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We consider the Darboux problem for the hyperbolic partial functional differential
equations

(1) Dxyz(X, y) f(x, y, Z(x,y)), (x, y) E [0, a] x [0, b],
(2) z(x,y)=O(x,y), (x,y)E[-ao, a] x [-bo, b]\(O,a] x (0,b],

where Z(x,y) a0, 0] x b0, 0] Z is a function defined by Z(x,y)(t, s) z(x + t, y + s),
(t, s) a ao, 0] x bo, 0]. If X I then using the method of functional differential
inequalities we prove, under suitable conditions, a theorem on the convergence of the
Chaplyghin sequences to the solution of problem (1), (2). In case X is any Banach space
we give analogous theorem on the convergence of the Newton method.

Keywords: Functional differential equation; Darboux problem; Classical
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1. INTRODUCTION

Define E [0, a] x [0, b], E a0, a] x b0, b]\(0, a] x (0, b], E*
E U E, where a0, b0 E +, a, b > 0. If X, Y are any Banach spaces then
we denote by C(X, Y) the class of all continuous functions from Xto Y.
IfXc E* then we denote by C (X, Y) the set of all functions z C(X, Y)
for which the derivatives Dxz, Dyz, exist and are continuous. Finally, let
CI’*(E*,Y) denote the subset of C(E*,Y) consisting of functions for
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142 T. CZLAPIlqSKI

which additionally the mixed derivative Dxyz exists and is continuous
onE.
For any function z: a0, a] x b0, b] -, and a point (x, y) E E, we

define z(x,y):B , where B ao, 0] x b0, 0], by the formula

Z(x,y)(t,s) z(x + t,y + s), (t,s) E B.

For given functions b E IR, f: E x C(B;/R) IR, we consider the
following Darboux problem:

Dxyz(X, y) f(x, y, Z(x,y) ), (x, y) E,

z(x, y) gp(x, y), (x, y) E. (1)
(2)

In this paper we consider classical solutions of (1), (2). In other words
a function z CI’*(E*; ) is said to be a solution of (1), (2) if it satisfies
Eq. (1) on E and fulfills Darboux condition (2) on E.
Remark 1 Equation (1) contains as special cases equations in which the
right-hand side depends on the first order derivatives of an unknown
function even though in f there is no explicit dependence on Dxz and
Dyz. This is due to the fact that the last variable off is a functional
space CI(B, IR). As an example consider the Darboux problem for the
equation with deviated argument

Dxyz(X, y) f(x, y, z(ao(x, y)),
DxZ(al(x,y)), Dyz(a2(x,y))), (x,y) E,

z(x, y) gp(x,y), (x, y) E E,
wheref" E x IR IR, ai" E E*, and ai(x, y) (x, y) B for (x, y) 6 E,
i=0, 1,2. This problem is a special case of (1), (2) if we definefby the
formula

f(x, y, w) =f(x, y, w(ao(x, y) (x, y)),
Dxw(al (x, y) (x, y)), Dyw(a2 (x, y) (x, y))).

In this paper we give sufficient conditions for the existence of
two monotone sequences {u(m)},{v(m)} such that if z is a solution of
(1),(2) then u(m)<_z<_v(ml on E and {u(m)},{v(m)} are uniformly
convergent to z on E. The convergence that we get is of the Newton
type, which means that

2A 2A
0 <_ z(x, y) u(m) (x, y) <_ -, 0 < 11(m) (x, y) z(x, y) < 5-, on E,
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where A is some constant not dependent on m. The functions U(m), 1
(m)

are defined as solutions of some linear functional differential equa-
tions obtained by the linearization of(1). The monotonicity ofsequences
{u(m)},{v(m)} is proved by a theorem on functional differential
inequalities.

In the last section of this paper we also prove a theorem on the
convergence of the Newton method for problem (1), (2) in a Banach
space. Also in this case we get convergence of the Newton type.
The method of approximating solutions of differential equations by

their linearization was introduced by Chaplyghin in [4]. In the original
Chaplyghin method only one approximating sequence was defined
(cf. [11,16]). This method has been applied by Mlak and Szechter [12] to
the system ofthe first order semilinear partial differential equations and
has been extended to functional differential equations in [6,8].
Monotone iterative scheme for functional differential Darboux

problem, but without linearization and consequently with slower
convergence has been studied by Brzychczy and Janus [5]. The authors
used the ideas presented in the monograph by Ladde et al. [9] (cf. also
[10]). From other important results concerning monotone iterative
methods for non-functional hyperbolic problems we mention those by
Blakley and Pandit [3] and Pandit [14]. In the last paper with help of
the quasilinearization technique a quadratically converging succes-
sive approximations scheme is obtained under the monotonicity and
convexity condition on the right-hand side. These methods have been
also applied to higher order hyperbolic equations by Agarwal [1] and
Agarwal and Sheng [2], where in the latter paper the periodic solutions
were investigated.
Note that the iterative (not necessarily monotone) method is often

used in the theory of hyperbolic functional differential equations to
prove the existence of solutions [7,13,15].

2. FUNCTIONAL DIFFERENTIAL INEQUALITIES

We endow the space CI(E, II) with the norm

Ilzll, Ilzll0 + IlO zll0 + IlOyzllo,



144 T. CZLAPIlqSKI

where 11.110 denotes the usual supremum norm. The notation u <,v on E
means that we have u(x, y) < v(x, y), Dxu(x, y) < Dxv(x, y) and
Dyu(X, y) < Dyv(X, y) for (x, y) E E, and analogously we may define the
relation u <,v.
A function u E CI’*(E*,IR) is called a lower function of problem

(1), (2) on E if

Dxyu(X, y) <_ f(x, y, U(x,y) ) on E,

u<,b onE, (3)

and anupper function ofproblem (1), (2) onEifreverse inequalities hold.

Remark 2 In the second condition of(3) itwould be sufficient assuming
that we have Du(x, y) <_ Dv(x, y), Dyu(X, y) <_ Dyv(X, y) for (x, y) E
and that u(-ao,- bo)< v(-ao,- bo). We use the relation of (3) for
simplicity of notation.

For z CI(E*, N) put

f[z] (x, y) f(x, y, Z(x,y)), (x, y) E.

We now state a theorem on functional differential inequalities which
is analogous to the theorems in [9,10].

THEOREM Suppose thatf: E x CI(B, N) -- I ofthe variables (x, y, w)
is nondecreasing with respect to w and that we have two functions
u, v CI’*(E*, N) satisfying the inequalities

Dxyu(x, y) Dxyv(x, y) < f[u](x, y) f[v](x, y) for (x, y) E,
u <, v on E.
Then u <,v on E*.

Proof It is sufficient to prove that

Dxu(x, y) < Dxv(X, y) and Dyu(x, y) < ayv(X, y) for (x, y) E.

(4)

Suppose for a contradiction that (4) is false. Then there is a point
(x0, Y0) E such that Dxu(xo, Yo) Dxv(Xo, Yo) or Dyu(Xo, Yo)
Dyv(Xo, Yo) but Dxu(x, y) < Dv(x, y) and Dyu(X, y) < Dyv(X, y) for
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(x, y) E [0, Xo] x [0, Yo]\{(Xo, Yo)}. This yields that

u <, v on [0,x0] x [0,y0] \ {(xo,Y0)}. (5)

Suppose that Du(xo, Yo)= Dv(xo, Yo) and notice that Yo > 0. From
the monotonicity offand (5) we get

:OxU(Xo, yo) Zv(xo, yo)

< Dxu(Xo, O) Dxv(Xo, O) + (f[u](xo, t) -f[v](xo, t)}dt < 0,

which is a contradiction.
Analogously we get a contradiction ifDyu(Xo, Yo) Dyv(xo, Y0), which

completes the proof of Theorem 1.

ASSUMPTION H Suppose that

(1) fEC(Ex CI(B,),/) of the variables (x,y,w) is nondecreasing
with respect to w and there are u(), v() CI’*(E*, II) such that

Dxyu()(x, y) < f[u()](x, y), Dxyv()(x, y) > f[v()](x, y)
for (x, y) E,

u() <, v() on E;

(2) there is a continuous, bounded and nondecreasing function
r: E x IR + -+ IR + such that a(x, y, 0) 0 for (x, y) E and that the
problem

Dxyz(x, y) a(x, y,z(x, y)) + L[Dxz(x, y) + Dyz(x, y)];
z(x, 0) 0 for x [0, a], z(0, y) 0 for y 6 [0, b],

has only trivial solution on E;
(3) the estimate

f(x,y, w) f(x,y, )
< a(x, y, Ilw- ff;l[o) + Z[llOxw Oxllo + I[Oyw Oyllo]

(6)

holds for (x, y) E, w, C (B, I), where, (0) v(0)
’(x,y) <* 1 , w <, (x,y)"

Remark 3 The simplest example of cr satisfying condition (2) of
Assumption H is the linear function r(x, y,p) Lp, (x, y) E, p . I +.
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In that case f fulfills the Lipschitz condition with respect to the last
variable with the norm I1"1[,. As an example of nonlinear r we may take
the function

0
cr(x,y,p) Pl lnpl

1/e

for (x, y) 6 E, p 0,
for (x, y) E, 0 < p < 1/e,
for (x, y) 6 E, p _> 1/e.

Given u(), v()E CI’*(E*, ]) satisfying condition (1) of Assumption
H1 we put

A(u(), v()) {z E C"*(E*,I): u() <, z <, v()on E* }.
Next we state a theorem on weak functional differential inequalities.

THEOREM 2 Suppose that Assumption H1 is satisfied and that we have
twofunctions u, v A(u(), v()) satisfying the inequalities

Dxyu(x,y) < f[u](x,y), Dxyv(x,y) > f[v](x,y) for (x,y) E,

u <, v onE.
Then u <, v on E*.

Proof Consider the Darboux problem

Dxyz(x,y) o’(x,y,z(x,y)) + e + L[Dz(x,y) + Dyz(x,y)],
z(x, O) eex for x [0, a], z(0, y) eey for y [0, b].

There is eo > 0 such that if e < eo then there exists a solution w’E II
to this problem and

lim we (x, y) lim Dxw (x, y) lim Dyws (x, y) 0
e0 eo e0

uniformly on E. Furthermore, let s. E* --+ IR be an extension of w
onto the set E* such that on E the function a3s and its first order
derivatives are nondecreasing and a3s >, 0 on E. Given e < 0 we define

us (x, y) u(x, y) gos (x, y),
vs (x, y) v(x, y) + gas (x, y) for (x,y) E.
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We may assume that eo > 0 is sufficiently small in order that for e < eo
we have u() <, u <, u and v <, v <, v() on E*, and obviously

<, ve on E.
Since

f[#](x, y) f[v](x, y)
< cr(x,y, we(x,y)) + L[Dxw(x,y) + Dyw(x,y)]

we get

Dxy#(X, y) Dxyv(x, y) + Dxyw(x, y) > f[v](x, y) + DxycO(x, y)
> f[ve] (x, y) + Dxy we (x, y) or(x, y, w (x, y))

L[Dxwe(x,y) + Dyw(x,y)]
f[v] (x, y) + e > f[v] (x, y).

Analogously we may prove

Dxyu (x, y) < f[u](x, y).

From Theorem we get u <. v on E. Letting e 0 we get u <. v on E,
which completes the proof ofTheorem 2.

Remark 4 Note that Theorems 1 and 2 include as special cases results
for functional differential inequalities with right-hand sides explicitly
dependent on first order derivatives of an unknown function. Indeed,
suppose that f E C(E x C(B,)3,) is nondecreasing with respect to
the last three variables. Ifwe have u, v E CI’*(E*, N) such that

Dxyu(X, y) Dxyv(x, y) < .(x, y, U(x,y), (Dxu)(x,y), (Dyu)(x,y))

for (x,y) E, and u < .v on E then u < v on E. This fact follows
immediately from Theorem ifwe takef(x, y, w) f(x, y, w, Dxw, Oyw).
Analogously under suitable assumptions we may get a theorem on weak
functional differential inequalities from Theorem 2.

ASSUMPTION H2 Suppose that there exists the continuous derivative

Dwfon E x C(B,]R) such that for (x,y) E, h, w, C1 (B, ), where
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t.(0) (0)
(x,y) <* w, w <, "(x,y), we have

(i) Dwf(X, y, w) o h > 0 if h >, 0,
(ii) Dwf(X, y, ) o h > Dwf(X, y, w) o h if >, w, h >, 0,

where o denotes the composition of two functions.

Given u, v E A(u(), v()) the lower and upper functions of problem
(1),(2), respectively we define two functions (.;u), 7-/(.;u,v)"
E x CI(B, II) I by

(x, y, w; u) f[u](x, y) + Dwf[ul(x, y) o (w U(x,y)),
7-[(x, y, w; u, v) f[v](x, y) + D,f[u](x, y) o (w V(x,y))

for (x, y, w) E E x CI(B; ).
Now we prove a theorem which is essential in the definition of

Chaplyghin sequences.

THEOREM 3 Suppose that Assumptions H1, H2 are satisfied and

(1) u,vA(u(),v()) are the lower and upper functions of problem
(1), (2), respectively and CI,*(E*,IR)is a solution of(l), (2);

(2) the initialfunctions a, d?, C (E, IR) satisfy the inequalities

u<_,a<_,<,<_,v

(3) U, Vare solutions oftheproblems

on E; (7)

Dyz(X, y) (x, y,Z(x,y); u)
z(x, y) a(x, y) on E, on E,

(8)

and

Dyz(x, y) (x,y,z(,y); u, v)
z(x, y) (x, y) on E, on E,

(9)

respectively.

Then u <_, U <, <_, V <, v on E*, and also U, V are the lower and
upperfunctions ofproblem (1), (2), respectively.

Proof Note that since u, v are the lower and upper functions of (1), (2)
we have v >, u on E*, by force of Theorem 2. This together with
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condition (i) ofAssumption H2 yields that the functions 7(" u), 7-/(. u, v)
are nondecreasing in w. Since they are also Lipschitzean with respect to w
we may use Theorem 2 for (. ;u) and 7(. u, v).
We first prove that u <_, U on E*. Since u is the lower function of

(1), (2) we have

Dxyu(x, y) < f(x, y,U(x,y)) (x, y, U(x,y); u), (10)

where (x, y) E E. Comparing (10) with (8) and using (7) gives our claim.
Analogously since v is the upper function of (1), (2) we have

Dxyv(x,y) > f(x,y, V(x,y)) 7-[(x,y, V(x,y);U, v), (11)

where (x, y)E E, and the inequality V <. v on E* follows by (11), (9)
and (7).
Next we prove u <. Von E*. Since u >. u we have by condition (ii) of

Assumption H2 the inequality

7(x, y, V(x,y>; u) D.yVCx, y)

f[u] (x, y) + Dwf[u] (x, y) o (V(x,y) U(x,y))
f[v](x, y) Dwf[u](x, y) o (V(x,y) V(x,y))

(O,f[u + O(v u)l(x, y) Owf[ul(x, y)) o (U(x,y) V(x,y)) <_ O,

(12)

where 0 E (0,1). Comparing (12) with (10) and (7) gives our claim.
Analogously as (12) we may prove

7"((x, y, U(x,y); u, v) >_ DxyU(x, y)

which together with (10) and (7) yields U _<,v on E*.
Finally we prove that U _<, V on E*. Since u _<, U, V _<, v and

u <_, v + O(V- v), 0 (0, 1), we get similarly as in the proof of (12) the
estimates

f(x, y, U(x,y)) axy U(x, y)
f[U](x, y) f[u](x, y) Dwf[u](x, y) o (U(x,y) U(x,y))
(Dwf[u + O(U- u)](x,y) D,,,f[u](x,y)) o (U(x,y) V(x,y)) >_ 0

(13)
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and

f(x, y, V(x,y) ) axy V(x, y)
f[V](x,y) -f[v](x,y) D.,f[u](x,y) o (V(x,y) V(x,y))
(D,,,f[v + O(V- v)](x,y)- Df[u](x,y))o (V(x,y)- V(x,y)) < O,

(14)

on E. Comparing (13) with (14) and (7) gives our claim. The inequalities
(13) and (14) mean that U, Vare the lower and upper functions of( ),(2),
respectively. The inequalities U <, 5 _<, Von Ewe get easily comparing
(13) and (14) with (1) and using (7), which completes the proof of
Theorem 3.

Note that in Theorem 3 we have assumed that there is a solution 5 of
problem (1), (2). To ensure the existence of this solution we should
assume that the initial function E CI(E,I) satisfies the following
consistency condition:

y

Dx(O, y) Dx(O, O)+ f[](O, t)dt for y e [0, b],

Xf[](s, ds for e [0,a]Dye(X, O) Dye(O, O) + O)x
(15)

Consistency condition (15) is necessary in the existence theorem since
we seek classical solutions ofthe functional Darboux problem, where the
functional dependence is based on the use ofthe operator (x, y) z,y),

and consequently the initial set E has a nonempty interior. However,
there is aclass offunctionalproblemswherewemayomit suchconditions.

Consider the Darboux problem

Dxyz(X, y) F(x, y, z, Dxz, Dyz), (x, y) e E,
z(x, O) a(x), x e [0, a], z(0,y) T(y), y e [0, b],

(16)
(17)

where F C(E x C(E, )3, ]), O" cl([0, a], ), 7" C ([0, b], IR). Sup-
pose that F satisfies the following Volterra condition:

If (x, y) E and zl, z2 C(E, IR) are such that Zl(S, t) z2(s, t) for
(s, t) E [0, x] x [0,y] then F(x,y, Zl,DxZl,DyZl)-- F(x,y, z2,D.z2,Dyz2).
Some examples of differential functional equations which are special

cases of (16) have been considered in [7,13,15].
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We show that the model offunctional dependence of(16) is included in
our theory. For ao a, bo b we define the operator Ixy’C(B,)
C(E, JR) in the following way. If (x, y) E E and w C(B, ) then

(Iyw)(s, t)= w(s- x, t-y) for (s, t) [0,x] [0,y],

and by yW we define any continuous extension of LcyW onto the set
E. Thus we may definef: E x CI(B, IR) -- IR by

f(x, y, w) F(x, y, xyW, ]xy(Dxw), ]xy(Dyw)),
and since F satisfies the Volterra condition this definition does not
depend on the extension xy. IfF is Lipschitzean with respect to the last
three arguments and C (E,) is any function satisfying consistency
conditions (15) such that (x, 0) a(x) for x [0, a] and (0, y) r(y) for
y [0, b] then problem (16), (17) becomes a special case of (1), (2). The
right-hand side of (16) depends on the unknown function only in

[0, x] x [0, y] c E and therefore it does not depend on , which means
that we may drop the consistency condition for (16), (17).

3. CHAPLYGHIN SEQUENCES

We are now able to define two Chaplyghin sequences approximating
the solution of (1), (2).

ASSUMPTION H3 Suppose that condition (1) of Assumption H is
satisfied and that furthermore there are L, K> 0 such that for (x, y) E,
w, E C (B, IR), where, (0) (0)

"(x,y) <* w, # <, "(x,y), we have

[f(x,y, w) -f(x,y, ’)1 < Zllw 11,, (18)
[Dwf(x,y, w) Dwf(x,y, #)1, < gllw 11,, (9)

and 1-[, denotes the operator norm generated by the IIll, norm in
C(B, ]R).

ASSUMTPTION H4 Suppose that

(1) there are two sequences {oz(m)},{(m)} CI(E,]) of initial func-
tions such that the inequalities

o(m) , cg(m+l) , , /(m+l) , (m) (20)
hold for (x, y) E E, m E N, and that u() <, a(1), fl(1) <, .),(0) on E();
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(2) the following consistency conditions,

y

(0, (m+l). (m)Oxa(m+l)(O,y) Dxa(m+l)(o,o) nt- t, a(O,t ,a )dt,
(m+l)Dyo(m+l) (x, O) 2Dyoz(m+l) (o, o) nt- s, 0, O(s,0 ;oz(m) ds,

(21)

and

y

(0, R(m+l). oz(m),/(m)Dxfl(m+l) (0, y) Dxfl(m+l) (0, O) nt- 7-[ t, t(0,t) )dt,
/oX (m+l). a(m) fl(m) ds,Dlm+) (x, O) Dym+) (0, O) + s, 0,.,,o)

(22)

hold true for x 6 [0, a], y E [0, b], rn N t3 {0}, and a(), o) denote the
restrictions of u(), v() to the set E().

Let T" CI(E*; JR) x C (E*; JR) C (g *; ]1) )< CI(E*; IR) be the
operator defined by Ta[u, v] [U, V], where U, V are solutions of the
problems (8), (9), respectively. We consider the sequences {u(m)},{I(m)}
defined as follows:

(1) let u(),v()C’*(E*,N) be the functions from condition (1) of
Assumption H;

(2) if u(m),v(m) C(E*; N) are already defined then

[u(m+l),l(m+l)] Ta(m+,)fl(,n+, [u(m),l(m)], m N. (23)

Assumptions H2-H4 are sufficient for existence of solutions of
problems (8) and (9) with initial functions O(m) and fl(m), which means
that sequences {u(m)} and {v(m)} are well defined. Note that u(), v()

fulfill strict differential inequalities in condition (1) of Assumption
H. This means that if in the proof of Theorem 3 we use Theorem
instead of Theorem 2 then u() <, u(1) and v(1) <, v() on E* and
consequently U(1), V(1) A(u(), v()). Thus for other terms of
sequences {u(m)} and {v(m)} we may use Theorem 3 without any
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modifications which for all m E N gives

U(m) _, U(re+l) _, _, l(m+l) _, 1(m) on E*. (24)

Remark 5 In condition (1) of Assumption H1 we suppose that two
functions u(), v() satisfy strict differential inequalities. The existence of
such functions may be the main difficulty in our method. We show the
example ofu)and v providedfsatisfies the Lipschitz condition (18) on
the whole set E x CI(B, N). There are constants M, N> 0 such that

[f(x,y,O)[ < M on E and IIll. < N on E.
Then the function v() (x, y) [M + N] exp{/(a0 + b0 + x + y) } M,
where/ L + x/L2 + L, fulfills the estimate

Dxv() (x, y) M + L Ill’ (o)-(x,y)llo + II(Dxv())(x,y)llo + II(Dv())(x,y)llo]
(o) O)l > (o)> [f(x,y, 0)l + If(x,y,.(x,y))-f(x,y, f(x,y,.(x,y)),

and v() >,4) on E. Taking u()(x, y)= -v()(x, y) we get the second
function.
Note that v() is actually the solution of the equation

Dxyz(X, y) M+ L[z(x, y) + Dxz(X, y) + Dyz(X, y)].

If instead of (18) the function f fulfills only the nonlinear estimate (6)
then as v) we should take a function such that v() >. b on E, which is a
nonnegative and nondecreasing (together with first order derivatives)
solution of the equation

Dxyz(X, y) M+ or(x, y, z(x, y)) + L[Dxz(X, y) + Dyz(X, y)],

where/9/> 0 is a constant such that [a(x, y, 0)[ < Ar on E.

Remark 6 If the sequences {u(m)} and {v(m)} are defined with a(m)=
3(m)= 4), then consistency conditions (21), (22) for and reduce to
condition (15). In this case w.e may replace Assumption H4 with the
assumption on existence of one function bE CI(E,N) satisfying
consistency condition (15).
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Now we prove that {U(m)} and {V(m)} are convergent to on E*.

THEOREM 4 Suppose that Assumptions H2-H4 are satisfied and

(1) the sequences {uCm)}, {vera)} are defined by (23);
(2) thefunctions u),v) satisfy the inequality

Ilv</- u<)ll, A on E*,

where A L[4K(1 + 2/)exp{/(a0 + b0 + a + b)}]-1 and is as in
Remark 5;

(3) the initial estimates

II/(m) -(m)ll < min{1 /_,} Ao m E N, (25)

where Ao A[(1 + 2/2) exp{/(ao + bo + a + b) }]-1, hold true on E.
Thenfor any m N we have

2A
E*. (26)v(m) u(m) II.

_
on

Proof We prove (26) by induction. From condition (2) it follows
that (26) is satisfied for m 0. Suppose that it holds for some m N
and write (m) v(m) u(m). Then for all (x, y) Ewe have

Dxyv(m+l) (x, y)

(m+l);u(m) v(m)) -(x,y, (m+l);u(m))\x, y, V(x,y U(x,y
/’ (re+l) ,~(m)f[v(m)](X, y) f[u(m)](X, y) + Dwf[u(m)](X, y) o W(x,y (x,y))

1’(m+l) (Dwf[U(m) + )](x, y)Dwf[u(m)](x, y)o (x,y) -I- O(V(m) U(m)

-Dwf[u(m)] (x, y) o (x,y),

from which we get

Dxyv(m+l) (x, y)

< K +L[" ~(m+l)w(.,y)IIo+ll(Dx(m/)l(x,)llo/ll(Dy#m/l))(x,y)llo].
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The function

w(x, y) - + 22m, exp{/(ao + bo + x + y)} Z -is a solution of the equation

2A)Dxyw(X,y) K /L[llw(,y/ll0 / II(Dx)(x,yllo + II(Dw)(,yll0],
which fulfills the inequality w _>, min{1,/}Ao[22m+] -1 on E. Since
1(m) __<, min{1,/}A0122+’]-1 on E we get

(m+l) , W on E*, (27)

by Theorem 2 used forfgiven by

2A)f(x,y, w)- K /Z[llw+ll0 + II(Oxw)/llo / II(Oyw)+llo],

where w+ denotes a nonnegative part of w.
Therefore, by (27) it is easy to get

2A]l(m+’)ll, 22=+
on E*

and Theorem 4 follows by the induction.

Remark 7 Inequalities (20), (25) yield the uniform convergence of
sequences {a(m)} and {/3(m)} (together with their derivatives) to the initial
function b. Therefore, we obtain consistency condition (15) by letting
m --+ cx in (21) or (22), and consequently assumptions ofTheorem 4 are
sufficient for the existence of the unique solution ofproblem (1), (2).
Thus inequalities (24), (26) imply the following error estimates of the

differences between the terms of Chaplyghin sequences (together with
their derivatives) and :

2A
0 <_, (x, y) u(m) (x, y) <_,

22
2A

0 , l(m) (X, y) g(X, y) _<, - on E.
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4. THE NEWTON METHOD

Let Xbe a Banach space with the norm [.1. In this section we consider the
Darboux problem (1), (2) with given functions b" E X, f: E x
CI(B,X) X. Let the definition of the norm [1"1[, in CI(E,X) be the
same as in Section 2, as well as the definition of7(.; u)" E x CI(B, X) X
for given u E C(E*, X).

ASSUMPTION H5 Suppose that

(1) c, a(m) C (E, X), rn N, and the consistency condition (21) hold
for x [0, a], y [0, b];

(2) f C(E x CI(B, X), X), there is a continuous derivative Dwf and
the Lipschitz conditions (18), (19) hold on E x C(B,X).
We consider the sequence {u(m)} defined as follows:

(1) u()E CI(E*,X) is any function with restriction to E denoted
by a();

(2) if u(m) C(E*, IR) is already defined then u(m + 1) is a solution of the
problem

Dxyz(x,y)=(x,y,Z(x,y);U(m)) onE,

z(x, y) o(m+l) (X, y) on E, (28)

which exists if Assumption H5 holds.

Remark 8 We call {u(m)} the Newton sequence since in case o(m) it
is a sequence generated by the classical Newton method starting from
u() for the operator F" CI(E*,X) CI(E*, X) defined by

F(u)(x,y) =u(x,y)- c(x,y) if (x,y) E,
F(u) (x, y) u(x, y) c(x, O) c(O, y) + c(O, O)

fOOXfO0
y

f(s, t, "(s,t)) ds dt if (x, y) e E.

Note that the definition of {u(m)} is the same as the definition of one of
the Chaplyghin sequences.
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THEOREM 5 Suppose that Assumption H5 holds, is the solution of the
problem (1), (2) and

(1) the sequence {u(m)) is defined by (28);
(2) u() satisfies the inequality

Ilu(/-  ll, A on E*,

where

A= 4K(a+b+ab) 1+...
L

-1

andL is as in Remark 5;
(3) the initial estimates hold on E

hiI](m/-  11, m E N,

where

A[ + 2/exp{/(a + b)}AI= 1+ L"’
-1

Thenfor any m N we have

2A
11 u(m) -[I,5 on E*. (29)

Proof As in the proofofTheorem 4 we use induction. Obviously (29) is
satisfied for m =0. Suppose that it holds for some m N and write
(m) u(m) , (m) Dxu(m) Dx, (m) Dyu(m) Dye. For all
(x, y) E E we have

(re+l). u(m)) f(x, y,(x,y))Dxy(m+l) (x, y) (x, y, U(x,y
f (m+ 1) l(m) ’f[u(m)l(x, y) f[z-](x, y) + D,f[u(m)](x, y) o W(x,y (x,y)]"

(30)
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Integrating (30) over [0, x] x [0, y] and using the Hadamard mean value
theorem we get

Iv(m+l)(x,y)l- [(m+l)(x,O)q- (m+l) (O, y) l’(m+l)(0, O)

+ fo
x

fO0
y

{f[u(m)](s,t)--f[](s, t)

+Dwf[u(m)](s,t)o[~(m+l) 7 (m)

22m+ + Dwf[u(m)](s, t) o W(s,t)-(m+l)

Dwf[u(m)](s, t)}0 dsdt

22m+l
3A, ZxY((s,t)(m+l)+ [Dwf[u(m)](s, t) o

+ gll (m)(, I1 d dt

2 + abK

+ z (s,t) Iio + [,e(,t) Iio + (s,t) Iio

Putting

(v(m+l) (x, y) sup{l#(m+)(s,t)l; (s,t)E [--ao, x] [-bo,y]),

(m+l)(x, y) sup{[(m+l)(s,t)[; (S,t)E [--ao, x] x [-bo, y]},

(m+l) (x, y) suP{l(t(m+l)(s,t)[; (s,t) [-ao, x] x [-bo, y]},

and r(m+1) (m+1) __/(m+1) .if_ (m+1) we get the estimate

3A1 (2A)2fooXfoy

v(m+l)(x,y) <_
22m+

-’1-abK / Lr(m+l)(x,t) dsdt. (31)
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Analogously integrating (30) on [0, y] and [0, x] we obtain

(m+l)(x,y) <_ 2’2A,,1+ 4- bK - 4- zr(m+l)(x,t)dt (32)

and

x
v(m+l) (x, y) < + aK 4- Lr(m+l) (s, y) ds. (33)

Adding the inequalities (31)-(33) we finally get

5A1 (2A)
2

r(m+l)(x,y) <_ 2,+ 4- (a 4- b 4- ab)K -o’Xo"y

4- Lr(m+l) (S, t) ds dt

f0
y

fo
x

4- Lr(m+l) (x, t) dt 4- Lr(m+l) (s, y) ds.

Ifwe substitute

f0Xfo
y

(m+l) (X, y) r(m+l) (S, t) ds dt

in the above inequality then we get the differential inequality

5A1 (2A)
2

axy(re+l) (X, y) <2--- + (a + b + ab)K

4- L[f(m+l)(x, y) 4- Dx(m+l)(x, y) 4- Dy(m+l)(x, y)],
with initial values (m+l)(X, 0) (m+l)(0, y) 0. Analogously as (27) we
get

F(m+I) , on E*,

where

ff)(x,y) Z [2v+’ / (a + b + ab)K y [exp{/(x + y)} 1].
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Thus

on E*, and we get (29) by induction, which completes the proof of
Theorem 5.

References

[1] R.P. Agarwal, The method ofupper, lower solutions and monotone iterative scheme
for higher order hyperbolic partial differential equations, J. Austral. Math. Soc.
(Series A) 47 (1989), 153-170.

[2] R.P. Agarwal and Q. Sheng, Periodic solutions of higher order hyperbolic partial
differential equations, Pan Amer. Math. J. 2 (1992), 1-22.

[3] R.D. Blakley and S.G. Pandit, On a sharp linear comparison result and an application
to nonlinear Cauchy problem, Dynamic Syst. Appl. 3 (1994), 135-140.

[4] S.A. Chaplyghin, Collected Papers on Mechanics and Mathematics (Russian),
Moscow, 1954.

[5] S. Brzychczy and J. Janus, Monotone iterative method for nonlinear hyperbolic
differential-functional equations, Univ. Iagel. Acta Math. (to appear).

[6] T. Cztapifiski, On the Chaplyghinmethod for partial differential-functional equations
of the first order, Univ. lagel. Acta Math. 35 (1997), 137-149.

[7] Z. Denkowski and A. Pelczar, On the existence and uniqueness of solutions of some
partial differential functional equations, Ann. Polon. Math. 35 (1978), 261-304.

[8] Z. Kamont, On the Chaplygin method for partial differential-functional equations of
the first order, Ann. Polon. Math. 38 (1980), 313-324.

[9] G.S. Ladde, V. Lakshmikantham and A.S. Vatsala, Monotone Iterative Techniquesfor
Nonlinear Differential Equations, Advanced Texts and Surveys in Pure and Applied
Mathematics 27, Pitman, London, 1985.

[10] V. Lakshmikantham and S.G. Pandit, The method of upper, lower solutions
and hyperbolic partial differential equations, J. Math. Anal. Appl. 105 (1985),
466-477.

[11] N. Luzin, On the Chaplyghin method of integration (Russian), Collected Papers, 3
(1953), 146-167.

[12] W. Mlakand E. Szechter, On the Chaplighinmethod for partial differential equations
ofthe first order, Ann. Polon. Math. 22 (1969), 1-18.

[13] B. Palczewski, On uniqueness and successive approximations in the Darbouxproblem
for the equation Uxy f(x, y, u, Ux, Uy, J f g(x, y, s, t, u(s, t), us(s, t), ut(s, t)) ds dt),
Annal. Polon. Math. 17 (1965), 1-11.



ITERATIVE METHODS FOR THE DARBOUX PROBLEM 161

[14] S.G. Pandit, Monotone methods for systems of nonlinear hyperbolic problems in
two independent variable, Nonl. Anal. 30 (1997), 2735-2742.

[15] A. Pelczar, Some functional-differential equations, Dissertationes Math. 100
(1973), 3-110.

[16] J. Szarski, Differential Inequalities, Warszawa, 1967.


