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1 INTRODUCTION

This paper studies Volterra and Urysohn integral equations in a ball ofa
Banach space E when the nonlinear kernel satisfies Carath6odory type
conditions. Such integral equations were studied recently by the first
author [8,9] assuming that the kernel f(t,s,x) satisfies a global set-
Lipschitz condition of the form

a(f([O, T] x [0, T] x M)) < ca(M) (1.1)

for each bounded set MC E, with a suitable small positive constant c, a
being the Kuratowski measure ofnoncompactness. In the present paper
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78 D. O’REGAN AND R. PRECUP

the global condition (1.1) is replaced by a local one, namely

a(f(t,s,M)) < w(t,s,a(M)) (1.2)

for all E [0, T], a.e. s E [0, T] and any bounded set Mc E.
Our existence principles do not require uniform continuity offand are

based upon the continuation theorem ofM6nch [6] and a result by Heinz
[5] concerning the interchanging of a and integral for countable sets of
Bochner integrable functions. More applicable existence results are
derived from the general principles by means of differential and integral
inequalities.
The results in this paper improve and complement those in [4,8,9,12].

In particular, our criteria yield old and new existence results for the
abstract Cauchy problem and boundary value problems for differential
equations in infinite dimensions; see [1,2,6,7,10,11,13].
Throughout this paperEwill be a real Banach space withnorm [. [. For

every x E and R > 0, let Bn(x) and Bn(x) be the open and closed balls

Bg(x) {y E; Ix- Yl < R),Bg(x) {y E; x -Yl < R}.

We denote by C([a,b];E) the space of continuous functions
u:[a, b] E and by I" [o its max-norm lul maxtta,bllu(t)[. For any
subset MC E, we denote by C([a, b]; M) the set of all functions in
C([a, hi; E) which take values in M.
A function u [a, b] E is said.to befinitely-valued if it is constant - 0

on each of a finite number of disjoint measurable sets/ and u(t) 0 on
[a, b]\l.Jj/j. Let the value ofu on/j be xj and let X(/j) be the characteristic
function of/, X(I.)(t) if I., X(I.)(t) 0 if E [a, b]\/. Then u
can be represented as a finite sum

and the element

xj mes(/j) E
J

is defined as the Bochner integral of u over [a, b] and is denoted by

fa u(s) ds. More generally, a function u [a, b] E is said to be Bochner
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integrable on [a, b] if there exists a sequence of finitely-valued functions

u with

Un(t) u(t) asnx, a.e. E [a,b] (1.3)

(i.e. u is strongly measurable) and

b

lUn(S) u(s)l ds 0 as n cx. (1.4)

In this case the Bochner integral of u is defined by

fa fabu(s) ds lim un(s) ds.
n----o

Recall that a strongly measurable function u is Bochner integrable ifand
only if lul is Lebesgue integrable (see [14, Theorem 5.5.1]).
For any real p E[1, ], we consider the space LP([a,b];E) of all

strongly measurable functions u:[a, b] E such that ]ulp is Lebesgue
integrable on [a, b]. LP([a, b]; E) is a Banach space under the norm

forp < and

[ul ess sup lu(t)[ inf{c > 0; lu(t)[ < c a.e. e [a, b])
tE[a,b]

When this will be important, we shall denote lulp also by lUlLp([a,b];E). In
particular, Ll([a, b]; E) is the space of Bochner integrable functions on
[a, b]. When E R, the space LP([a, b]; R) is simply denoted by LP[a, b].

Recall that a function :[a, b] x D E, D C E, is said to be Lp-

Carathodory (1 <p <_ ) if(., x) is strongly measurable for each x D,
(t, .) is continuous for a.e. E [a,b] and for each r > 0 there exists

hr LP[a, b] with [(t, x)[ _< hr(t) for all x E D satisfying Ix[ _< r and a.e.
E[a,b].
Now we recall the definition of the Kuratowski measure of non-

compactness and the Hausdorff ball measure of noncompactness.
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Let MC E be bounded. Then

a(M) inf e > 0; M C Mj and diam(Mj) _< e
j=l

and

/3(M) inf e > O; M C B(xj) where xj E E
j=l

IfF is a linear subspace ofE and Mc Fis bounded, then we define

flF(M) --inf > O; M C UB(xj) where E F
j=l

We have

(M) _< a(M) <_ 2(M) for M C E bounded

and

/(M) N/F(M) N a(M) for M C F bounded. (1.6)

For a separable Banach space E, the ball measure ofnoncompactness
/ has the following representation on countable sets.

PROPOSITION 1.1 [6] Let E be a separable Banach space and (En) an

increasing sequence offinite dimensional subspaces with E UneNEn.
Thenfor every bounded countable set M {Xm; rn N} C E, we have

(M) lim lim d(xm, En)
n---x m---cx

(here d(x, E,) infyee Ix Yl).
Let 3’ be a or /. The next proposition gives the representation of/on

bounded equicontinuous sets of C([a, b]; E) and its property of inter-
changing with integral.

PROPOSITION 1.2 [2] Let E be a Banach space and Mc C([a,b]; E)
bounded and equicontinuous. Then the function #:[a, b] -, R given by
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#(t) "y(M(t)) is continuous on [a, b],

7(M) max 7(M(t))
tE[a,b]

and

")’(fabM(s) ds) <_ fab’7(M(s)) ds (1.7)

(here fba M(s) ds standsfor the set { fba u(s) ds; u E M} C E).
A result oftype (1.7) holds without assuming the equicontinuity ofM.

PROPOSITION 1.3 (M6nch-von Harten [7]) Let E be a separable
Banach space and MC C([a, b]; E) countable with [u(t)[ _< h(t) on [a, b]
for every u E M, whereh E Ll[a, b]. Then thefunction b [a, b] -- Rgiven by
b(t) (M(t)) belongs to Ll[a, b] and

M(s) ds <_ /(M(s))ds.

Now we state the extension of Proposition 1.3 for countable sets of
Bochner integrable functions.

PROPOSITION 1.4 (Heinz [5]) (a) IfE is a separable Banach space and
MC Ll([a, b];E) countable with lu(t)l < h(t) for a.e. E [a, b] and every
u E M, where hE Ll[a,b], then the function b(t)=/3(M(t)) belongs to

Ll[a, b] and satisfies (1.8).
(b) If E is a Banach space (not necessarily separable) and
MC Ll([a, b]; E) countable with lu(t)l _< h(t) for a.e. E [a, b] and every
u E M, where h E Ll[a,b], then the function qo(t)=a(M(t)) belongs to

Ll[a, b] and satisfies

(fab )faba M(s) ds < 2 a(M(s)) ds. (1.9)

Remark A proofofProposition 1.4 can be found in Heinz [5] in a more
general setting. However in our setting an easier proofcan be presented
for (a) and we include it here for the convenience of the reader.
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Proof Let M {urn; rn E N}.

(a) The fact that b E Ll[a, b] is a direct consequence ofProposition 1.1.
Now, let (En) be any increasing sequence offinite dimensional subspaces
ofEwith E t3nNEn. Let us fix n, rn E N and take any e > 0. Since Um is
Bochner integrable, there is a finitely-valued function tim, say

km

j=l

where X(Imj) is the characteristic function ofa measurable set Imj C [a, b],
such that

"b

lira(S) Um(S)[ ds <_ e.

The sublinearity of d(., E) gives

(1.10)

d Xmj mes(Imj),E < d(xmj, En) mes(Imj). (1.11)

It is clear that

k.

faZ Xmj mes(Imj) tim(S) ds
j=l

and

km fabj=l d(Xmj, En) mes(Imj) d(tm(s), En) ds.

Thus (1.11) can be rewritten as

(fab ) fabd fin(S) ds, E, < d(fim(S), En) ds. (1.12)
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On the other hand, using (1.10), we have

d(fab

lm(S ds, En)
>__ d(fabum(s) ds, En)-d(fabum(s)ds, fabfim(S) ds)
(/ )> d Urn(S) ds, En e (1.13)

and

d(tm(S), En) ds < d(um(S), En) ds +

<_ d(u(s), En) ds + e.

d(um(S), tm(S)) ds

(1.14)

Now (1.12)-(1.14) imply

(/a )d urn(s) ds, En <_ d(um(S), En) ds -+- 2e.

Letting e x 0, we obtain

(/a )d urn(s) ds, En < d(um(s),E) ds.

The rest of the proof is identical with that in the proof of Proposition 3
in [7]: By means of Fatou’s lemma, we have

(a ) /alim d Urn(S) ds, En < lim d(um(s), En) ds.
m--o m---cx

Finally, since

lim d(um(s),En) <_ h(t),
m--x

using the Lebesgue dominated convergence theorem, we find

lim lim d urn(s) ds, E < lim lim d(um(S), En) ds
n--omx n---cx m-x

which is exactly (1.8).
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(b) (see the proofofpart (b) ofCorollary 3.1 in [5]): LetFbe a separable
closed linear subspace of E such that urn(t) E F for every m E N and for
every [a, b] outside a fixed set ofmeasure zero (the subspace Fcan be
obtained as follows: for any m, Um being Bochner integrable can be
approximated in the sense of (1.3) and (1.4) by a sequence (Utah)heN of
finitely-valued functions,

km
Umn ZXmnj X(!rnnj).

j=l

Then we take as F the closure in E of the subspace generated by the
countable set ofelements Xm nj, <j < kmn, m N,n N). From (a), (1.5)
and (1.6) we have

jaa(M) <_ 2/3e(M) <_ 2 /3f(M(t)) dt <_ 2 a(M(t)) dt.

We finish this section with two fixed point results due to M6nch [6]
(see also [3, Chapter 5.18]). The first one contains as particular cases the
fixed point theorems of Schauder, Darbo and Sadovskii.

THEOREM 1.5 (M6nch [6]) Let Kbe a closed convex subset ofa Banach
space XandN" K-Kcontinuous with thefurtherproperty thatfor some
Xo K, we have

M C K countable, /1 -6({x0} U N(M)) =: 1 compact. (1.15)

Then N has afixedpoint.

The second result is the continuation analogue of Theorem 1.5.

THEOREM 1.6 (M6nch [6]) Let Kbe a closed convex subset ofa Banach
space X, Ua relatively open subset ofKandN U Kcontinuous with the

further property thatfor some Xo U, we have

M C 0 countable, M C F6({x0} tO N(M)) i9I compact. (1.16)

In addition, assume

x (1 A)xo + AN(x) for all x e U\U and A e (0, 1). (1.17)

Then N has afixedpoint in O.
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EXISTENCE CRITERIA FOR VOLTERRA
INTEGRAL EQUATIONS

In this section we establish existence criteria for the Volterra integral
equation

u(t) f(t,s,u(s)) ds, E [0, T] (2.1)

in a ball of the Banach space (E, [. I), under Carath6odory condi-
tions onf.

Let R > 0 and T> 0. We denote by B the closed ball BR(O) of E and
we consider

A {(t,s);t [0, T], s [0, T]}

and D A x B. Hence

D {(t,s,x);t [0, T], s [0, t], x E and Ixl _< R}.

We assume thatf: D Eand we look for solutions u in C([0, T]; E) with

lu(t)l < R for all [0, T].
For a fixed E [0, T], letft’[0, t] x B E be the map given by

ft(s,x) =f(t,s,x).

THEOREM 2.1 Suppose

(A) for each [0, T], the map ft is L1-Carathdodory uniformly in t, in
the sense that there exists a boundedfunction 7" A R+ with

r/(t,t’)--0 ast-t’0

and

jtit sup Ift(s,x)l t’)ds
IxI<_R

for O <_ t’ < < T;
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(B) for each E [0, T],

t0

sup [ft(s,x)-ft,(s,x)[ ds 0
Ixl<_R

as t,

where to min( t, t’};
(C) there exists w" A [0, 2R] such thatfor each [0, T], wt (t, ., .) is

L1-Carathdodory,

a(f(t,s,M)) < w(t,s, a(M)) (2.2)

for a.e. s [0, t] andeveryMC B, and the unique solution 99 C([0, T];
[0, 2R]) ofthe inequality

’0
(t) < 2 w(t, s, q(s)) ds, t [0, T]

is p=0;
(D) [u[ < Rfor any solution u C([0, T]; B) to

u(t) A f t, s, u(s) ds, E [0, T] (2.3)

for each A (0, 1).

Then (2.1) has a solution in C([0, T]; B).

Proof We shall apply Theorem 1.6 to K=X= C([O, T]; E) with
norm [. 1, U= {u C([0, T]; E); lu[ < R}, x0 the null function and
N" U C([0, T]; E) given by

N(u) t) f t, s, u(s) ds.

Since ft is L1-Carath6odory, standard arguments yield the conclusion
that for each u U, the functionft(., u(. )) is Bochner integrable on [0, t].
In addition

IN(u)(t)l <_ If(t,s,u(s))lds <_ sup Ift(s,x)lds
Ixl<_R

_< r/(t, O) _< sup r/< c.
A

(2.4)
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Also, for u E and every t, t’ [0, T], we have: if < , then

jOIN(u)(t) N(u)(’)l <_ If(,s,u(s)) f(t’,s,u(s))lds

+ If(’,s, u(s))l as

< sup Ift(s,x) -ft,(s,x)l ds + rl(t’, t),
Ixl<_R

while if t’ < t, then

IN(u)(t) N(u)(t’)l < sup Ift(s, x) -ft,(s, x)l ds + rl(t, t’).
IxI<_R

Hence, in both cases

[N(u)(t) N(u)(t’)[

_< sup Ift(s,x) ft,(s,x)l ds + r(t + t’ to, to),

where to min{ t, t’}. Now (2.5) shows that N(u) C([0, T]; E) and N(U)
is equicontinuous on [0, T]. In addition, (2.4) shows that N(U) is
bounded.
Next we show that N is continuous. To see this, let un u in

C([0, T]; E), where un, u . Sinceft is L1-Carath6odory,fi(s, .) is con-
tinuous for a.e. s [0, t] and there exists ht L110, t] with [fi(s, x)[ < ht(s)
for a.e. s E [0, t] and all x B. It follows that

f(t,S, Un(S)) f(t,s,u(s)) as n oe

and

[f(t,s, Un(S))[ <_ ht(s)

for a.e. s [0, t] and all [0, T]. These together with the Lebesgue
dominated convergence theorem yield

N(un)(t) --* N(u)(t) as n

for any [0, T]. Now (2.5) guarantees that the convergence is uniform
in t. Hence N(un) N(u) in C([0, T]; E) as desired.
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To check (1.16), let M c Ube countable with

M C -6({0} U N(M)). (2.6)

Since N(M) C N(U) and N(U) is bounded and equicontinuous, from
(2.6) we have that M is bounded and equicontinuous. To deduce that
/fir is compact, that is a(M) 0 (in C([0, T]; E)), by Proposition 1.2 we
have to prove that a(M(t))=O (in E) for any E [0, T]. For this, let
’[0, T] R be given by (t)=a(M(t)). Clearly E C([0, T]; [0, 2R]).
Now, using Proposition 1.4(b), (2.2) and (2.6), we obtain

(f0 )p(t) a(M(t)) < a(N(M)(t)) a ft(s, M(s)) ds

fOO fOO<_ 2 (ft(s, M(s))) ds <_ 2 co(t, s, a(M(s))) as

Now (C) guarantees q 0 as desired.
Finally (D) guarantees (1.17). Thus Theorem 1.6 applies.

A special case of (2.1) is

u( t) k( t, s)g(s, u(s) ds, [0, T] (2.7)

where k" A R.

THEOREM 2.2 Let k" A R andg" [0, T] x B- E. Suppose

(a) g is Lq-Carathdodoryfor some q >_ 1 and kt k(t, .) LP[O, t]for any
[0, T], where 1/p / 1/q 1;

(b) for each [0, T], we have

[kt kt, [L’[0,t0l 0 as t’

where to min{ t, t’}
(c) there exists Wo" [0, T] x [0, 2R] R Lq-Carathdodory with

a(g(s,M)) <_ wo(s,a(M)) (2.8)



EXISTENCE CRITERIA FOR INTEGRAL EQUATIONS 89

for a.e. s E [0, T] and MC B, such that the unique solution
C([0, T]; [0, 2R]) ofthe inequality

"t

(t) <_ 2 Ik(t,s)lcoo(s, go(s))ds, te [o,r]

/s 90;
(d) ]ulo < Rfor any solution u C([O, T]; B) to

u( t) .k k( t, s)g(s, u(s) ds, t [0, T] (2.9)

for each ) (0, 1).

Then (2.7) has a solution in C([0, T]; B).

Proof The result follows from Theorem 2.1. Here f(t,s,x)=
k(t, s) g(s, x) and

(ftp7(t,t’) h(s)q as sup Ikl,t0,l, 0 _< t’ _< _< T, (2.10)
-c[o,r]

where h E Lq[0, T] is such that Ig(s,x)l <_ h(s) for all x E B and a.e.
s E [0, T]. Also w(t,s, 7-) Ik(t,s)lwo(S, r). Note that the supremum in
(2.10) is finite because of (b).

The next result contains a sufficient condition for (d).

THEOREM 2.3 Letk A Randg:[O, T] B E. Assume (a)-(c) hold.
Also suppose that

(d’) there exists 6 LI[o, T] and w: (0, R] ---. (0, oe) continuous and
nondecreasing such that

Ik(t,s)g(s,x)l < 6(s)w(Ixl)

for a.e. s [0, t] and all [0, T], x E B\{0}, and

T fo
R dr

6(s) ds <_
w(r) (2.111

Then (2.7) has a solution in C([0, T]; B).
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Proof The result follows from Theorem 2.2 once we show (d) is true.

Let u E C([0, T]; B) be any solution to (2.9) for some A E (0, 1). Then

"t

Ik(t,s)g(s, u(s))l ds < A (s)w(lu(s)l) ds

for all [0, T] (we put w(0) limt0 w(t)). Let

(c(t)--min R,A 6(s)w(lu(s)l)ds.

Clearly c is nondecreasing. We claim that c(T)< R. Suppose the
contrary. Then since c(0) 0, there exists a subinterval [a, b] c [0, T] with

c(a) O, c(b) R and c(t) (O,R) for (a,b).

Since lu(t)l < c(t) < R on [a, b] and w is nondecreasing on [0, R], we have

c’(s) (s)w(lu(s)l) (s)w(c(s)) a.e. s [a,b].

Now integration from a to b yields

b c’()
w(c(s))

dr fabds (r) <- A 6(s) ds

_< A 6(s) ds < 6(s) ds,

a contradiction. Notice we may assume 16[L,t0,T] > 0 since otherwise we
have nothing to prove.

Observe that Theorem 2.3 can be derived directly from Theorem 1.5
if we take

K= {u E C([0, T];E); lu(t)l b(t) for [0, T]},

where

and
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(see the proof of Theorem 2.3 in [9]). Notice b(t)< R for all E [0, T]
because of (2.11).

COROLLARY 2.4 Let k A R and g: [0, T] x B E with g gl + g2,

where gl (’, O) 0 andg2 is completely continuous. Assume (a) and (b) hold
with q 1, p cx and

Iktlz[o,t] <_ for all [0, T]. (2.12)

Also suppose that

(c*) there exists 6Ll[0, T] and Wl:(0,2R](0, cz) continuous and
nondecreasing with

TM dr

Wl (r) (2.13)

and

Ig(s,x) gl(s,y)l <_ 6(S)Wl(lx- yl) (2.14)

for a.e. s [0, T] and all x, y B, x y;
(d*) there exists w2 [0, R] R+ continuous and nondecreasing such that

Ig2(s,x)l < 6(s)w2(Ixl) for a.e. s [0, T] and all x B (2.15)

and (2.11) holds with w Wl + w2.

Then (2.7) has a solution in C([0, T]; B).

Proof First we check (c). Using (2.14) we see that (2.8) holds for
wo(S, r) 6(s)wl(r). Now let qo C([0, T]; [0, 2R]) satisfies

j0() < 2 Ik(, )l()Wl (()) d.

Then, by (2.12), we have

Let

c(t) 2
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It is clear that c is nondecreasing. Then qo--0 once we show c(T)= O.
Suppose the contrary, i.e. (T)> 0. Then, since c(0)=0, for each
e E (0, A), where A min{c(T), 2R}, there is a subinterval [a, b] C [0, T]
with

c(a) e, c(b) A and c(t) E (e,A) for allt(a,b).

Now qo(t) < c(t) < 2R on [a, b] and Wl nondecreasing on [0, 2R] guarantee
that

c’(s) 2a(s)w, (o(s)) _< 2a(s)w, (c(s))

a.e. s [a, b]. Consequently

A dr fabwl(r----- <- 2 6(s) ds < 216lr,[0,r].

This, for e "N 0, yields a contradiction to (2.13). Thus c(T) 0 and so
qo_=0.

Finally (d’) follows from (2.12), (2.14), gl(’, 0)=0 and (2.15).

Example 2.1 We give an example of a function gl which satisfies (c*).
Let E-- C(I; R), IC R compact interval, and let gl [0, T] x B --+ E given
by

gl(s,x)(r) I and x B,

where 6 L([0, T]; R+) and W :[0, 2R] --+ R+ is continuous, nondecreas-
ing and satisfies the following conditions:

Wl (0) 0, w, (r) > 0 on (0, 2R]

and

[w, (r) Wl (r’)l < w, (I r r’]) for r, r’ E [0, 2R] (2.16)

2 dr
w, (r--’- oo. (2.17)
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Notice (2.14) can easily be deduced from (2.16). Examples of Wl with
the above properties are: wl(r) r for any R > 0 and wl(r) r In r for
R 1/(2e) (see [13]).

EXISTENCE CRITERIA FOR URYSOHN
INTEGRAL EQUATIONS

In this section we discuss the Urysohn integral equation

T

u( t) f t, s, u(s) ds, [0, T] (3.1)

in a ball B {x E E; Ixl R) of the Banach space (E, l" I)-
Essentially the same reasoning as in Section 2 establish the following

existence principles for (3.1).
THEOREM 3.1 Letf [O, T]2 x B E. Suppose

(A) for each [0, T], ft is L1-Carathdodory and

T

sup sup Ift(s, x) ds < o;
t[0,T] IxI<R

(B) one has

r
sup Ift(s,x) ft,(s,x)l as -- t;ds 0
Ixl<_R

(C) there exists w:[0, T]2 [0, 2R] R such thatfor each [0, T], wt is

L1-Carathdodory,

a(f(t,s,M)) < w(t,s,a(M))

for a.e. s [0, T], MC B, and the unique q C([0, T]; [0, 2R])
satisfying

T

q(t) < 2 a;(t, s, q(s)) ds, t [O,T]
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(D) [ulo < Rfor any solution u E C([0, T]; B) to

T

u(t) A f(t,s,u(s)) ds, tE [0, T]

for each A (0, 1).

Then (3.1) has a solution in C([0, T]; B).

An immediate consequence ofTheorem 3.1 is the following result for
the Hammerstein integral equation

T

u(t) k(t,s)g(s,u(s)) ds, [0, T]. (3.2)

THEOREM 3.2 Let k [0, T]2 R andg [0, T] x B E. Suppose

(a) g is Lq-Carathodory for some q> and for each t[0, T],
kt LP[O, T] where 1/p 4- 1/q 1;

(b) the map t-- kt is continuousfrom [0, T] to LP[O, T];
(c) there exists 0 [0, T] x [0, 2R] R Lq-Carathodory with

a(g(s,M)) <_ wo(s,a(M)) (3.3)

for a.e. s [0, T] and MC B, such that the unique solution

T C([0, T]; [0, 2R]) ofthe inequality

T

qa(t) < 2 [k(t,s)lo(s, p(s)) ds, [0, T] (3.4)

is q----0;
(d) [u[o < Rfor any solution u C([0, r]; B) to

u(t) A k(t, s)g(s, u(s)) ds, [0, T]

for each A (0, 1).

Then (3.2) has a solution in C([0, T]; B).

Theorem 3.2 is now used to obtain an applicable result for (3.2).

(3.5)
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COROLLARY 3.3 Let k’[0, T]2-- R and g’[0, T] B E with g=
gl + g2, where gl(’, 0)-0 and g2 is completely continuous. Assume (a)
and (b) hold with q 1, p o and

Iktlzoo[O,T] < for all [0, T].

In addition suppose

(c*) there exists 6 E LI[0, T] and Wl "(0, 2R] (0, cxz) continuous and
nondecreasing with

inf > 21l,t0,rl (3.6)
r(0,2Rl W1 (r)

and

Ig(s,x) g(s,y)l <_ 6(s)w(Ix- yl) (3.7)

for a.e. s [0, T] and all x, y B, x y;
(d*) there exists W2 [0, R] --, R+ continuous and nondecreasing such that

Ig2(s,x)l (s)w2(Ixl)

for a.e. s [0, T], all x B, and

R
161 ., t0,l (3.8)w(R)

where w w -+- w2.

Then (3.2) has a solution in C([0, T]; B).

Proof First we claim that (c) holds with Wo(S, r)= 6(s)wl(r). It is clear
that (3.3) follows from (3.7) and the complete continuity ofg2. Now let

C([0, T]; [0, 2R]) be any solution to (3.4) and suppose that 0.
Then ro maxtto,rlqo(t) E (0, 2R]. Let to [0, T] be such that qO(to) ro.
From (3.4), since Ik,l < and Wl is nondecreasing, we deduce that

ro qo(to) < 2 Ik(to, s)16(s)wl (o(s)) ds < 2w (ro)16lz,[O,T].

Hence ro/wl(ro) < 2161L, tO,T, which contradicts (3.6). Thus ro 0.
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Next we check (d). Suppose [u[ R for some u E C([0, T]; B) solu-
tion to (3.5). Let tl E [0, T] with ]u(tl)] R. From (3.5) we obtain

R--lu(tl)l < A fo 6(s)w(lu(s)l ds <_ Aw(R)16l,to,l.

Since A (0, 1), w(R) > 0 and we may assume 16[L,I0,7-] > 0, we find

R<w(R)[61L,to,r1, a contradiction to (3.8). Thus (d) holds and
Theorem 3.2 applies.

Example 3.1 LetE C(I; R), Ic R compact interval. Then an example
of a function gl satisfying (c*) is given by Example 2.1, where (2.17) is
now replaced by (3.6). For instance, we may take

wl(r) Cr for an arbitrary R > 0 and C < 1/(2161)

or

wl(r) C sin r for 0 < R < 7r/4 and C < 1/(2161).
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