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For a system ofn nonlinear neutral functional differential equations we prove the existence
ofan n-parameter family of"special solutions" which characterize the asymptotic behavior
of all solutions at infinity. For retarded functional differential equations the special solu-
tions used in this paper were introduced by Ryabov.
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1. INTRODUCTION

Let I and A" denote the real line and the n-dimensional space of real
column vectors, respectively. Let [. denote any convenient norm of a
vector or the associated induced norm of a square matrix.

Consider the neutral functional differential equation

_d Dx(t) f t, x(t) x( 7-))dt Dx(t) x(t) + A(t)x(t or), (1.1)

where a, 7- are positive constants, A:] "" is a continuous matrix
function andf: 1 x 1" "/" is a continuous vector function.

* Corresponding author. E-mail: pitukm@almos.vein.hu.
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100 I. GYtRI AND M. PITUK

Let r max{or, -) and to E . A function x is said to be a solution of
Eq. (1.1) on [to- r, o) if x is defined and continuous on [to- r, cx),
Dx (defined by (1.1)) is differentiable on [to, ) and Eq. (1.1) is satisfied
fort> to.

It is well known (see, e.g., [9, Chap. 12] or [10, Chap. 2]) that iff
is locally Lipschitzian in its last two variables, then for every contin-
uous function b" [t0- r, to] /1n Eq. (1.1) has a unique solution x on
[to r, o) satisfying the initial condition

x(t)--b(t) for t0-r<t_<t0. (1.2)

The purpose of this paper is to establish conditions under which
Eq. (1.1)possesses an n-parameter family of "special solutions" which
characterize the asymptotic behavior of all solutions as . We shall
see that this situation occurs if, e.g., suptlA(t)l < 1, f is Lipschitzian
in its second and third variable (see condition (2.2) below) and the delays
tr and - are "small". For a class ofdelay differential equations (Eq. (1.1)
with A(t)= 0), the special solutions used in this paper were introduced
by Ryabov in [19].
The paper is organized as follows. In Section 2, we introduce the class

of special solutions of Eq. (1.1) and prove the existence and uniqueness
of the special solutions. The main result of the paper is formulated in
Theorem 3 in Section 3. It shows that under appropriate assumptions
every solution of Eq. (1.1) is asymptotic to some member of the
n-parameter family of special solutions. In Section 4, we apply the
results to linear systems. Finally, in Section 5, we compare our results
to some previous ones in the literature.

2. SPECIAL SOLUTIONS

Throughout the paperwe shall assume that there exist positive constants
K, L, M,Nand ,k0 such that the following conditions are satisfied:

)A(t)I<K fortEIt, (2.1)

]f(t, Ul, 11) -f(t, u2, v2)l < Llul u2l + MlVl v2l
fort, ui, vi n, i=1,2 (2.2)
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If(t, O, 0)1 < Ne-’xt for < 0 (2.3)

KA0e + L + Me < A0. (2.4)

Hypothesis (2.2) and the continuity of A andfimply that the initial
value problem (1.1) and (1.2), formulated in Section 1, has a unique
solution on [to- r, o).

Remark 1 The crucial assumption in our investigations is:

(H) inequality (2.4) has a positive solution A0.
Observe that for tr--=0 inequality (2.4) has the form KA0/

L +M< A0, which certainly holds if K< and A0 is sufficiently large.
From this, using a continuity argument, it follows that assumption (H)
is satisfied if K< 1 and the delays cr and - are sufficiently small. More
precise necessary and sufficient conditions for the validity ofassumption
(H) follow from the following consideration.

Introduce

h(A) KAex + L + Mex A for A E [0, cx).

Assumption (H) can be written equivalently as

h(A0) < 0 for some A0 > 0. (2.5)

By simple calculation, h"(A) > 0 for A > 0. From this, it follows that a
necessary condition for assumption (H) is that

h’(0) K+ Mr- < 0. (2.6)

Indeed, since h’ is strictly increasing on [0, ), the inequality h’(O) > 0
would imply that h’(A) > h’(0) > 0 for A > 0 and hence h(A) > h(0)=
L +M> 0 for all A > 0, contradicting (2.5).
The facts that h’ is strictly increasing, h’(O) < 0 and limoh’(A) cxz

imply that there exists a unique A. > 0 such that

h’(A.) Ke*’(1 + A.cr)+ Mre*T 0. (2.7)
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Furthermore, condition (2.5) and thus assumption (H) is fulfilled if
and only if

h(k,) < 0. (2.8)

In that case the equation h(A)= 0, or equivalently,

KAe + L + Mea A (2.9)

has exactly two positive roots A1, A2, A1 < A. < A2. Moreover, inequality
(2.4) is satisfied if and only if A0 E (A1, A2).

In the "nonneutral" case when K= 0 (i.e. A(t) 0), Eq. (2.7) can be
solved explicitly, A. 1/- In(Mr), and (2.8) gives the following explicit
necessary and sufficient condition for the validity of assumption (H):

M-el+z < 1. (2.10)

Note that ifK 0 and (2.10) holds, then inequality (2.4) is satisfied with

A0= 1/7-+L.

DEFINITION A function Yc" IR --+ IRn is said to be a special solution of
Eq. (1.1)/f is a solution ofEq. (1.1) on the whole interval (-oo, oo) and

sup I(t)[e’ < o. (2.11)
t<o

Remark 2 For the delay differential equation

dx
d--[ (t) f(t,x(t),x(t r)), (2.12)

a special case of Eq. (1.1) when A(t)--0, assuming condition (2.10)
with L =0 and taking A0 1/7-, the above special solutions coincide
with those introduced by Ryabov [19] and investigated by several
authors (see, e.g., [3-7,11,16-18]).

In the following theorem we prove the existence of the special
solutions. We also show that they are uniquely determined if we pre-
scribe the value of the difference operator Dx at some point to E I.
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THEOgEM Suppose conditions (2.1)-(2.4) hold. Thenfor every to E ,
Xo Itn, Eq. (1.1) has a unique special solution Yc such that

DYc(to) xo. (2.13)

The special solution of Eq. (1.1) satisfying (2.13) will be denoted
by (t0, x0).

Proof Let B denote the space of those continuous functions
x (-o, to] for which

Ilxll de=f sup Ix(t)]eA(t-t) < . (2.14)
t<to

(B, I[" II) is a Banach space.
For x E B, < to, define

t
(Ux) t) xo A t)x( or) f(s, x(s), x(s 7"))ds.

Evidently, ’x is continuous on (-o, to], and for some N1 _> N,

[(’x)(t)l Ixol + glx(t- cr)l

/ [If(s,O,O)l/lf(s,x(s),x(s--))-f(s,O,O)l]ds

_< Ixol / gllxlleA(t-t+)

+ [Nle-s + LII/llea0- + MIIxlle0-+] ds

<_ Ixol + Ke"llxlle<’-’/
+ N1 x-me-,ot + -1 (L + me)lixlieO-tl.

Hence

I(x)(t)le<’-t) < IxoleOO-’o) + Xel]xll
+ N1)-le-At + )1 (L + MeA)llxll,

which is bounded on (-, to]. Thus, .T(B C B.

If to < o, then N1 N, while for to > 0, N1 max{N, maxo_<s_</o If(s, O, 0)leS).
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Further, for x, y E B and < to, we have

(.x) t) (y) t)

A(t)[x(t- r) y(t- or)]

f(s, x(s), x(s 7")) f(s, y(s), y(s 7")] ds

< Klx(t- or) y(t- cr)l

’t

t
+ [Zlx(s) y(s)] + Mlx(s 7") y(s 7-)l] ds

gllx y]lea(t-t+) + Ilx yll

ft
t
[Le(t-s) + Mea(t-s+’)] ds

< [Ke,0o + ffl (L + Me’)] [Ix- yl[e(t-t)

Hence

II’x- ’yll Kex + Aft1 (L + MeX)]llx- YlI,

and, by virtue of(2.4), Ke0 + ffl(L + Me0) < 1. Thus,." B Bis
a contraction mapping. The unique solution E B of 9vx x gives a
solution of Eq. (1.1) on (-c, to] satisfying conditions (2.11) and (2.13).
The solution can be uniquely extended to all/I by the existence theorem
mentioned in the Introduction.

COtOLLAR Under the hypotheses of Theorem the totality ofspecial
solutions is an n-parameterfamily.

Proof By Theorem 1, the map H D(0) is a one-to-one correspon-
dence between the set of special solutions and

The next theorem provides an estimate for the distance oftwo special
solutions.

THEOREM 2 Suppose conditions (2.1)-(2.4) hold. Let to IR, xl, X2 n.
Thenfor every < to,

lYc(to, x)(t) Yc(to, x:z)(t)[ Clx xzzle’(t-t),
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where )1 is the smallest positive root ofEq. (2.9) (see Remark 1) and C is

a constant defined by
C )I(L / Mel)-1. (2.16)

Proof Define

uo(t) x,

/() ()( 1 f(s, (1, ,(s )1

and

vo(t) =x:,

/ () . ()( ,) f(, (),( )) d,

for N to, 0, 1, 2,... We shall show by induction on that

lui(t) vi(t)l C lxl- xle’(t-t), to, (2.17)
for i=0, 1,...

Since

(L + Mex) Ke + {(L + Me’) (see (2.9)),
it follows that C 1. Consequently,

}uo(t) vo(t)} IXl- x21 CeX(t-t)lxl x21, to.
Thus, (2.17) holds for i=0. Now suppose that (2.17) holds for some

0. Then for t0,

lui+ (t) Vi+l (t)l
IXl x21 + glui(t- ) vi(t- )1

+ [1() ()1 +1(- ) (- 1] d

x xl{ + KCel(t-t+)

+ C [Le’(-s/+ Mea’(-s+’)] ds

Ix1 x:l{1 CAr’ (L + Me’’)
+ Ce, (’o-’) [Ke, + ATI(L + Me’)]}
Ix1 x:iCe’(-),
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the last relation being a consequence of (2.16) and (2.9) with ) )1.
Thus, we have proved that (2.17) holds for all 0, 1, 2,... Referring
to the proof of Theorem 1, for every

_
to, Hi(t) --+ 2(to, Xl) (t) and

vi(t) 2(to, x) (t) as -+ . Inequality (2.15) now follows from (2.17)
by letting o.

3. MAIN RESULT

Our main result is the following theorem which shows that the special
solutions characterize the asymptotic behavior of all solutions as --+ c.

More precisely, every solution of (1.1) approaches exponentially some
special solution as -- o.THEOREM 3 Suppose conditions (2.1)-(2.4) hold. Let x be a solution of
Eq. (1.1) on [to- r, o). Then there exists a unique special solution of
Eq. (1.1) such that

sup Ix(t) (t)le c. (3.1)
t>_to-r

Specially,

Ix(t) Yc( t) -- 0 exponentially as --o o. (3.2)

Proof Let B be the vector space of those functions y:[t0 r,o) IRn

for which

yll d sup ly(t)leA(t-t) < c. (3.3)
t>to-r

(B, II-II) is a Banach space.
Denote by S the set of those functions y E B which are continuous on

the intervals [to r, to), [to + kcr, to + (k + 1)or) for k 0, 1,2,... We shall
show that S is a closed subset of B. To this aim, consider a sequence
{Yi)il ofelements in Swhich converges to somey E B, i.e., Yi- yll 0
as i---+ c. We have to show that y also belongs to S. From the definition
of the norm (3.3), it follows that yi--- y as o uniformly on finite
subintervals of [to- r, o). Consequently, since each Yi is continuous
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on the intervals [to r, to), [to + ktr, to + (k + 1)or), k =0, 1, 2,..., so is y.
Thus, y belongs to S and therefore S is a closed subset of B.
For y E S, define

-A(t)y(t- tr) + (y)(t),
(y)(t)

x(t) Yc(to, Dx(to) (y)(to))(t),

for t>_ to,

for to- r <_ < to,

where

(y)(t) f(s,x(s),x(s 7))

f(s,x(s) y(s),x(s 7") y(s 7"))] ds, > to.

By virtue of (2.2) and (3.3), we have for > to,

I(Y)(t)l [L[y(s)i + MIy(s- 7")1] ds

-< yll [Le(/-) + Mea(t-s+’)] as

yllff (t / Me’Xr)e"x(t-t),

which shows that operator and thus.T" is well defined. The last estimate,
(2.1) and (3.3) imply that

[(’Y)(t)[e(t-t) <- ge + Affl(z + Me)][I Y[I for > to. (3.4)

Taking into account that y is continuous on [to, c), it follows
from the definitions of operator and the set S that .T’y is continuous
on the intervals [to r, to), [to + kcr, to + (k + 1)or), k 0, 1,2,... This,
together with (3.4), implies that ." maps S into itself.
Now we show that .T" S S is a contraction mapping. Let y, z E S.

In order to estimate [(y) (t) (z) (t)1, we distinguish two cases.

Case 1 Assume that > to. By similar estimates as in the proofof (3.4),
it follows that

](.y)(t) (.,z)(t)lea(’-t) <_ l[I Y zll,
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where

1--KeA + A-l(L + MeA) < (see (2.4)). (3.5)

Consequently,

sup I(.T’y)(t) (.T’z)(t)lea(t-t) _< 111Y- ell.
t>to

(3.6)

Case 2 Let to r < < to. By Theorem 2,

I(’y)(t)- (’z)(t)l--lYc(to, Dx(to) -(y)(to))(t)

Yc(to, Dx(to) (Tz)(to))(t)[

< Cl(Ty)(to)- (z)(to)le’t-t

where 1 is the smallest positive root of Eq. (2.9) and C is the constant

given in (2.16).
On the other hand,

I(Gy)(to)- (Gz)(to)l <_ IlY- zll [Le"x(t-s) + Me"x(t-s+)] ds

A-1 (L + MeO)llY- zl[.

Consequently,

I(’y)(t)- (z)(t)l <_ x211Y- zll ea’(t-tl,

where

2 C,’1 (L + Mea).

Using the fact that/1 < ,0 (see Remark 1), the last inequality implies

}(y)(t) (’z)(t)l _< 211 Y- zll ex<t-t,

and hence

sup I(’y)(t) (.T’z)(t)le"x(t-t) < 21[Y zll.
to-r<t<to

(3.7)
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By virtue of (2.4),

A (L + Me"x-) < Ke’x.

Consequently,

2 CAff (L + Me"xr)
< C(1-Ke) < C(1- Kea’) 1, (3.8)

the last and the last but one relation being a consequence of Eqs. (2.9)
(with A A1), (2.16) and the inequality A1 < Ao, respectively.
From (3.6) and (3.7), it follows that

II -y-  ’zll  lly- ell for all y,z E S,

where max{, 2} < (see (3.5) and (3.8)). Thus, .T:S S is a

contraction mapping.
Let be the unique fixed point of operator " in S. We know from

the definition of S that 3 is continuous on the intervals [to-r, 0),
[to + kcr, to + (k + 1)r), k 0, 1,2,... Our next aim is to show that 33 is
continuous on the whole interval [to r, ). To do this, we have to show
that is continuous from the left at each point to + kr, k 0, 1,2,...
Using the continuity of A and , it follows easily from the definition
of operator " that if .T)3(= 33) is continuous from the left at some
point to + kr for some nonnegative integer k, then it is also continuous
from the left at to + (k + 1)or. Consequently, it suffices to show that 33
is continuous from the left at to.
For brevity, we shall write

Yc Yc(to, Dx(to) (33)(t0)). (3.9)

By the definition of the special solutions,

DYc(to) Dx(to) (33)(t0).

From this, using the definition of the difference operator (see (1.1)),
we find

x(to) Yc(to) -A(to)[x(to or) YC(to t7)] 4- (fi)(t0). (3.10)
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We have

lim )3(t) ttmo_(’) t) ttmo_[X(t) .(t)]
t-’to

(to)- (to)
-A(to)[x(to or) Yc(to tr)] + (a)(to)
-(t0)(’)(t0 ) + ()(t0)
-A(to)(to tr) + ()(to) (.T’33)(t0) fi(t0),

where we have used the fact that 33 is a fixed point of )v, the definition of
’, the continuity of x and . at to and relation (3.1 0). Thus, 37 is contin-
uous from the left at to. As we have mentioned, this implies that 33 is
continuous on the whole interval [to r, o).
Using the fact that is a fixed point of.T and notation (3.9), we have

(t) x(t) Yc(t) for to r < < to, (3.11)

while for > to,

fi(t) + A(t).(t- or) [f(s,x(s),x(s- 7-))

f(s, x(s) p(s), x(s 7") p(s 7"))] ds.

(3.12)

Observe that the integrand on the right-hand side of(3.1 2) is continuous,
and, in view ofthe continuity of33, x and , relation (3.1 1) holds also for

to. From this, it follows that7 is a solution ofthe initial value problem

d
d-Dy(t) f t, x( t), x( 7"))

f t, x( t) y(t), x( 7") y( 7")) for _> to, (3.13)

y(t) x(t)- Yc(t) for to -r < < to. (3.14)

Evidently, the function

y(t) x(t) (t), _> to r

is also a solution of the initial value problem (3.13) and (3.14). Since
the right-hand side of Eq. (3.13) (the function g(t, u, v) f(t, x(t),
x(t 7-))-f(t,x(t)- u, x(t 7")- v)) is continuous and Lipschitzian in
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the last two variables (see (2.2)), the solution of Eqs. (3.13) and (3.14) is
unique on [to- r, oe). Consequently,

fi(t) x(t) )2(t) for all > to r.

Hence

sup Ix(t)- Yc(t)lea(t-t) sup I(t)le(t-t) I111 < .
t>to-r t>to-r

Thus, the special solution)2 ofEq. (1.1), defined by relation (3.9), satisfies
condition (3.1). The proof of the theorem is complete.

The following theorem provides further information about the special
solution described in Theorem 3.

THEOREM 4 Suppose conditions (2.1)-(2.4) hold and let x and )2 have
the meaningfrom Theorem 3. Thenfor every E I,

)2(tl) lim )2(t, Dx(t))(tl). (3.15)

Proof By Theorem 3,

H de----- sup Ix(t)- )2(t)le(t-t) < . (3.16)
t>to-r

Let > max{t0, tl). Since . Yc(t,D)2(t)), from Theorem 2, we obtain

I(t) c(t, Ox(t))(tl)l

CeA, (t-t,)]O.(t) Ox(t)

CeA(t-t’)l)2(t x(t) + A(t)[)2(t- or) x(t- o’)]

< Ce)’(t-t*) (])2(t) x(t)l + IA(t)llYc(t- or) x(t- cr)l ).

Using (2.1) and (3.16), the last inequality implies

12(t1) )2(t, Dx(t))(tl)l <_ CeA’(t-t’){ne-A(t-t) -+- gne-A(t-a-t)}

CH(1 + KeAr)e-A(t’-t)e(Al-A)(t-tl).
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Since A1 < A0, the right-hand side of the last inequality tends to zero as
oe, which completes the proof.

Remark 3 Theorems 1-4 remain valid for the equation with time-
dependent delays

Dx(t) f t, x(t), x( 7-(t)), Dx(t) x(t) + A(t)x(t r(t)),

provided the following assumptions are satisfied:

(i) .4" In’,f:/ x In x " I are continuous,
(ii) there exist positive constants K, L, M, Nand A0 such that conditions

(2.1)-(2.3) are satisfied,
(iii) r, 7-" I [0, c) are continuous,
(iv) the function g(t)de=f or(t), E/, is strictly increasing,
(v) 0 < tr(t) < cro and 0 < 7-(t) < 7-0 for E It, where ro and 7-0 are positive

constants,
(vi) KA0e+L+ Me o < A0.
The only modification needed in the proofofTheorem 3 is to replace the
sequence to, to / or, to + 2tr, to / 3or,... with the sequence to, tl g-l(to),
t2 g-l(tl), t3 g-l(t2), where g-1 denotes the inverse function ofg.

4. LINEAR SYSTEMS

In this section, we apply our results to the linear equation

_d Dx(t) B(t)x(t) + C(t)x(t 7-),dt Dx(t) x(t) + A(t)x(t r),

(4.1)

where tr, 7- are positive constants, and A, B, C" II ,nn are continuous
matrix functions.

Equation (4.1) is a special case of (1.1) whenf(t, u, v) B(t)u + C(t)v.
Conditions (2.1)-(2.4) reduce to

IA(t)[ g for E ,
In(t)l t for E I,

(4.2)
(4.3)



SPECIAL SOLUTIONS OF NEUTRAL EQUATIONS 113

IC(t)l M for , (4.4)

K)0e + L + Me < ,k0 for some ,0 > 0. (4.5)
For i= 1,2,...,n, let e; denote the ith column of the n x n unit

matrix L Let to E IR be fixed and let i (i 1,2,..., n) be the (unique)
special solution of Eq. (4.1) for which Dci(to) ei.

Let Xbe the n x n matrix function defined by

J’(t) (.l(t),.2(t),...,.n(t)) for E I. (4.6)

THEOREM 5 Suppose conditions (4.2)-(4.5) hold. The matrixfunction X
is a solution ofthe matrix equation

__d DX(t) B(t)X(t) + C(t)X(t 7"),
dt

DX(t) X(t) + A(t)X(t- or),

(4.7)

on (-cxz, oe) such that

Df((to) I (4.8)

and

sup If((t)leat < . (4.9)
t<0

This matrix function f(, called the special matrix solution of Eq. (4.1),
has the following properties: the special solution Yc(to, xo) of Eq. (4.1)
described in Theorem is given by

YC(to, xo)(t) X(t)xo for

andfor every

det DX(t) O. (4.10)

Proof All properties except for (4.10) are immediate consequences of
Theorem 1. We shall show (4.10). Let IR be fixed. From the uniqueness
of the special solutions, it follows that the only special solution 2
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for whichD(t) 0 is 0. Since the special solutions of(4.1) are ofthe
form (t)= f((t)xo, Xo E In, this shows that the only solution of the
equation DX(t)xo 0 is x0 0, which is equivalent to (4.10).

Theorem 3 about the asymptotic behavior of all solutions can be
reformulated as follows.

THEOREM 6 Suppose conditions (4.2)-(4.5) hold. Let x be a solution of
Eq. (4.1) on [to- r, cxz). Then the limit

l= lim([Df((t)]-’Dx(t)) (4.11)
t--cx3

exists in IR, and

sup Ix(t)- f((t)llet < cxz. (4.12)
t>to-r

Specially,

Ix(t) X(t)l 0 exponentially as . (4.13)

Moreover, the constant vector given in (4.11)/s the only one satisfying
condition (4.12).

Proof By Theorem 3, Eq. (4.1) has a unique special solution satis-
fying (3.1). We know from Theorem 5 that this special solution has
the form

(t) X(t)x0, where x0 D(t0). (4.14)

By Theorem 4,

to) lim Yc(s, Dx(s))(to)

and

(t0 a) lim Yc(s, Dx(s))(to a).
S---O

From this,

xo DYc(to) lsirn Dfc(s, Dx(s))(to). (4.15)
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It is easily seen that for every tl E N, xl E Nn,

2(tl,Xl )(t) f((t)[Df(tl)]-lxl.

Hence

2(s, Dx(s))(t) 2(t)[D2(s)l-Dx(s).

From this and (4.8), we find

D2(s, Dx(s))(to) [D2(s)l-Dx(s).

This, together with (4.15), implies that x0 l, completing the proof.

5. DISCUSSION

Previous papers on this subject were restricted mostly to the case of
delay differential equations, i.e., when A(t)= O. Let us briefly mention
some of them.
As we have mentioned, the special solutions were introduced by

Ryabov [19] for Eq. (2.12) and some more general equations in the case
,o 1/r. For linear delay differential systems the asymptotic relation
(4.11) was obtained by Driver [5]. (Note that if A(t)--O then Dx(t)=
x(t).) The asymptotic characterization of all solutions (Theorem 3) for
general nonlinear delay differential equations was proved by Jarnik and
Kurzweil [11]. Under some additional assumptions, the asymptotic
behavior of the special solutions was investigated by the first author in
[6] and by the second author in [17]. For general linear delay differential
equations, without any further restrictions, the special solutions were
described by Arino and the authors [4]. In [4, Theorem 2.4] it is shown
that the special matrix solution is a fundamental matrix for a linear
homogeneous ordinary differential equation whose coefficient matrix
can be expressed by certain infinite series. Using this series representa-
tion, the authors obtained sharp stability criteria (see [7]). In the recent

paper [3], Arino and the second author showed that for linear delay
differential equations the value of the limit (4.11) can be computed
explicitly in terms of the initial function of a given solution.
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Finally, we mention the recent papers by Arino and Bourad [1], Arino
and the second author [2], Krisztin [12], Krisztin and Wu [13-15],
Wu [20] and Wu and Freedman [21] on neutral functional differ-
ential equations which are relevant to our study. For example, in [15,
Theorem 4.1] Krisztin and Wu showed that for certain scalar periodic
neutral functional differential equations "almost every" solution is
asymptotic to some member of a one-parameter family of periodic
solutions, which is a qualitative result similar to ours.
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