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We consider the Darboux problem for the hyperbolic partial functional differential
equations

(1) nyz(xs y) =f(x9y9 z(x,y))’ (x’ y) € [0, a] X [0’ b]’
(2) z(x, y) = ¢(X, y)s (x, y) € [ — Qo a] X [ - bO’ b]\(o’ a] X (Oy b]’

where Z(yy:[— ao,0] X [ — bo,0] — X is a function defined by z(x (2, ) =z(x+ ¢,y +5),
(t,5) €[ — a0, 0] x [— bo,0]. If X=R then using the method of functional differential
inequalities we prove, under suitable conditions, a theorem on the convergence of the
Chaplyghin sequences to the solution of problem (1), (2). In case X is any Banach space
we give analogous theorem on the convergence of the Newton method.

Keywords: Functional differential equation; Darboux problem; Classical
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1. INTRODUCTION

Define E=[0,a] x [0,5], E®=[—aq,a] x [ — bo, b]\(0, a] x (0,b], E*=
E°UE, where ag,bo€R,, a,b>0. If X, Y are any Banach spaces then
we denote by C(X, Y) the class of all continuous functions from X to Y.
If X C E* then we denote by C'(X, Y) the set of all functions z € C(X, Y)
for which the derivatives D,z, D)z, exist and are continuous. Finally, let
C'“*(E™,Y) denote the subset of C(E*,Y) consisting of functions for
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which additionally the mixed derivative D,,z exists and is continuous
onE.

For any function z : [ — ag, a] x [ — bg, b] — R, and a point (x, y) € E, we
define z(, ,): B— R, where B=[— ao, 0] X [ — by, 0], by the formula

Z(x:y)(t’s) = Z(x + tSy +s)’ (tg s) e B.

For given functions ¢: E® - R, f: E x C'(B;R) — R, we consider the
following Darboux problem:

Dyyz(x,y) = f(%, 3, 2(xy))>  (%,¥) € E, 1)
Z(x9y) = ¢(x>y)a (X,J’) EEO. (2)
In this paper we consider classical solutions of (1), (2). In other words

a function z € C'*(E*; R) is said to be a solution of (1), (2) if it satisfies
Eq. (1) on E and fulfills Darboux condition (2) on E°.

Remark 1 Equation (1) contains as special cases equations in which the
right-hand side depends on the first order derivatives of an unknown
function even though in f there is no explicit dependence on D,z and
D,z. This is due to the fact that the last variable of f is a functional
space C'(B,R). As an example consider the Darboux problem for the
equation with deviated argument

nyz(x,y) =f(x,y,z(a0(x,y)),
Dxz(eu(x,y)), Dyz(0a(x,))), (%) € E,
Z(x’y) = ¢(x’y)’ (x9y) € EO,

wheref: E x R? — R,a;: E— E*, and a,(x, y) — (x, y) € Bfor (x, y) € E,
i=0,1,2. This problem is a special case of (1), (2) if we define f by the
formula

fix, 3, w) =f(x, 3, w(eo (%, ) — (x,7)),
Dyxw(an(x,y) = (x,)), Dyw(ea(x, ) = (x,)))-

In this paper we give sufficient conditions for the existence of
two monotone sequences {#™},{»"} such that if z is a solution of
1),(2) then u™<z<v™ on E and {u™},{»"™} are uniformly
convergent to z on E. The convergence that we get is of the Newton
type, which means that

24

0 < z(x,y) — u™(x,y) < < S 05V(x,9) —2(x,) < 55

on E,
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where A is some constant not dependent on m. The functions u™, v
are defined as solutions of some linear functional differential equa-
tions obtained by the linearization of (1). The monotonicity of sequences
{u™}, {»"} is proved by a theorem on functional differential
inequalities.

In the last section of this paper we also prove a theorem on the
convergence of the Newton method for problem (1),(2) in a Banach
space. Also in this case we get convergence of the Newton type.

The method of approximating solutions of differential equations by
their linearization was introduced by Chaplyghin in [4]. In the original
Chaplyghin method only one approximating sequence was defined
(cf. [11,16]). This method has been applied by Mlak and Szechter [12] to
the system of the first order semilinear partial differential equations and
has been extended to functional differential equations in [6,8].

Monotone iterative scheme for functional differential Darboux
problem, but without linearization and consequently with slower
convergence has been studied by Brzychczy and Janus [5]. The authors
used the ideas presented in the monograph by Ladde et al. [9] (cf. also
[10]). From other important results concerning monotone iterative
methods for non-functional hyperbolic problems we mention those by
Blakley and Pandit [3] and Pandit [14]. In the last paper with help of
the quasilinearization technique a quadratically converging succes-
sive approximations scheme is obtained under the monotonicity and
convexity condition on the right-hand side. These methods have been
also applied to higher order hyperbolic equations by Agarwal [1] and
Agarwal and Sheng [2], where in the latter paper the periodic solutions
were investigated.

Note that the iterative (not necessarily monotone) method is often
used in the theory of hyperbolic functional differential equations to
prove the existence of solutions [7,13,15].

2. FUNCTIONAL DIFFERENTIAL INEQUALITIES

We endow the space C'(E, R) with the norm

lzll. = llzllo + [1Dxzllo + [1Dyzllo,
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where ||-||o denotes the usual supremum norm. The notation u <,von E
means that we have u(x,y)<w(x,y), D,u(x,y)<D,/(x,y) and
D,u(x,y) < Dyv(x,y) for (x,y) € E, and analogously we may define the
relation u <,v.

A function ue C**(E*,R) is called a lower function of problem
1),2)on Eif

Dyyu(x,y) < f(%,¥,u(xy) onE,
u<«¢ on Eo’

(3)

and an upper function of problem (1), (2) on Eif reverse inequalities hold.

Remark 2 Inthe second condition of (3) it would be sufficient assuming
that we have D,u(x,y) < Dyv(x,y), Dyu(x,y) <D,v(x,y) for (x,y)€E
and that u(— ag, — by) < v(— ag, — bo). We use the relation of (3) for
simplicity of notation.

For z € C'(E*, R) put

f[z](x,y) =f(x9y9 Z(x,y)), (x,y) €E.

We now state a theorem on functional differential inequalities which
is analogous to the theorems in [9,10].

THEOREM 1  Suppose that f: E x C'(B,R) — R of the variables (x, y, w)
is nondecreasing with respect to w and that we have two functions
u, v CV*(E*, R) satisfying the inequalities

nyu(x’y) - nyv(x’y) <f[u](x’y) _f[v](x’y) for (x,y) €E,
u<,v onkE°.
Thenu <,von E*.
Proof Itis sufficient to prove that
Dyu(x,y) < Dxv(x,y) and D,u(x,y) < Dyv(x,y) for (x,y) € E.
(4)

Suppose for a contradiction that (4) is false. Then there is a point
(x0,70) €E such that Dxu(xo, yo) = Dx¥(x0,y0) Or Dyu(xo,yo)=
Dyv(xo,y0) but D,u(x,y)<D,v(x,y) and D,u(x,y)<D,v(x,y) for
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(x,») €10, xq] % [0, yo]\{(x0, ¥0)}- This yields that

u <, v on [0,x0] x [0, 0] \ {(x0,%0)} (5)

Suppose that D,u(xo, yo) = Dxv(x0, yo) and notice that yo>0. From
the monotonicity of fand (5) we get

Dxu(x0, y0) — Dxv(x0, y0)
< Dyu(x9,0) — Dyv(x0,0) + /oyo{f[u](xo, 1) — fVl(x0,2)}dz < 0,

which is a contradiction.
Analogously we get a contradiction if Dyu(xo, yo) = D, (0, yo), which
completes the proof of Theorem 1.

ASSUMPTION H; Suppose that

(1) fe C(E x C'(B,R),R) of the variables (x,y,w) is nondecreasing
with respect to w and there are u@, v© € C'*(E*, R) such that

Dy (x,) < flu®)(x,3), Doy (x,3) > fV](x, )
for (x,y) € E,

u© <4 v©®  on Eo;
(2) there is a continuous, bounded and nondecreasing function

o:ExR, — R, such that o(x, y,0) =0 for (x, y) € E and that the
problem

Diyz(x,p) = 0(x, 9, 2(x,)) + L[Dxz(x, ) + Dyz(x,)],
2(x,0) =0 for x € [0,a], z(0,y) =0 for y € [0,],

has only trivial solution on E;
(3) the estimate

f(x’ya w) _f(x’y’ W)
< a(x,y, lw = wllo) + L[||Dxw — Dxwllg + | Dyw — Dyiw|lo]
(6)

holds for (x, y) € E,w,w € C'(B, R), where ”Eg?y) e W W <y vg)gy).

Remark 3 The simplest example of o satisfying condition (2) of
Assumption H, is the linear function o(x, y,p)=Lp, (x,y)€E,peR .
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In that case f fulfills the Lipschitz condition with respect to the last
variable with the norm ||-||.. As an example of nonlinear o we may take
the function

0 for (x,y) € E, p=0,

o(x,y,p) =< p|lnp| for (x,y) €E, 0<p<l/e,
1/e for (x,y) € E, p>1/e.

Given u©@,v©® e C"*(E*,R) satisfying condition (1) of Assumption
H, we put

AW, = {z € (B R): 4 <, z <. on E*}.

Next we state a theorem on weak functional differential inequalities.
THEOREM 2 Suppose that Assumption H, is satisfied and that we have

two functions u, v € Au®, v'0) satisfying the inequalities

nyu(x,y) < Sflu(x,y), nyv(xs}’) > fl(x,y) for (x,y) € E,
u<.v on E°.

Thenu <,vonE”.

Proof Consider the Darboux problem

Dyyz(x,y) = 0(x,9,2(x,¥)) + &+ L[Dxz(x,y) + Dyz(x, )],
z(x,0) = ee* for x € [0,a], z(0,y) =ee’ for y € [0,5].

There is £y > 0 such that if € < &g then there exists a solution w®: E— R
to this problem and

limof(x,y) = lim Dywf(x,y) = lim Dywf(x,y) =0

e—0 e—0 e—0
uniformly on E. Furthermore, let &f : E* — R be an extension of u°

onto the set E* such that on E° the function ¢* and its first order
derivatives are nondecreasing and ¥ >, 0 on E°. Given € < &, we define

us(x’y) = u(x’y) - Jf(x’y),
v (x,y) = v(x,y) + &(x,y) for (x,y) € E.
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We may assume that £y > 0 is sufficiently small in order that for € < ¢
we have u® <, uf <, u and v <, <, ¥ on E* and obviously
U <, ¢ on E°.

Since

S, p) = fIV)(x, p)
< o(x,,65(x,¥)) + L[Dxuf(x,y) + Dyuf(x,)]

we get

DyyV*(x, ) = Dxyv(x,y) + Dxyw®(x,y) 2 fV](%,3) + Dy (x, )
> fI¥](x, ¥) + Dxyu(x,») — o(x,y,w*(x,))
— L[Dyuwf(x,¥) + Dyuf(x,)]
=f1F](x,y) + & > f¥](x, »).

Analogously we may prove
nyuE(x’y) <f[u6](x’ y)'

From Theorem 1 we get u® <, v on E. Lettinge —» Owe getu <, vonE,
which completes the proof of Theorem 2.

Remark 4 Note that Theorems 1 and 2 include as special cases results
for functional differential inequalities with right-hand sides explicitly
dependent on first order derivatives of an unknown function. Indeed,
suppose that /€ C(E x C(B,R)*,R) is nondecreasing with respect to
the last three variables. If we have u, v € C*(E*, R) such that

Dy yu(x,y) — Dyyv(x,y) < f (x, Vs U(xy)s (Dxth) (x5 (Dy“)(x,y))
=7 (" V2 V() (Dx¥) x), (Dy?) (x,y))

for (x,y)€E, and u<,v on E° then u<v on E. This fact follows
immediately from Theorem 1 if we take f(x, y, w) = f (x,y,w, Dyw, Dyw).
Analogously under suitable assumptions we may get a theorem on weak
functional differential inequalities from Theorem 2.

ASSUMPTION H, Suppose that there exists the continuous derivative
D, fon E x C'(B,R) such that for (x,y) € E, h,w,w € C'(B,R), where
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(0)
(x,9)

@ Dyuf(x,y,w)oh>0if h>,0,
(i) Duf(x,y,w)oh > Dyf(x,y,w)ohif w>,w, h >, 0,

u <y W, W <, vgg),y), we have

where o denotes the composition of two functions.

Given u,ve A@®,v?) the lower and upper functions of problem
(1),(2), respectively we define two functions G(-;u), H(;u,v):
E x C'(B,R)—R by

g(x’y’ w; u) =f[u](x’y) + Dwf[u](xsy) 0 (W - u(x,y)),
H(x’y’ w; U, V) =f[v](x3y) + Dwf[u](x’y) o (W - v(x,y))

for (x,y,w) € E x C'(B;R).
Now we prove a theorem which is essential in the definition of
Chaplyghin sequences.

THEOREM 3  Suppose that Assumptions H,, H, are satisfied and

@) u,ye Au©®,v®) are the lower and upper functions of problem
(1), (2), respectively and z € C'*(E*,R)is a solution of (1), (2);
(2) the initial functions o, ¢, B € C'(E°, R) satisfy the inequalities

u, a0 By OnEO; (7)

(3) U, V are solutions of the problems

Dyyz(x,y) = G(X, ¥, 2(xy);4) on E,

2(x,y) = a(x,y) on E°, ®)
and
Dyyz(x,p) = H(X, ¥, 2(xy); 4, v) on E, o)
2(x,y) = B(x,y) on E°,
respectively.

Then u <, U<,z<,V<,vonE* and also U,V are the lower and
upper functions of problem (1), (2), respectively.

Proof Note that since u, v are the lower and upper functions of (1), (2)
we have v >. u on E”, by force of Theorem 2. This together with
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condition (i) of Assumption H; yields that the functions G(- ; u), H(: ; u, v)
are nondecreasingin w. Since they are also Lipschitzean with respect to w
we may use Theorem 2 for G(- ; u) and H(-; u, v).

We first prove that u <, U on E*. Since u is the lower function of
(1), (2) we have

Diyu(%,y) < f(x,3,u(xy) = G(x, 3, ey 1), (10)

where (x, y) € E. Comparing (10) with (8) and using (7) gives our claim.
Analogously since v is the upper function of (1), (2) we have

Diyv(x,) 2f(x,y, v(x,y)) = H(x,y, Vixy)s Us V)’ (11)
where (x,y) € E, and the inequality ¥V <, v on E* follows by (11), (9)
and (7).

Next we prove u <, ¥ on E*. Since u >, u we have by condition (ii) of
Assumption H, the inequality

g(X, Y, V(x,y); u) — Dyy V(x,y)
= f1ul(x, ) + Duf [ul(%, 7) © (V(xg) — i)
—fU1(%,3) = DufU(%,7) © (Vixy) = V(xy))
= (Duflu+ 00y — w)(x,3) — Du f1U)(x,)) © ((xy) = Vixy) <O,
(12)

where 6 € (0,1). Comparing (12) with (10) and (7) gives our claim.
Analogously as (12) we may prove

H(X, 9, Uixy)s 4, v) > Dy U(x,p)

which together with (10) and (7) yields U <,v on E*,
Finally we prove that U <,V on E*. Since u <, U,V <,v and
u <,v+6(V—v), 6c(0,1), we get similarly as in the proof of (12) the
estimates
f(-x,y9 U(x,y)) - nyU(x9y)
= flU)(x,y) = F1ul(x, ) = Duf1ll(x,) © (Uixy) — th(xy)
= (Duffu+6(U — w))(x, ) — Duflul(x,3)) © (Utxy) = Vixy)) 20
(13)
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and

f(x’Ya V(x,y)) — Dyy V(x,y)
= fIV1(x,») = f)(%, ) — Dy fTul(%,3) © (V) — Vixpy)
= (Dufv + 0V = v)(x,9) — Dy f1u)(%,9)) 0 (Vixy) = Vixy)) <O,
(14)

on E. Comparing (13) with (14) and (7) gives our claim. The inequalities
(13) and (14) mean that U, V are the lower and upper functions of (1),(2),
respectively. The inequalities U <, Z <, V on E we get easily comparing
(13) and (14) with (1) and using (7), which completes the proof of
Theorem 3.

Note that in Theorem 3 we have assumed that there is a solution Z of
problem (1), (2). To ensure the existence of this solution we should
assume that the initial function ¢ € C'(E°, R) satisfies the following
consistency condition:

D.6(0.5) = D:6(0.0) + [ F10.0dr for y € 0.8],
x (15)
D,(x,0) = D,(0,0) + /0 £I81(s,0)ds for x € [0, dl.

Consistency condition (15) is necessary in the existence theorem since

we seek classical solutions of the functional Darboux problem, where the

functional dependence is based on the use of the operator (x, y) — z(x, y),

and consequently the initial set £° has a nonempty interior. However,

thereisaclass of functional problems where we may omit such conditions.
Consider the Darboux problem

nyz(x,y) = F(x’y’ z, Dyz, Dyz)’ (xay) € E, (16)
z(x,0) = o(x), x €[0,a], z(0,y)=7(y), y€[0,b], (17)

where Fe C(E x C(E,R)},R), o< C([0,4],R), 7€ C([0,5],R). Sup-
pose that F satisfies the following Volterra condition:
If (x,y)€FE and z,2z, € C(E,R) are such that z(s, ?) =z,(s,?) for
(s,1) €[0, x] x [0, y] then F(x, y, z1, Dxz1, Dyz1) = F(X, y, 22, Dx23, D) 25).
Some examples of differential functional equations which are special
cases of (16) have been considered in [7,13,15].
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We show that the model of functional dependence of (16) isincluded in
our theory. For ag=a, by=>b we define the operator fxy : C(B,R) —
C(E,R) in the following way. If (x, y) € F and w € C(B, R) then

(Iyw)(s, 1) = w(s —x,t—y) for (s,1) € [0,x] x [0, ],

and by fxyw we define any continuous extension of I,,w onto the set
E. Thus we may define f: E x C'(B,R) — R by

f(x,y, W) (x ¥, xyW,Ixy( xw) Ixy(D W))

and since F satisfies the Volterra condition this definition does not
depend on the extension fxy. If Fis Lipschitzean with respect to the last
three arguments and ¢ € C'(E®, R)is any function satisfying consistency
conditions (15) such that ¢(x, 0) = o(x) for x € [0, a] and (0, y) = 7(y) for
y €[0, b] then problem (16), (17) becomes a special case of (1), (2). The
right-hand side of (16) depends on the unknown function only in
[0, x] x [0, y] C E and therefore it does not depend on ¢, which means
that we may drop the consistency condition for (16), (17).

3. CHAPLYGHIN SEQUENCES

We are now able to define two Chaplyghin sequences approximating
the solution of (1), (2).

AssuMPTION Hj3; Suppose that condition (1) of Assumption H; is
satisfied and that furthermore there are L, K > 0 such that for (x, y) € E,
w,w € C'(B,R), where ug? ) e W, W <y vg)‘) » We have

|f (x, 3, w) = f(x,3,W)| < Lljw — wll,, (18)
IDwf (x,y,w) = Dy f (x, 3, W)|, < Kljw — wll,, (19)

and ||, denotes the operator norm generated by the ||-||. norm in
CY(B,R).

AssUMTPTION Hy Suppose that

(1) there are two sequences {a™},{8™} € C'(E° R) of initial func-
tions such that the inequalities

a(m) <. a(m+1) <. b <. ﬂ(m+1) <, 5(m) (20)
hold for (x, y) € E°, m €N, and that «©® <, o®, 0 <, v© on E©,
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(2) the following consistency conditions,

y
Dxa(’"“)(O,y) — Dxa('"'"l)((), 0) _|_/ (0 t 04%3":51),0‘('"))‘1
0
X
D,a™*N(x,0) = D,a™+1(0,0) + / g(s,O aE:"(;;l),a(’”))ds,
0
(21)

and

DA™ (0,5) = Do (0,0) + [ (0,1, a6,

Dyﬂ(m+1)(x, 0) = Dyﬁ('"“)(o, 0) +/ (s 0, ,38";1), (m),ﬂ(m))dS,
(22)

hold true for x € [0, a], y € [0, 5], m € NU {0}, and o?, 3 denote the
restrictions of 4@, v to the set E©.

Let Top:CE*R)x CY(E*;R)— CY(E*;R)x C'((E*;R) be the
operator defined by T, slu, vI=[U, V'], where U, V are solutions of the
problems (8), (9), respectively. We consider the sequences {#™},{v}
defined as follows:

(1) let u©@,y®@ e C*(E*,R) be the functions from condition (1) of
Assumption Hy;
Q) if u™, ™ e C'(E*; R) are already defined then

[u(”’+1), V(m+l)] = Ta(m+l)ﬂ(m+l) [u('”), V(m)] , meg N. (23)

Assumptions H,—H, are sufficient for existence of solutions of
problems (8) and (9) with initial functions o and 8, which means
that sequences {#™} and {¥*"} are well defined. Note that u©,©®
fulfill strict differential inequalities in condition (1) of Assumption
H;. This means that if in the proof of Theorem 3 we use Theorem 1
instead of Theorem 2 then u(® <,u) and vV <,v©® on E* and
consequently M,y e A@®,v?). Thus for other terms of
sequences {u™} and {¥*”} we may use Theorem 3 without any
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modifications which for all m € N gives

u™ <, W) <z < YD) < ym) on B (24)

Remark 5 In condition (1) of Assumption H; we suppose that two
functions #©@, v satisfy strict differential inequalities. The existence of
such functions may be the main difficulty in our method. We show the
example of u'® and v'” provided fsatisfies the Lipschitz condition (18) on
the whole set E x C'(B, R). There are constants M, N > 0 such that

|f(x,5,0)) <M onE and |¢|, <N on E.

Then the function v (x,y) = [M + N]exp{L(ao 4+ bo + x + ¥)} — M,
where L = L + L2 + L, fulfills the estimate

0
Doy (x,3) = M+ L[Is0 o + 12Oy lly + 1Dy o]

> (1062, 0) + 1/ (%300 = (3% 3,0)] 2 £ (%, 3,v2,),

and v? >,¢ on E°. Taking u@(x,y)= —v®(x,y) we get the second
function.
Note that v© is actually the solution of the equation

Dyyz(x,y) = M + Llz(x, y) + Dxz(x,y) + Dyz(x, y)].

If instead of (18) the function f fulfills only the nonlinear estimate (6)
then as v we should take a function such that v(¥ >, ¢ on E, which is a
nonnegative and nondecreasing (together with first order derivatives)
solution of the equation

Dyyz(x,y) = M + 0(x,,2(x,y)) + LIDxz(x,y) + Dyz(x, )],

where M > 0 is a constant such that |o(x, y,0)| < M on E.

Remark 6 If the sequences {#™} and {v™} are defined with o™ =
B = ¢, then consistency conditions (21), (22) for G and H reduce to
condition (15). In this case we may replace Assumption Hy with the
assumption on existence of one function ¢ C'(E®,R) satisfying
consistency condition (15).
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Now we prove that {#™} and {y*"} are convergent to 7 on E*.
THEOREM 4  Suppose that Assumptions Hy—H, are satisfied and
(1) the sequences {u™}, {V"™} are defined by (23);

() the functions u® v satisfy the inequality

[v® —u®|, <4 on E*,

where A = L[AK(1 +2L) exp{L(ap + bo + a+ b)}]™" and L is as in
Remark 5;
(3) the initial estimates

8™ — ™|, < min{1, L} 22,,, , meN, (25)

where Ay = A[(1 + 2L) exp{L(ap + by + a + b)}]™", hold true on E°.
Then for any m € N we have

v — W), < ZF on E*. (26)

Proof We prove (26) by induction. From condition (2) it follows
that (26) is satisfied for m=0. Suppose that it holds for some meN
and write ") = v — (™ Then for all (x, y) € E we have

Dy ™D (x, y)

—H(x, P oD, ), v('”>) g(x, y, ug;"j)‘),u"”))

= fvV™](x,y) — flu™](x, ) + Dy fu™](x, y) 0 ( o = "5?,}))

= D115, 5) 0 (T3 + (Duf ™ + 60 — )z, )

=D, flul™(x,7)) 0 #{7),,
from which we get

DXy“’(mH)(x »)

24 1
< K(zz'") AL [IA o+ D) g+ (DD o]
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The function
K (24\* 4 24
ol y) = [z () +22m‘11] explEleo + bo+ 5+ ) ~ 5 (22)’

is a solution of the equation

24
Do) = K(Z2) 42 et l + 1Pl + 102y ]

which fulfills the inequality w >, min{1, £}4o[22""]™! on E°. Since
wm <, min{1, L} 4o[22""']™" on E° we get

wmt) <, w  on E*, (27)
by Theorem 2 used for f given by

1 yo) = K(Z8) 200+ 10Dl 101 1)

where w* denotes a nonnegative part of w.
Therefore, by (27) it is easy to get

24

57V, < S5 on 7,

and Theorem 4 follows by the induction.

Remark 7 Inequalities (20),(25) yield the uniform convergence of
sequences {a™} and {3} (together with their derivatives) to the initial
function ¢. Therefore, we obtain consistency condition (15) by letting
m — oo in (21) or (22), and consequently assumptions of Theorem 4 are
sufficient for the existence of the unique solution Z of problem (1), (2).

Thus inequalities (24), (26) imply the following error estimates of the
differences between the terms of Chaplyghin sequences (together with
their derivatives) and Z:

N 24
05 2(6y) —u™(x,7) <. 55,
24
0 <, v (x,y) — 2(x,p) <. on E.

*
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4. THE NEWTON METHOD

Let X be a Banach space with the norm |-|. In this section we consider the
Darboux problem (1),(2) with given functions ¢:E°— X, f:Ex
C'(B,X)— X. Let the definition of the norm ||-|, in C'(E, X) be the
same asin Section 2, as well as the definition of G(;u): E x C'(B, X) — X
for given u € C'(E*, X).

ASSUMPTION Hs; Suppose that

1) ¢,a™ e CY(E®, X), meN, and the consistency condition (21) hold
for x€[0,a], y €0, b];

() fe C(Ex C'(B,X),X), there is a continuous derivative D,,f and
the Lipschitz conditions (18), (19) hold on E x C!(B, X).

We consider the sequence {u®™} defined as follows:

(1) u®eC(E*, X) is any function with restriction to E® denoted
by o,

() ifu™ e C'(E*, R) is already defined then #™ ™" is a solution of the
problem

Dyyz(x,y) = Q(x,y, Z(x,y);u"”)) on E,

(28)
z(x,y) = o™V(x,y) on E°,

which exists if Assumption H; holds.

Remark 8 We call {u™} the Newton sequence since in case o™ = ¢ it
is a sequence generated by the classical Newton method starting from
u® for the operator F: C}(E*, X)— CY(E*, X) defined by

F(u)(x’y) =u(x’y) - ¢(x’y) if (x’y) € Eo,
F(u)(x’y) =u(x’y) - ¢(x’ 0) - d’(o’y) + ¢(Os 0)

x ry
- / / fis, t,uiy) dsder if (x,y) € E.
o Jo

Note that the definition of {1} is the same as the definition of one of
the Chaplyghin sequences.
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THEOREM 5 Suppose that Assumption Hs holds, Z is the solution of the
problem (1), (2) and

(1) the sequence {u‘™} is defined by (28);
() u9 satisfies the inequality

[u® -2, <4 onE*,

where

A= {4K(a + b+ ab) [1 +1 JrLzLexp{IZ(a + b)}] }—1

and L is as in Remark 5;
(3) the initial estimates hold on E°

A
o™ — gl < 3. meN,

where
- -1
A 1+2L -
A =21+ exp{i(a + b))
5 L
Then for any m € N we have

) 2, < 3 on £ (29)

Proof Asinthe proof of Theorem 4 we use induction. Obviously (29) is
satisfied for m=0. Suppose that it holds for some m €N and write
wm = ym — 7 pm = D™ — D,z G = D,u™ — D3 For all
(x,y) € E we have

nyw(m+l)(x’y) = g(x,y, ug:;)]); u(m)) —f(x,y, E(x,y))

= F1u™)(x,3) = fE(x ) + Duf W™, ) o (W) = 50, ).
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Integrating (30) over [0, x] x [0, y] and using the Hadamard mean value
theorem we get

[#D x,p)] = [0 (x,0) + w1 (0,5) = #1(0,0)
+ [ [ frumns. -
+ Dy flu)(5,1) o (Wirg D = W) )} dsd
< ;ff. + / / [D uf [u™)(s, 1) 0 i
+ [ {parte ot - 21650

— Do f [u"™](s, t)} o W™ dr} dsdr

(s,2)

_232',:1:1 +/"/0y{|Dwf[u(m)](s,t owgn:;l)|
+ KW |Io}dsdt
< 232’33, + bK@;i)
[ Rl + 1o + g lo]asat.
Putting

e (x, ) = sup{ (s, )] (s.) € [—an, 6] x [~bo.3]),
A (x, ) = sup{|[p™ (s, )|; (s,7) € [~ao, x] x [~bo, )]}
G (x, p) = sup{|g™*V (s, )|; (s,7) € [—ao, %] x [—bo, ]},

and rimtD) = ypm+1) | 50m+l) o Zim+1) we oet the estimate

30 < 2 ask() 4 [ [ v asan o1
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Analogously integrating (30) on [0, y] and [0, x] we obtain

y
F0(x,9) < S +bK(§§3) +/o LD (x,ryde (32)

and

p (") (x,y) < = A k(24 + L 1) (s, y) d (33)
w X,¥) e +a 7 A r s,)ds.
Adding the inequalities (31)—(33) we finally get

54, 24\?
1
P (x, y) < S +(a+b+ab)K (22m)

+/ / Lr™ (s, 1) dsdt
o Jo

y x
+ / L™ (x, 1) de + / Lrm (s, y) ds
0 0

If we substitute

x 1y
) (x, ) = / / r) (s, 1) dsds
o Jo

in the above inequality then we get the differential inequality

D, 7™ (x, ) < A+, +(a+b+ ab)K(ZA)

22’” 22’”

+L [F('"“)(x, y) + D, 7™ (x, ) + Dyr’('”“)(x,y)] ,
with initial values #+1)(x, 0) = #™+1)(0, ») = 0. Analogously as (27) we
get

Fmt) < & on E*,

where

2
3(0y) =7 |5+ (a+ b+ an)K(35) ] [exp{Z0x-+ )}~ 1.
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Thus

54 24\?
1 1
rm(x,y) < s+ (@ b+ ab)K(ﬁ)

+ L[@(x, y) + Dx@(x, ) + Dyid(x, y)]

—51-4]—+ (a+b+ab)K(—2—‘i)2]

— 22m+1 22m
X [1 + s 2Lexp{l:(a + b)}]
24
= W

on E*, and we get (29) by induction, which completes the proof of
Theorem 5.
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