (X X.)2 2

(X) Z ix z,12
y" <-0’

#=1

i.e. [b is logarithmically concave on (- 1, 1). Hencef(z) c(1 z2)b(z)
belongs to for all c : O, and Theorem applies to such polynomials



218 D. DRYANOV AND Q.I. RAHMAN

as well. Note that these polynomials may have complex coefficients,
except that they are required to have all their zeros in E= E1 t_J E2,
where

E1 {z=x+iy" lyl <x- 1, x 1},
E’-- {z-x+iy" lYl < l-x,

Here, it may be added that, in order to obtain a meaningful
improvement on (1) it is not enough to assume that f(-1)=f(1)= 0
and thatf(z) 0 for [z < 1. In fact, the supremum of Ilfllp/[Ifll over all
such polynomials is as the examplef(z):= z2m, m E N, shows.

3. An entire function is said to belong to the Laguerre-Pdlya class,
-79 for short, if it is the local unifoi’m limit in C of a sequence of
polynomials with only real zeros [7, pp. 174-177, 10]. Let us denote by
(-79)1, the set of all functions in Z-79 which have x 1, x as
consecutive zeros. A function f in (Z-79)1 can be written as f(z)=
(1 zZ)(z), where

(z) := ce-az2+bz H(1 tz)etz, (c#0, a>_0, bE),

and l<_t,<_l for u 1,2,3,.. such that 2=1 t < . Note that
(/3-P)l c_ . So, Theorem certainly applies to all functions in (-P)l.

Extensions of Theorem I to Higher Dimensions

A priori, it is not clear what kind of functions of several variables
correspond to polynomials in one variable having only real zeros. The
observation that the modulus of such a polynomial is logarithmically
concave between two consecutive zeros does, however, provide a clue.
In view of Theorem 1, it seems natural to consider functions whose
moduli are logarithmically concave on an appropriate region in Rn,
like the open n-dimensional cube Cn := (--1, 1)X X (--1, 1) or the
hypersphere

Bn :-" (Xl, Xn)" xu <
u--I
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As an analogue of, we introduce the class n offunctions in n variables
Xl,..., xn which are of the form

2f(xl, Xn) :--- (1 x)." (1 Xn)(Xl,
where Ibl is logarithmically concave on C,. As a direct generalization
of the problem considered and solved by Erd6s and Grtinwald, we ask
the following question. How large can

(2-n J fc, ’f(xl,...,Xn)’P dxl ""dxn)
1/p

be iffbelongs to n and If(x)l _< for all x--(Xl,...,Xn) in C,. The
next result contains the answer.

THEOREM 2 Let Cn and be as above. IffE , thenfor allp > O,

(2-n J" fc, lf(xl,...,Xn)lP dxl .dxn)
1/p

< 2- 11 X2[pdx sup If(x)[, (4)
xCn

2unlessf(x,. ,Xn) is a constant multiple of(1 x) (1 Xn).
In the case where p-1 and n 2, this theorem says that if fE 2

andf(x, y) > 0 for < x, y < 1, then the ratio of the volume under the
surface z =f(x, y) and the volume of the tangential parallelopiped does
not exceed 4/9. The analogy of this result with that of Erd6s and
Grtinwald is obvious. Instead of assuming the square {(x;y) R2:

< x, y < } to be the domain of definition of the functionfwe may
consider functions on other regions in R2. We shall only look at the class

’ consisting of functions of the form f(x, y) := (1 x y)b(x, y),
where Il is logarithmically concave on B2 := {(x, y) ]Re x2 + y2 < }.
The answer to the corresponding question in this case is contained in the
following result.

THeOReM 3 Let B and. be as above. Iff , thenfor allp > O,

(ffs2 [f(x’ y)lP dxdy)
1/p

< (1 X2 y2)p dxdy sup [f(x,y)l, (5)
x +y<

unlessf(x, y) is a constant multiple of x y.
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2. PROOF OF THEOREM 1

Without loss ofgenerality we assumef(x) to bepositive on (- 1, 1). Thus,
f(x) := (1- x2)b(x), where log (x) is concave on (-1, 1). Because of
concavity, log b(x) is not only continuous on (-1, 1) but also bounded
above. Consequently, f is continuous on [-1, 1]. It follows that the
supremum of If(x)[ on [-1, 1] is finite and cannot be attained at -1 or

+ 1. For simplicity, let Ilfll- 1.
We claim that ]]fl] is attained at only one point of (-1, 1), which

we denote by (. For this observe that satisfies the equation

log
x2 log (x).

The function log(1/(1 -x:)) being strictly convex on (-1, 1), the line

2L" y log
2 -+- 2 (x- )

meets the curve y log(1/(1 x2)) if and only if x . For all other x it
lies below the curve. Now it suffices to note that no point of the curve
y= log p(x) lies above the line L. Suppose (t, log b(t)) lies above L
for some < . The line segment joining the point (t, logb(t)) to the
point (,logb()) intersects the curve y=log(1/(1- x2)) at a point
(s, log(1/(1 s2))). It is clear that log(1/(1 x2)) < log (x) for s < x < .
Hence []fl] cannot be 1, which is a contradiction. The case > can be
treated similarly.
We conclude that iff belongs to , then for some belonging to

(- 1, 1) we have

l-x2 ( (_ )If(x)l.< M(x):= 1-(2
exp .2 ). (-1 <_x<_ 1).

Let us look for the supremum of the quantity

Ip() :-- ( fl ((X))Pdx) (0 < p < cx),

as is allowed to vary in (-1, 1) and hope that it is attained for --0.
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If x is any given number in (- 1, 1), then (Me(x))p tends to 0 as + 1,
i.e. tends to -1 from the right or as T 1, i.e. tends to + from the
left. Since 0 < Me(x) < for all x E [-1, 1], we may apply the dominated
convergence theorem of Lebesgue to conclude that

lim(Ip())p lim 1J 1L1 lim(M(x)) p dx O,(Me(x)) p dx - 1+-1

lim(Ip())p limlf 51f(M(x))p dx ,--l!+m’(M(x))P dx O.
T+ T+

So, the supremum of p():= 2(Ip()) p on (-1,1) is attained at one
or several points in (-1, 1). At any such point rfi() must vanish.
Elementary calculations give

() 2p
(1 2)P+2

exp Z’2’] exp
2

-e f’,(1- xZ)P exP(12P  2 x)dx}
x) x dx

Setting

l+sc2 ( 2ps2
r() 2p

(1 -2)P+2
exp i 72J’

co(, x) := (1 x2)p exp
.1 2

x

we obtain

{L L }G() r() w(Gx) x xdx- w(,x) x dx

Let us check the sign of crfi’ () at a point where @() O, i.e. at a point
where

f, flw({,x) x x dx- co(,x) x dx 0. (6)
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At any point satisfying (6) we have r’()/r() (), where

() 2P( +)f f(,x) x2 dx- u;(,x) dx
(1 2)2
2p(1 + 2)/el

j_ o(,x) x x dx.
(1 )

Since -() > 0, the sign of a/() at a critical point ofp agrees with that
of f(). Now, we note that

L /_1 I x2)p+l ) ( 2p )(,x) xx2dx= (1-x2)p (1- exp 2x dx

7-Ttt; ) ld",x" P +11-2
p

(,x) x xdx.

Hence at a critical point of rp, i.e. at a point satisfying (6), we have

f() :-- 2p
(1 2)2 (, x) dx

p + 2
_

P
(,x) x xd

/_l co(,x) x dx 2p(1 +) (,x) x xdx
(1 -)

1+,2
(,x) lx2p

( )

/1 ) S-n*(1-f) (,x)la (,)la
P

2(1 + )[ (, x) x ax2n
(1 2)

3+ (, x) x dx < O.

This means that every critical point of ap is a point of local maximum.
Since two consecutive local maxima must be separated by a point of
local minimum, we conclude that crp has only one local maximum in
(- 1, 1). It is easily seen that rp is an even function of and so its unique
local maximum in (- 1, 1) must occur for ( 0- Hence, for all p (0, )
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and E (- 1, 1)\ {0}, we have

crp() < rp(O) 22p+1B(p + 1, p + 1),

where B(., .) is the betafunction. From this (3) follows.

3. THE LIMITING CASE p 0 OF (3)

It is known (see for example [6, 6.8]) that if S belongs to LP(-1, 1)
for some p >0, then ((1/2)f-l IS(x)lPdx) /p tends to the limit

exp(f log lS(x)l dx)
as p--, 0. This is exactly the value given to the functional [IS[Ip when
p 0. From Theorem it follows that iffbelongs to , then

[Ifll0 -< exp log ll x2l dx Ilfll.

Although the inequality is sharp the argument we have just used to
obtain it does not allow us to identify the extremal functions. However,
as an addendum to Theorem we prove the following result.

PROPOSITION
X2, then

Letf belong to . Iff(x) is not a constant multiple of

Ilfll0 < exp log[1 x2l dx Ilfll Ilfllo. (7)

Proof We have to determine sup{Io(): -1 < < }, where

Io() := exp log(1 x2) dx
(1 2) exp[22/(1 2)]

Since

22 )(1-{2) exp
1-{2 ->(
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for -1 < < we conclude that I0() tends to zero as + -1 or T + 1.
Hence the desired supremum of I0() is attained at one or several points
in (-1, 1). Any such point must be a critical point of the function
(I0())2. It is easily checked that 0 is the only critical point of I in
(-1, 1). Hence for 0 < [c] <

I0() < I0(0) exp log l1 xZl dx

which proves (7).

4. PROOF OF THEOREM 2 AND A REMARK

Without loss of generality we assume that

f(x) := (1 Xl) (1 x])(x) (x := (Xl,..., Xn)),
where In I (x)l is not only concave but (x)> 0 for all x E Cn and
that maxxec, f(x) 1. Take an arbitrary f satisfying these conditions
and let (1,... ,,,) be a point in Cn such that f((1,... ,n) 1. This
means that

n

In (x) <_ ln(1 x2) (8)

with equality for x (,..., ,).
Using well known criteria [5, p. 58], it can be seen that the function

n= ln(1 Xn2) is (strictly) convex on Cn. Hence the set

gl (x, Xn+l) E n+l. X Cn, Xn+l

_
ln(1 Xn)

v=l

is convex. It is, clearly, supported by the hyperplane H defined by

n

2_2Xn+ ln(1 -.,2) + (2 (x (),
u=l u=l

and because of the strict convexity of K1, the two meet only in the
point ((1,..., n). The set

K := { (x, Xn+) e Rn+l
X+l _< In (x) }
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is also convex and must be supported by H, otherwise (8) would be
contradicted. It follows that for all x E Cn,

In (x) _< ln(1 2) + 2 (x ),
u=l u=l

and so

f(x) <

Hence for all p > 0,

fc, If(x’" ’Xn)IP dxl’" "dxn

u=l (2j
exp

\1 2 (x,., ,) dx,.,.

From the proof of Theorem 1, we see that

(2j expk. 2 (x ) dx _< (1 X2)p dx.,

where equality holds only if , 0. Hence

(fll)nf ic, f x Xn lP dx dxn <_ (1- x2)P dx (9)

with equality only if (1,’’’, n)--0. However, iff(x) is not identically
2equal to (1 x12) (1 Xn) and (1,’’’ n) 0, then 0 < (x) < except

2for x =0, that is, If(x)] < (1 -x12) (1 -Xn) for x different from 0.
2Hence, equality holds in (9), only iff(x)’= (1 -x)... (1 -Xn). This

completes the proof of Theorem 2.

Remark 4 More generally, we may consider functions of the form

2)’(Xl Xn),f(Xl,. Xn) (a? x?) (a2n xn
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where Il is logarithmically concave on the parallelopiped

Pn :--(--al,al) "" (--an, an).

It can be easily proved, as above, that for all p > 0, the ratio

(2-nffp )al ---an If(xl,... ,xn)lPdxl .dxn
lip / sup If(x)

xCPn

is maximized by the function (a? x12) (an2 Xn2).

5. PROOF OF THEOREM 3

Without loss of generality we assume that

f(x, y) := (1 x y2)b(x, y),

where In [b(x, Y)I is not only concave but b(x, y) > 0 for (x, y) E B2 and
that sup{f(x, y): (x, y)E B2} 1. Let ((, 7) be a point in B2 such that
f(, 7)= 1. As in the proof of Theorem 2, we can show that in the
present case

[(x, y)[ _< -ln(1 2 r/2) +
sc2 r/2 (x ) + 2r/

c2 g]2 (Y

for (x, y) E B2. Hence, for all p > 0, we have

ff lf(x, y)[P dx dy <_ p(, r/),

where

ffB (li x2 --Y2)P ( (x- ) -k-rl(Y- rl)) dxdy.%(, 7"]) 2
exp 2p

2 7-]2

Here it is more convenient to use polar coordinates. Writing

x=pcos0, y=psin0, =rcosb, r/=rsin4,
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we see that

The last integral is, obviously, independent of . So, we denote it by
Fl(r which will be our alternative notation for p(rcos , rsin ).

In order to determine the supremum of Fp we differentiate it with
respect to r. We obtain

Fp’(r) 2p
+r2

(1 r2)p+2
exp r:] (Vp(r)- rUp(r)),

where

Up(r) p(1 pZ)p exp 1..L_ .r2 pcos 0 dp dO,

fogr fo p2)p ( 2pr
Vp(r):= p2(1- exp l_rzpcosO cosOdpdO.

A simple calculation shows that

271"
Vp(r) rUp(r) -r+ O(r3) (r --+ 0).

(P + 1)(p + 2)

There exists, therefore, a positive number r0 such that Fp(r) is strictly
decreasing on (0, r0). Because of the continuity of Fp, it follows
that Fp(r) < Fp(O) for 0 < r < r0. We claim that r0 may be taken to be 1.
This will follow if we show that Fp cannot have a local minimum
in (0, 1). So, we may simply check the sign of Fl(r) at the points in
(0, 1) where Ffi (r) 0. We shall see that it can only be negative. Hence,
Fp cannot have a local minimum in (0, 1); and, in fact, not a local
maximum either.
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Assume that r is a critical point of Fp in (0, 1). It is easily seen that the
sign of Fj (r) is the same as that of

+ r2 r + r
Gp(r) := 2p

(1 r)
Wp(r) Up(r) 2p

(1 r2)-- Vp(r),

where Up(r), Vp(r) are as above and

f01f027r ( 2pr )Wp(r) p3 (1 p2)p exp
r
pcos 0 COS2 0 dp dO.

Note that F(r) 0 if and only if Vp(r)= rUp(r). Hence, in order to
determine the sign of Gp(r) at a critical point ofFp in (0, 1), it is desirable
to find an expression for Wp(r) in terms of Up(r) and Vp(r). For this
we write

Wp(r) Ip,1 (r) Ip,2(r),

where

)p(1 p2)p exp
r2
p cos 0 cos2 0 dp dO

and

Ip,2(r) := fo
2u

fOO (2prp(1 p2)p+l exp
r2
pcos 0 cos2 0 dpdO.

In Ip, l(r), we replace cos20 by 1-sin20, and integrate by parts with

respect to 0 to obtain

Ip l(r) Up(r) -+- (1 p2)p sin 0 exp
\ r2

cos 0 (--p sin O) dO dp

=Up(r) ’- r2 fo2ufo p2)p (2,rp,,
2pr (1 exp

\ r2
cos 0 cos 0 dp dO.
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Since (1 pa)p p2(1 pa)p + (1 pa)p+ 1, we see that

r2
lp,1 (r) Up(r)

2pr
Vp(r)

r2 jO’2r foe (2prp)2p----- (1 p2)p+l exp
rE

cos 0 cos 0 dp dO.

Now we look for a similar representation for Ip,2(r). Integrating by
parts with respect to p we obtain

Ip,2 (r) (1 p2)p+l exp cos 0 cos 0 dp dO
2pr JO 0 i r:

(p + 1)(1 r2) Vp(r).
pr

Hence

Vp(r) "= Ip,l (r) Ip,2(r) Up(r)
(2p + 3)(1 r2)

2pr
Vp(r),

which in turn gives us

(2P(l+r2) .Up(r)_ 2p(l + r2) (,(2p + 3)(l r2)
Gp(r) i -; (1 r:): 2pr

It follows that if r is a critical point of Fp in (0,1), i.e. if Vp(r) rUp(r),
then

Gp(r) -2
2 + r2

Up(r)i r2

Since Up(r) is positive, we conclude that Gp(r) is negative at any point
in (0, 1) where Fp vanishes. Hence, so is Fj (r).

6. CONNECTION WITH LINEAL FUNCTIONS

A polynomial of n variables ZI,... ,Zn, which can be expressed as a
m nproduct of the form c 1-Lz=l(1 + ’u=l ceuuzu) is called lineal [9]. It is

said to be really lineal if c and c. (1 </ < m, < u <_ n) are all real.
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The special determinant called circulant [4, p. 23], with the variables
z,..., zn as the elements of its first row is a lineal polynomial. In the
case n 1, every polynomial is lineal, but not so if n >_ 2. By definition,
a transcendental entire function of n variables is (really) lineal if it is
the local uniform limit in Cn of a convergent sequence of (really) lineal
polynomials. The class of really lineal entire functions of one variable
is the same as the Laguerre-P61ya class Z;-P mentioned in the
Introduction. The study of really lineal entire functions of several
variables was started by Motzkin and Schoenberg, who found the
following characterization [9, Theorem 2] for such functions.

THEOREM A* An entire function is really lineal ifand only if it admits
a representation of theform

f(z,,... ,Zn)--exp Z %,z,z + 6z c,z
#,u=l u=l /,z=l u=l

x H + z e(-2;_-1 e),
k=l u=l

where 7, 6, cu, 6k are real, the series =1 n=l 6 converges, while
the quadraticform "Tuzuz is positive semi-definite.
For further developments see [2] and [8, Chapter 4] along with

some of the references given there; also [8, p. 203] for a letter of
I.J. Schoenberg to friends.

Let (a,..., an) Nn with E:=I IO[ and consider the function
g(x) ln(1 n=l a,x,) on the cube Cn defined in the Introduction.
Then

oq2g
(X)gj/,:(x)

OxjOx

ifj- k,

ifj k.

Hence, the principal minor determinants of the matrix (-gj(x)) are all
non-negative. It follows (see [1, pp. 140, 147] or [5, p. 58]) that the
function n-],= cx is logarithmically concave. The same can
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therefore be said about the real lineal polynomial

(x) II 1- I,1 1,- 1,...
#=1 =1 u=l

(10)

Thus, Theorem 2 holds for functions of the form

f(x) c(1 x)... (1 Xn2)b(x)

with as in (10). It is clear that more general functions of the form

f(x) c(1 x12) (1 xn2) H
/z=l

where the numbers c, are as above and/3, > 0 for z 1,..., m, are
also admissible.
From Theorem A* it follows that Theorem 2 applies to all functions

2of the formf(x) := c(1 x).-. (1 Xn)@(x), where is a really lineal
entire function different from zero on Cn. An analogous remark can be
made about Theorem 3.
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