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1 INTRODUCTION

This paper studies Volterra and Urysohn integral equations in a ball of a
Banach space E when the nonlinear kernel satisfies Carathéodory type
conditions. Such integral equations were studied recently by the first
author [8,9] assuming that the kernel f(z,s, x) satisfies a global set-
Lipschitz condition of the form

a(f([0,T]x[0,T] x M)) < ca(M) (1.1)

for each bounded set M C E, with a suitable small positive constant ¢, o
being the Kuratowski measure of noncompactness. In the present paper
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78 D. O'REGAN AND R. PRECUP

the global condition (1.1) is replaced by a local one, namely
a(f(t,s,M)) <uw(t,s,a(M)) (1.2)

forallt€[0,T], a.e. s €[0, T] and any bounded set M C E.

Our existence principles do not require uniform continuity of fand are
based upon the continuation theorem of Monch [6] and a result by Heinz
[5] concerning the interchanging of o and integral for countable sets of
Bochner integrable functions. More applicable existence results are
derived from the general principles by means of differential and integral
inequalities.

The results in this paper improve and complement those in [4,8,9,12].
In particular, our criteria yield old and new existence results for the
abstract Cauchy problem and boundary value problems for differential
equations in infinite dimensions; see [1,2,6,7,10,11,13].

Throughout this paper Ewill be a real Banach space withnorm | - |. For
every x € Eand R >0, let Bz(x) and Bg(x) be the open and closed balls

Br(x) ={y € E; |x—y| < R}, Br(x) = {y € E; |x —y| < R}.

We denote by C([a,b]; E) the space of continuous functions
u:[a,b]— E and by |- | its max-norm |u|,, =max,cj,z|u(f)|. For any
subset M C E, we denote by C([a,b]; M) the set of all functions in
C([a, b); E) which take values in M.

A function u: [a, b] — E is said to be finitely-valued if it is constant # 0
on each of a finite number of disjoint measurable sets /;and u(#) =0 on
[a, ]\, 1;. Let the value of u on J; be x; and let x(I)) be the characteristic
function of I;, x(I)()=1 if tel;, x(I)(1)=0 if t€[a, b]\I;. Then u
can be represented as a finite sum

u="y_ xx(I)
J
and the element

ij mes(/;) € E
J

is defined as the Bochner integral of u over [a,b] and is denoted by
/! : u(s) ds. More generally, a function u:[a, b] — E is said to be Bochner
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integrable on [a, b] if there exists a sequence of finitely-valued functions
u, with

un(t) — u(t) asn— oo, a.e.t € [a,b] (1.3)

(i.e. u is strongly measurable) and
b
/ |un(s) — u(s)]ds —» 0 as n— oo. (1.4)
a

In this case the Bochner integral of u is defined by

b b
/ u(s)ds=nlim / upn(s) ds.

Recall that a strongly measurable function u is Bochner integrable if and
only if |u| is Lebesgue integrable (see [14, Theorem 5.5.1]).

For any real p €[1, 00], we consider the space L”([a,b]; E) of all
strongly measurable functions u:[a,b] — E such that |u|f is Lebesgue
integrable on [a, b]. LP([a, b]; E) is a Banach space under the norm

= ([ e ds)w

for p<ocoand

|ulo, =ess sup |u(f)| =inf{c > 0; |u(t)] < c a.e. t € [a,b]}
t€la,b] :

When this will be important, we shall denote |u|, also by |u|Ls(q,6;; ). In
particular, L'([a, b]; E) is the space of Bochner integrable functions on
[a, b]. When E =R, the space L?([a, b]; R) is simply denoted by L?[a, b].

Recall that a function ¢:[a,b]x D— E, DCE, is said to be L?-
Carathéodory (1 < p < 00)if ¢(:, x) is strongly measurable foreach x € D,
¢(¢,-) is continuous for a.e. t€[a,b] and for each r>0 there exists
h, € L*[a, b] with |¢(t, x)| < h,(£) for all x € D satisfying |x| <r and a.e.
t€a,b].

Now we recall the definition of the Kuratowski measure of non-
compactness and the Hausdorff ball measure of noncompactness.
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Let M C E be bounded. Then

m
(M) = inf{s >0; MC UM, and diam(M;) < g}
j=1

and
m
B(M) = inf{g >0, McC UBe(xj) where x; € E}
j=1

If Fis a linear subspace of E and M C Fis bounded, then we define

m
Br(M) = inf{s >0 MCcC UBE(xj) where x; € F}.
J=1

We have
B(M) < a(M)<28(M) for M C E bounded (1.5)

and

B(M) < Br(M)<a(M) for M C F bounded. (1.6)

For a separable Banach space E, the ball measure of noncompactness
[ has the following representation on countable sets.

PROPOSITION 1.1 [6] Let E be a separable Banach space and (E,) an

increasing sequence of finite dimensional subspaces with E = UnenE,.

Then for every bounded countable set M = {x,,,; m € N} C E, we have
B(M) = lim lim d(x, Ep)

n—00 m—0oo

(here d(x, E,) = infyeg, |x — y|).

Let v be a or 8. The next proposition gives the representation of y on
bounded equicontinuous sets of C([a, b]; E) and its property of inter-
changing with integral.

PROPOSITION 1.2 [2] Let E be a Banach space and M C C([a,b]; E)
bounded and equicontinuous. Then the function p:[a,b]— R given by
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u(®) =~(M(1)) is continuous on [a, b],

V(M) = max v(M(1))

and

fy(/abM(s) ds) < /ab’Y(M(S)) ds (1.7)

(here f: M(s) ds stands for the set { [*u(s)ds; u € M} C E).
A result of type (1.7) holds without assuming the equicontinuity of M.

ProPOSITION 1.3 (Monch—von Harten [7]) Let E be a separable
Banach space and M C C([a, b]; E) countable with |u(t)| < h(t) on [a, b]
foreveryu € M, where h € L'[a, b]. Then the function) : [a, b] — R given by
W(£) = B(M(2)) belongs to L'[a, b] and

ﬂ( / * M(s) ds) < / " B0 (s)) ds. (1.8)

Now we state the extension of Proposition 1.3 for countable sets of
Bochner integrable functions.

PropOsSITION 1.4 (Heinz [5]) (2) If E is a separable Banach space and
M C L'([a, b};E) countable with |u(t)| < h(?) for a.e. t € [a,b] and every
u€ M, where he L'[a,b), then the function ()= B(M(f)) belongs to
L'[a, b] and satisfies (1.8).

(b) If E is a Banach space (not necessarily separable) and
M C L'([a, b); E) countable with |u(t)| < h(t) for a.e. t €[a, b] and every
u€ M, where he L'[a,b), then the function o(f)=o(M(t)) belongs to
L'[a, b] and satisfies

a( / " M(s) ds) <2 / " a(M(s)) ds. (1.9)

a

Remark A proof of Proposition 1.4 can be found in Heinz [5]in a more
general setting. However in our setting an easier proof can be presented
for (a) and we include it here for the convenience of the reader.
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Proof Let M ={u,,; meN}.

(a) The fact that ¢ € L'[a, b] is a direct consequence of Proposition 1.1.
Now, let (E,) be any increasing sequence of finite dimensional subspaces
of Ewith E = U,eNE,. Let us fix n, m € N and take any € > 0. Since u,,, is
Bochner integrable, there is a finitely-valued function #,,, say

km
hy = mejX(Imj),
J=1

where x(Z,,,j) is the characteristic function of a measurable set ,,,; C [a, b],
such that

/blﬁm(S) — up(s)|ds < e. (1.10)

The sublinearity of d(, E,) gives

Ko o
d(Z Xmj mes(lmj),E,,> Z (Xmjs En) mes(Ly;). (1.11)

Jj=1 —1

It is clear that

km b
Z Xy M€S(Lj) = / iim(s) ds
= a
and
Z d(ngs En) mes(Iy) = / d(iim(s), Ey) ds
j_
Thus (1.11) can be rewritten as

d(/ab iim(s) ds, E) / d(iim(s), E,) ds. (1.12)



EXISTENCE CRITERIA FOR INTEGRAL EQUATIONS 83

On the other hand, using (1.10), we have

d(/ab i ($) ds,E,,)
> d(/ﬂb Um(s) ds, E,,) - d(/ab Um(s) ds, /ab fim(s) ds)
2d<Lbum(s)ds,En>—s (1.13)

/ ’ din(s), Ey) ds < / ’ dlon(s), En)ds + / ’ Al (s), () i

and

< /bd(um(s),E,,)ds-l-e. (1.14)

Now (1.12)—(1.14) imply

d(/ab um(s) ds, E,,) < /ab d(um(s), E,) ds + 2e.

Letting £\, 0, we obtain

d(/j Up(s) ds, E,,) < /ab d(um(s), E,) ds.

The rest of the proof is identical with that in the proof of Proposition 3
in [7]: By means of Fatou’s lemma, we have

b b
nllim d( / Um(s) ds, En) < / ”!urolo d(um(s), Ey,) ds.

a

Finally, since

lim d(um(s), E,) < h(2),
m—00
using the Lebesgue dominated convergence theorem, we find
b
lim lim d < / s)ds, E, ) lim Gm d(un(s), E,)ds
n—00 Mm—0o0 a n—00 Mm—00

which is exactly (1.8).
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(b) (see the proof of part (b) of Corollary 3.1in [S]): Let Fbe a separable
closed linear subspace of E such that u,,(t) € F for every m € N and for
every ¢ € [a, b] outside a fixed set of measure zero (the subspace F can be
obtained as follows: for any m, u,, being Bochner integrable can be
approximated in the sense of (1.3) and (1.4) by a sequence (Upmn)nen Of
finitely-valued functions,

kmn

Umn = Z Xmnj X(Imnj)-

J=1

Then we take as F the closure in E of the subspace generated by the
countable set of elements X,,, ., 1 <j < Ky, m € N,n € N). From (a), (1.5)
and (1.6) we have

b b
a(h) < 26:() <2 [ B0 1 <2 [ a(M@)ar.
a a
We finish this section with two fixed point results due to Mdnch [6]

(see also [3, Chapter 5.18]). The first one contains as particular cases the
fixed point theorems of Schauder, Darbo and Sadovskii.

THEOREM 1.5 (Ménch [6]) Let K be a closed convex subset of a Banach
space X and N : K — K continuous with the further property that for some
Xo € K, we have

M C K countable, M =7to({xo} UN(M)) => M compact. (1.15)

Then N has a fixed point.

The second result is the continuation analogue of Theorem 1.5.

THEOREM 1.6 (Ménch [6]) Let K be a closed convex subset of a Banach
space X, U arelatively open subset of Kand N : U — K continuous with the
further property that for some xo € U, we have

M C U countable, M C ¢o({xo} UN(M)) => M compact. (1.16)
In addition, assume
x# (1= X)xo+ AN(x) forall xe€ U\U and X € (0,1). (1.17)

Then N has a fixed point in U.
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2 EXISTENCE CRITERIA FOR VOLTERRA
INTEGRAL EQUATIONS

In this section we establish existence criteria for the Volterra integral
equation

u(t) = /O s us)ds, e[0T @.1)

in a ball of the Banach space (E,|-|), under Carathéodory condi-
tions on f.

Let R >0 and 7> 0. We denote by B the closed ball Bg(0) of E and
we consider

A=A{(t,s);1€[0,T], s€[0,T]}
and D= A x B. Hence
D= {(t,5,x); 1€ [0,T], s€[0,1], x€ E and |x| < R}.
Weassume that f: D — E and we look for solutions #in C([0, T']; E') with

|u(®| < Rforall t€[0, T
For a fixed 1 €[0, T'], let £,: [0, ] x B— E be the map given by

fi(s,x) =f(1,s,x).

THEOREM 2.1 Suppose

(A) for each t€[0, T}, the map f, is L'-Carathéodory uniformly in t, in
the sense that there exists a bounded functionn: A — R with

n(t,t') =0 ast—1' \,0

and

/ " sup [ils, )] ds < (e, 1)

" |xI<R

Jor0<t' <t<T,
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(B) foreacht€0,T],

4}
/ sup | fi(s,x) — frr(s,x)|ds =0 ast — 1,
0

|xI<R

where ty=min{t,1'};
(C) there existsw: A x [0, 2R] such that for each t € [0, T, w, = w(t, -, ) is
Ll-Carathéodory,

a(f (s, 5, M)) < w(t,s,a(M)) (2.2)

fora.e.s €0, t}andevery M C B, and the unique solution p € C([0, T'};
[0, 2R)) of the inequality

o(f) < 2/0tw(t, s,0(s))ds, t€[0,7T]

is p=0;
D) |u|oo < R for any solution uc C([0, T']; B) to
u(t) = A / s u(s)ds, 1€[0,T] (23)
0
Joreach A€ (0,1).

Then (2.1) has a solution in C([0, T']; B).

Proof We shall apply Theorem 1.6 to K=X=C([0,T]; E) with
norm |- |, U={u€ C(0, T];E); |u|oo < R}, xo the null function and
N:U— C([0, T); E) given by

t
N@)(1) = /0 t,5,u(s)) ds.
Since f; is L'-Carathéodory, standard arguments yield the conclusion

that for each u € U, the function f;(-, u( - )) is Bochner integrable on [0, 7].
In addition

Wwl< [ s u(s)] ds < / ' up 1t ) ds

< n(t,0) <supn < oo. (2.4)
A
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Also, for u € Uand every ¢,t' €[0, T], we have: if t < ¢/, then
NGO = NI < [ 17suls) =1 5.u(5) | ds
=+ /tt’ | (2, s,u(s))| ds
< [ sup Lio.x) = s, ds + (0,

[x<R

while if ¢’ < ¢, then
IN(u)(t) = N(u)(2')| < / sup | fi(s, x) — fur (s, %) ds +n(z, ).
0 |x|<R

Hence, in both cases
IN(u)(2) — N(u)(£)]
< /to sup | fi(s,x) — fur(s, x)|ds + n(t + ' — 10, 10),  (2.5)
0 |xI<R
where t, =min{z, t'}. Now (2.5) shows that N(u) € C([0, T']; E) and N(U)

is equicontinuous on [0, T]. In addition, (2.4) shows that N(U) is
bounded.

Next we show that N is continuous. To see this, let u,—u in
C([0, T]; E), where u,, u € U. Since f,is L'-Carathéodory, f;(s, -) is con-
tinuous for a.e. s € [0, 7] and there exists 4, € L'[0, £] with | f(s, x)| < h(s)
for a.e. s €[0, ¢] and all x € B. It follows that

[, 5,u,(s)) — f(t,5,u(s)) asn— oo
and
| (2,5, un(5))] < he(s)

for a.e. s€[0,7] and all 1 €[0, T]. These together with the Lebesgue
dominated convergence theorem yield

N(uy)(t) = N(u)(t) asn— oo

for any ¢ € [0, T']. Now (2.5) guarantees that the convergence is uniform
in ¢. Hence N(u,) — N(u) in C([0, T']; E) as desired.
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To check (1.16), let M C U be countable with
M c ({0} UN(M)). (2.6)

Since N(M) ¢ N(U) and N(U) is bounded and equicontinuous, from
(2.6) we have that M is bounded and equicontinuous. To deduce that
M is compact, that is (M) =0 (in C([0, T']; E)), by Proposition 1.2 we
have to prove that a(M(#))=0 (in E) for any t€[0, T]. For this, let
©:[0, T]— R be given by ¢(f) = a(M(¢)). Clearly ¢ € C([0, T']; [0, 2R]).
Now, using Proposition 1.4(b), (2.2) and (2.6), we obtain

o) = a((0) < aV(0) = a [ 76,16 5)
< 2/Ota(ft(s, M(s)))ds < 2/0tw(t,s,a(M(s)))ds
= 2/0 w(t, s, p(s)) ds.

Now (C) guarantees ¢ =0 as desired.
Finally (D) guarantees (1.17). Thus Theorem 1.6 applies.

A special case of (2.1) is

u(t) = /0 k{1, 9)g(5, u(s)) ds, 1€ [0, T] 2.7)

where k: A —R.

THEOREM 2.2 Letk:A—Randg:[0,T]x B— E. Suppose

(a) g is L-Carathéodory for some q > 1 and k,=k(t, -) € L?[0, {] for any
t€l0,T], wherel/p+1/g=1;

(b) for each t€[0, T, we have

ke — kt’lLP[O,to] —0 ast' >t

where to=min{z,1'};
(c) there exists wy:[0, T] x [0,2R] — R L?-Carathéodory with

a(gls, M)) < wo(s,a(M)) (2.8)
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Jor ae. s€[0,T] and M C B, such that the unique solution €
C([0, T'1; [0, 2R)) of the inequality

o) <2 | k(5 len(s, 0() ds, 1€ 0,7

is p=0;
(d) |u|oo < R for any solution u € C([0, T]; B) to

u(t) = A /0 k(1 9)g(s,u(s)) ds, 1€ [0, T] (2.9)

foreach A €(0,1).
Then (2.7) has a solution in C([0, T']; B).

Proof The result follows from Theorem 2.1. Here f(z,5,x)=
k(t, s) g(s, x) and

t 1/q
n(t,t') = (/ h(s)? ds) sup k., 0S¢ <t<T, (2.10)
¢ 1

T€l0,T

where A€ L0, T] is such that |g(s,x)| <h(s) for all x€B and a.e.
s€[0,T]. Also w(t,s, )= |k(,s)|wo(s, 7). Note that the supremum in
(2.10) is finite because of (b).

The next result contains a sufficient condition for (d).

THEOREM 2.3 Letk:A— Randg:[0, T] x B— E. Assume (a)—(c) hold.
Also suppose that

(d') there exists 6 L'[0,T] and w:(0,R]— (0,00) continuous and
nondecreasing such that

|k(2,5)g(s, x)| < 6(s)w(|x])
forae.se[0,fland all t €0, T, x € B\{0}, and

/0T6(s)ds§ /(;Rwi(:)-. (2.11)

Then (2.7) has a solution in C([0, T']; B).
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Proof The result follows from Theorem 2.2 once we show (d) is true.
Let u € C([0, T]; B) be any solution to (2.9) for some A € (0, 1). Then

lu(2)] < /\/Ot |k(2, s)g (s, u(s))| ds < )\/otﬁ(S)W(Iu(S)I)ds

for all £ € [0, T'] (we put w(0) =lim, o w(?)). Let

(1) =min{R,/\/Oté(s)w(|u(s)|)ds}.

Clearly ¢ is nondecreasing. We claim that ¢(T)<R. Suppose the
contrary. Then since c(0) = 0, there exists a subinterval [a, ] C [0, T'] with

c(@)=0, c¢(b)=R and  c(2) € (0O,R) for ¢t € (a,b).
Since |u(?)| < ¢(¢) < R on [a, b] and w is nondecreasing on [0, R], we have
d(s) = M (s)w(|u(s)]) < N6(s)w(c(s)) a.e.s € [a,b].

Now integration from a to b yields

[aye= [ = [ swes
s,\/o 6(s)ds</0 5(5) ds,

a contradiction. Notice we may assume |8| 10,77 > 0 since otherwise we
have nothing to prove.

Observe that Theorem 2.3 can be derived directly from Theorem 1.5
if we take

K={ue C([0,T};E); lu(t)] < b(z) for 1 € [0, T]},

where

b(t)=1‘1</0t5(5)ds) and I(T)=‘/0T;)%
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(see the proof of Theorem 2.3 in [9]). Notice b(f) < R for all 1€[0, T']
because of (2.11).

COROLLARY 2.4 Letk:A—Rand g:[0,T]x B— E withg=g;+ g,
where g1(-,0) =0 and g, is completely continuous. Assume (a) and (b) hold
withqg=1, p=o0c and

|k1|L°°[0,t] S 1 for allt e [0, T] (2.12)
Also suppose that

(c*) there exists 6§ L'[0, T] and w: (0, 2R]— (0, 00) continuous and
nondecreasing with

2R dr
and
lg1(s %) — &1(s5, )| < 6(s)w(Ix — ¥1) (2.14)

forae.s€l0,T)andall x,y € B, x+#y;
(d*) there exists w, :[0, R]— R continuous and nondecreasing such that

lg2(s, x)| < 6(s)wa(|x]) for a.e.s€[0,T) and all x€ B (2.15)

and (2.11) holds with w = wy + ws.
Then (2.7) has a solution in C([0, T']; B).

Proof First we check (¢). Using (2.14) we see that (2.8) holds for
wo(s, r) = 8(s)w1(r). Now let ¢ € C([0, T']; [0, 2R]) satisfies

o) <2 [ (51606 (o(6) 0.
0
Then, by (2.12), we have
o) <2 85w (o(s)) ds.

Let

o) =2 /0 8(5)w1 (s)) ds.
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It is clear that ¢ is nondecreasing. Then ¢ =0 once we show ¢(T)=0.
Suppose the contrary, i.e. ¢(T)>0. Then, since ¢(0)=0, for each
g €(0, A), where A =min{c(T), 2R}, there is a subinterval [a, b] C [0, T']
with

cla)=¢, c(b)=A4 and c(t) € (¢, 4) for all ¢ € (a,b).

Now () < ¢(f) < 2R on[a, b] and wy nondecreasing on [0, 2R] guarantee
that

c'(s) = 28(s)w1(0(s)) < 26(s)w1(c(s))

a.e. s € [a, b]. Consequently

A__dr 2 b6 d 2|6
< s)ds < .
/e wi(r) /a (s)ds < 2| ‘LI[O’T]

This, for £\ 0, yields a contradiction to (2.13). Thus ¢(7)=0 and so
p=0.

Finally (d') follows from (2.12), (2.14), g1(-,0) =0 and (2.15).

Example 2.1 We give an example of a function g; which satisfies (c*).
Let E= C(I;R), I C R compact interval, and let g, : [0, T'] x B— E given
by

gi1(s, x)(7) = é(s)w1(|x(7)]), 7€l and x € B,

where § € L'([0, T]; R,)and w; : [0, 2R] — R, is continuous, nondecreas-
ing and satisfies the following conditions:

wi(0) =0, wi(r)>0  on (0,2R]

[wi(r) = wi(¥)| <wy(Jr—7]) forr, ¥ €[0,2R] (2.16)

and

2R
/0 ;v;i(’_) - . (2.17)
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Notice (2.14) can easily be deduced from (2.16). Examples of w; with
the above properties are: wi(r) =r for any R >0 and wy(r) = —rInr for
R=1/(2e) (see [13]).

3 EXISTENCE CRITERIA FOR URYSOHN
INTEGRAL EQUATIONS

In this section we discuss the Urysohn integral equation

u(t) = /0 F(ts,u(s))ds, t€[0,T] (3.1)

in a ball B={x € E; |x| < R} of the Banach space (E, | - |).
Essentially the same reasoning as in Section 2 establish the following
existence principles for (3.1).

THEOREM 3.1 Letf:[0, T]* x B— E. Suppose
(A) foreacht€l0, T), f,is L'-Carathéodory and

T
sup / sup |f:(s, x)|ds < oo;
t€[0,T] JO |x|<R

(B) one has

T
/ sup |fi(s,x) — frr(s,x)|ds = 0 ast' — 1
0

Ix|<R

(C) there exists w:[0, T x [0, 2R] — R such that for each t €[0, T, w, is
L'-Carathéodory,

a(f(t,s,M)) <w(t,s,a(M))

for ae. s€[0,T], MCB, and the unique ¢ € C([0, T];[0,2R])
satisfying

o) <2 /0 Wt s, 0(s))ds, 1 €0, T]

isp=0;
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(D) |u|oo < R for any solution u € C([0, T'1; B) to

T
u(t) = )\/0 f(t,s,u(s))ds, t€]0,T]

foreach A€ (0,1).
Then (3.1) has a solution in C([0, T]; B).

An immediate consequence of Theorem 3.1 is the following result for
the Hammerstein integral equation

u(t) = /0 k(1,5)g(s, u(s)) ds, 1€ [0,T]. (32)

THEOREM 3.2 Letk:[0, TP —Randg:[0, T] x B— E. Suppose

(@) g is L%Carathéodory for some q>1 and for each t€]0,T],
k. € LP[0, T where 1/p+1/g=1;

(b) the map t— k, is continuous from [0, T to LP[0, T'];

(c) there exists wy:[0, T'] x [0,2R] — R LY-Carathéodory with

a(g(s, M)) < wy(s,a(M)) (3.3)

for ae. s€[0,T] and M CB, such that the unique solution
p e C([0, T1; [0, 2R)) of the inequality

T
o(1) <2 / (e, 5) wo(s, () ds, t€[0,T]  (3.4)

isp=0;
(d) |u|oo < R for any solution ue C([0, T1; B) to

T
u(f) = A /O k(t,)g(s, u(s)) ds, t€[0,T] (3.5)

foreach A€ (0,1).
Then (3.2) has a solution in C([0, T]; B).

Theorem 3.2 is now used to obtain an applicable result for (3.2).
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COROLLARY 3.3 Let k:[0,TP—R and g:[0,T]x B— E with g=
g1+ g2, where g1(-,0)=0 and g, is completely continuous. Assume (a)
and (b) hold with g=1, p= o0 and

Iktle[O,T] S 1 for all t e [0, T].

In addition suppose

(c*) there exists 6 € L'[0, T and w,:(0,2R]— (0,00) continuous and
nondecreasing with

. r
. e}{)l’gmm > 2|6 p1po,1) (3.6)

and
lg1(s, x) — g1(s, )| < 8(s)w1(|x — yl) (3.7)
forae.s€[0,T)andall x,y € B, x #y;

(d*) there exists w,: [0, R] — R continuous and nondecreasing such that
lg2(s, )| < 6(s)wa(|x[)
forae.s€l0,T], all x€ B, and

R
) > 16l o,y (3.8)

where w=wy + w,.

Then (3.2) has a solution in C([0, T']; B).

Proof First we claim that (c) holds with wy(s, r) = 6(s)w1(r). It is clear
that (3.3) follows from (3.7) and the complete continuity of g,. Now let
p € C([0, T1;[0,2R]) be any solution to (3.4) and suppose that ¢ #0.
Then ro =max,epo,71¢0(t) € (0, 2R]. Let ¢, € [0, T'] be such that ¢(zo) =ry.
From (3.4), since |k,|o, <1 and w; is nondecreasing, we deduce that

T
ro = p(to) < 2 /0 l(t0, 5)16(s) w1 (9(5)) ds < 21 (70) 6l o 71 -

Hence ro/wi(ro) < 2|6| 10,7}, Which contradicts (3.6). Thus ro = 0.
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Next we check (d). Suppose |u|o, = R for some u € C([0, T']; B) solu-
tion to (3.5). Let ¢, € [0, T] with |u(¢;)| = R. From (3.5) we obtain

T
R=u(n)| < A/o &(s)w(lu(s)l) ds < Aw(R)|6] 1, 7)-

Since A€(0,1), w(R)>0 and we may assume |§].i0,77>0, we find
R <w(R)|8|po,r;, a contradiction to (3.8). Thus (d) holds and
Theorem 3.2 applies.

Example 3.1 Let E= C(I;R), I C Rcompactinterval. Then an example
of a function g, satisfying (c*) is given by Example 2.1, where (2.17) is
now replaced by (3.6). For instance, we may take

wi(r) = Cr for an arbitrary R > 0 and C < 1/(24],)
or

wi(r)=Csinr for0<R<w/4 and C < 1/(2/4],).
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