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The purpose of this article is to derive a new family of sharp inequalities
for positive monotone functions defined on a finite interval of the real
line. The method used is based on recent results obtained for eigenvalue
problems of conservative Hamiltonian systems and other nonlinear
eigenvalue problems of relevance in physics [3].
The inequalities we present here are embodied in the following.

THEOREM Let g be a nonnegative nondecreasing function defined on

(0, b). Assume g E C1(0, b), and denote its derivative by g’. Let q > 2 and
m> 1. Then,

(f(gt(u))l/qdu)q ( )bq_m_ q-1

< B
q--

fbo g(U)um-l du mq-2 q--
(1)
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where B denotes the Beta function, i.e., B(n,m)=_P(n)F(m)/F(n / m).
Equality is obtained in (1)for a unique function g, up to a multiplicative
constant.

Remarks (1) The case q 3, m 2, is of particular interest in the deri-
vation of a variational characterization of the principal branch of the
two point boundary value problem

-u" Au + N(u), in (0, 1)

with u’(0) 0 and u(1) 0 [3]. For this case, (1) reads,

(f(g’(u))l/3du)3
fbo g(u)udu 2

(2) Another interesting case is obtained for m 2 and q . Then,
(1) reads

[f0b e2j0"bexp log gt(u) du <_ - g(u)u du.

(3) For simplicity we have considered intervals of the form (0, b) with
0 < b < o. By an appropriate translation our result can be extended to
intervals of the form (a, b) with -o < a < b < .
Proof We will assume fo g(u)um-1 du < o since otherwise the inequal-
ity is trivial. Using that g is increasing and nonnegative we have 0 <
g(u)(bm um) < m fbu sm-lg(s) ds. Hence, limubg(u)(bm Um) O, a
fact that we will use in the sequel. Let n q- > 1, and consider the
following two point boundary value problem:

du n-2du [m_2u;Xlu on (0, 1), (2)

with u’(0) =0 and u(1)=0. Denote u(0)= b. For every constant b > 0
this two point boundary value problem has a unique positive solution
if and only if

n- lbn-m
A A(b) B(llm, 1In)n (3)

n mn-1
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(see e.g. [5], p. 357; for completeness we have included this result in the
Lemma below). This positive solution is at least CI(0, 1) and it is
monotonic decreasing, i.e. u’(x) < 0. Henceforth, for a given b > 0 we
fix A- A(b), given by (3). Let p--du/dx > 0. Equation (2) is equiva-
lent to the system of first order equations

,,’U m-1
p

(4)

The functions u(x), p(x) corresponding to a solution of (4) trace out a
trajectory in the (u,p)-plane (usually called the phase plane). Such a
trajectory has slope

dp Aum-1

d-- -(n 1)p n-l’ (5)

at any point where p 0. Now, let g E CI(0, b) with g’> 0 and g _> 0
but otherwise arbitrary. Multiplying (5) by rlpn-lg(u) and integrating
in u from 0 to b we get,

fo
b

um-lg(u) du -n pn-1 g(u) du_
prig, (u) du

pq-lg’(u) du, (6)

where the last inequality follows by integrating by parts, using g(0) > 0,
and the fact that limu_bg(u)(bm- u")=0. Note that in the neigh-
borhood of u=b, p(u)..(bm- urn)TM (see the Lemma below). Using
H61der’s inequality we obtain,

(jO
b )q (ob.)q-lj(ob(g’(u)) 1/q du <_ pq-lg’(u) du. (7)

Now, noticing that fo dx Jo du/p(u), from (6) and (7) we get

j0
b

(j0
b )qn

A um-lg(u) du > g(u) 1/qdu (8)
n-1
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Then (1) follows from (3) and (8). To conclude with the proof of the
theorem we need to discuss the case ofequality. Equality in (1) is attained
if and only if

g’(u) cp-q, (9)

where c is an arbitrary positive constant. Notice that p(u) is given
by p(u)=(nA(bm- um)/(m(n- 1))) l/n, which follows form Eq. (5) and
p(b)=0. Equation (9) has a unique solution satisfying the initial
condition g(0)= 0, which is given by

"u

,(U) (bm sin) -(n+l)/n ds. (10)

This is unique up to the multiplicative constant ?, it is increasing and
positive for u E (0, b). Clearly E C (0, b). As u b, (u) ,, (b u) -1/n
and therefore fum-l(u) du < if and only ifn > 1, i.e., q> 2.

Remark The positive solution ofthe boundary value problem given by
(2) and (3) is the maximizing function of the one-dimensional analog of
the Sobolev inequality. See [5], p. 357 for details. The existence and
uniqueness ofthe solution to this boundary value problem can be proved
using standard techniques ofthe calculus ofvariations. Forcompleteness
we give the necessary facts in the Lemma below. The extension of this
boundary value problem to higher dimensions has been studied in [4].

LEMMA (Talenti [5]) For the two point boundary value problem given
by (2), for n > 1, m > 1, with u’(O) u(1) 0 and u(O) b > 0 there exists

a unique positive solution ifand only/fA A(b) is given by (3). Moreover
u is decreasing and

\m(n 1)) (bm um (11)

Proof By an elementary computation we have that for any n > 1, m > 1,

/o
6 du

(bm -urn) 1In

re/22 b(n-m)/n (sin O)(2-m)/m(cosO) (n-2)/n dO
m

b(n-m)/nB( n-l) (12)
m n
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Now, for A(b) given by (3), define implicitly the function u:[0, 1]
[0, b] by

i
b dv [ A(b)n I 1In

(x) (bm vm) 1In m---- "1) x. (13)

It follows from (13) that u(0)= 0 and that

(b)n m) O.u’ (x) \m- --- 1) (bm u (14)

Now, from (3), (12), and (13) we have u(1)--0. Also, from (14) and
u(0) =b we have u’(0) =0. Finally, it follows directly from (14) that u

satisfies (2). From (12) and a standard bootstrap argument one can
show that u E C1(0, 1). In fact one can show that u is real analytic
away from the origin. Uniqueness can be established using the cor-
responding minimization problem and convexity arguments.

Phase-space techniques similar to the ones we have used here to prove
(1) have been used previously by us. In fact, we have followed the same
type of ideas to prove a variational characterization for the speed of
propagating fronts ofa certain class ofnonlinear diffusion equations [1].
We have also employed similar methods to find a variational character-
ization for the principal eigenvalue associated to nonlinear, one-
dimensional, Hamiltonian systems [2]. For a review see [3].
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