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Suppose f is a simply connected domain in the complex plane. In (F.G. Avhadiev, Matem.
Sborn., 189(12) (1998), 3-12 (Russian)), Avhadiev introduced new geometrical function-
als, which give two-sided estimates for the torsional rigidity of fL In this paper we find
sharp lower bounds for the ratio of the torsional rigidity to the new functionals. In par-
ticular, we prove that

3Ic(Oa) _< 2P(a),

where P(f) is the torsional rigidity of f,

le(Oa) fffl R2(z,a)dxdy
and R(z, f) is the conformal radius off at a point z.
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1 INTRODUCTION

Let f be a simply connected domain in the complex plane C. By P(f)
we denote the torsional rigidity of 2. The classical problem stated by
St Venant is to find geometrical functionals of f approximating P(2).
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A number ofisoperimetrical inequalities for the torsional rigidity can be
found in the books ofP61ya and Szeg6 [2], Bandle [3], and Osserman [4].
Most of these inequalities are one-sided estimates.
The following result due to Avhadiev gives two-sided inequalities for

P(f). Let dist(z, 0f) be the distance from z E f to the boundary 0f of9t,
and let R(z, f) be the conformal radius of f at z. In [1], Avhadiev
introduced new functionals

I(0f) JL dist2 (z, 0f) dx dy

Ie(OQ) =/L Rz(z’ f) dx dy.

and

The value I(0) is called the moment ofinertia of 9t about Of, and Ic(Of)
is the conformal moment of f.

THEOREM A [1] For simply connected domain f the torsional rigidity
P(f) <+ ifand only iflc(Oft) < +, and

I(Offt) <_ Ic(0f) _< P(f) _< 4Ic(0f) _< 64I(0f).

Moreover, in [5] it was proved that P(Q), I(Of) and I(Of) have similar
isoperimetric properties. In particular,

A2(n) A2(n)I(Of) < and Ic(09t)< (2)67r 37r

where A(f) is the area off. Note that the inequalities (2) are similar to the
famous isoperimetric inequality of St Venant.

2 MAIN THEOREM AND COROLLARIES

THEOREM IfP(2) < +oo, then

71"
(

3 <_ (3)

where R(f)= maxzen R(z, f). The equality 7rR4()-- 3I(0f) holds only
for a disk. If is bounded, then the equality 3Ic(0Vt)= 2P(f) holds ifand
only iff is a disk.
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Theorem strengthens the P61ya and Szeg6 inequality

71R4(-) 2P(f). (4)

Note that Payne (see [3]) gives other strengthening of (4)

71"R4() < 27rv2(fl) < P(fl),2

where v(fl)= maxCx,y)en v(x, y) and the warping function v(x, y) of fl
satisfies (see [3])

Av -2 in D,
v 0 on OD.

On the other hand, from TheoremA it follows that there exists a constant
k > 0 such that v2(fl) < kI(Ofl).

Further, it is clear that (3) and the St Venant inequality P(fl)<
A2(fl)/27r imply the second inequality in (2).
As a straightforward consequence of Theorem we obtain the

following inequality for I(0fl):

COROLLARY Under the condition of Theorem 1, we have

3I(Of) < P(fl)2

3 PROOF OF THEOREM 1

Let f(() a ,n=0 anff be a conformal map of U= {ff I1 < 1} onto f.
The first step of the proof is to obtain series expansions of Ic(Ofl) and
P(f) in terms of Taylor’s coefficients off(O. Taking into account (1),
the well-known formula R(z, f)= If’(Ol(1- 112), and Taylor’s series
off(O, we have
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where Bn -’=0(k + 1)(n +l-k)ak+lan+l-k. From (5) it follows
that the left-hand side of (3) is true. Indeed, suppose R(z,f)=
maxten R(t, fO, andf(0) z. We obtain

R4(z’ )-- [at[4 < 3 ( [a+-Tr-14 --47r [aa2+...)---Ie(Of).l2 7r3
It is clear that the equality holds if and only if ai=0, i=2,3,...
Consequently, the equality 71R4()-- 3Ic(0) holds if and only if f is
a disk.
The right-hand side of (3) is more difficult to prove. First we establish

(3) for a bounded domain.
It is well known (see [2]) that

P(f) -ZZZymin{a, /3, 7, 6}aaa-"g, (6)

the sum being restricted to the non-negative indices ,/3, 7, and 6 for
which c +/3 7 + 6. In [2] it was shown that (6) is absolutely convergent.

Substituting c +/3 for n in (6), we get

oo n-I n-I
71"

e(a) ZZZmin{j, n j, k, n k}ajan-jatcan-t.
n=2 j=l k=l

(7)

The next step to prove Theorem is to use the following lemma which
allows us to compare the coefficients of the series (5) and (7).

LEMMA Let n be a integer number, n > 2, and

(n- 1)/2 for odd n,I= n/2- for even n.

Then the matrix M with elements

mjk min{j, k}
6j(n j)k(n k)
(n-1)n(n+l)

j,k=l,2,...,1

is positive semidefinite.
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ProofofLemma 1 We compute the determinant ofthe main minors of
M to use Sylvester’s criteria of positive semidefinity.
Denote by M(k) (k 1,..., l) the main minor oforder k. Let M(k)j be

the j-string of M(k). We preserve the denotation M(k) at the following
transformations

(i) M(k)j M(k)j- M(k)j_,, j 2,... ,k.

(ii) M(k)j M(k)j- M(k)j.l, j 1,... ,k- 1.

(iii) M(k)j M(k)j M(k),, j 2,..., k and

M(k)k M(k)k (n 2k + 1)M(k)/2.
k

(iv) M(k), M(k), y mjM(k)j,
j=2

where mj= -12j(n-j)/(n 1)n(n + 1),j= 2,... ,k.

Finally, we obtain

M(k)

{rnj+(n-2k+l)m/2 0 0 0

-1 0 0
j

-(n-2k-l+1)/2 00 00 ""... 01

0

where m 12/n(n + 1).
Hence

k-I n-2k+det(M(k)) m + 2
j=l

mk.

The induction onj gives easily

Oet(M(k))
2k((k 1)(3n 2k + 1) + 3(n 2k + 1)(n k)).

(n 1)n(n + 1)

Therefore, det(M(k)) is the polynomial of the third degree. The
polynomial equals zero at the points k =(n- 1)/2,n/2, (n + 1)/2 and
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equals one at k 0. Thus

det(M(k)) (1 2k .)(1-) (1 2k .)n-1 n+l

This shows that det(M(k))>_ 0,k= 1,...,/; therefore, M is positive
semidefinite. Lemma is proved.

Lemma (see [6]) implies that the Hermitian form

Z in{j,n -j,k,n k}
6j(n -j)k(n Cj > 0

j=l k=l (n l)n(n + (8)

for all complex members ff, if2,..., ,-, where n 2, 3,... From (5),
(7) and (8) we derive the right-hand side of (3) for bounded domains.

In the general case P(f)< +, we apply the following property: if
f c f2, then

P(I) _< P(2) and Ic(cgf) < Ie(Of2). (9)

Consider a sequence ofbounded domains f. (f c f), which converges
to 12 as to a kernel by Caratheodory. Hence, Riemann’s functions
f,: f, U converge to f: f U. In particular, Taylor’s coefficients of
f() converge to Taylor’s coefficients off(). From the convergency, the
inequality (3) for f,, and the property (9), we get the right-hand side of
(3) for f.
To complete the proof ofTheorem we consider the equality

P(f) Ic(cgf) (10)

under the restriction that fl is bounded.
First, using the equalities (see [2])

n-I n-l n-I (n- 1)n(n + 1)
man{j, n -j,k,n k}

_
k(n k)

k=l := 6

(11)
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we prove the equality

ZZb(n + 1)jkajan+l_j akan+l-k
j=l k=l

4lalE(n- 1)(n- 2) 2

(n + 1)(n + 2)
Iq"-la a.

for all aj=qJ-a,j= 1,... ,n (Iql < 1) and a. E C, where

b(n + 1)jk min{j, n + -j,k,n + k}
6j(n + -j)k(n + k)

n(n + 1)(n + 2)
It can be shown in the usual way that

Z ZCjk Z Zcjk + 2Re (lk -l-nk)
j=l k=l j=2 k=2 k=l

ell Cnn 2Re Cln,

where Ck C for which qk c.
Decompose the left-hand side of (12) in the form

b(n + )jkajan+l_j akan+l-k I1 q- 12,

where

n-1 n-I

II Iq]2("-’)la, 4 Z b(n + 1)jk,
j=2 k=2

h 4Re aa,, b(n + 1)aa+_ 4b(n + 1)laa,I.
k=l

Using (14), (13) and (11 ), we obtain

I1 -21ql2(n-l)lal [4 b(n + 1)1k + Z b(n + 1)1k
k=l k=2

2[qlZ("-)[a14(-b(n + 1) b(n + 1)n)
4[q[Z(n-)[all4(n- 1)(n- 2)

(n + 1)(n + 2)

(12)

(13)

(14)
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and

(n + l)(n + 2) [aan + 4Re aan(l)n-Z b(n + 1)k
k=2

4[a12(n- l)(n 2) 12(n + 1)(n + 2) ([an 2Re {an’()n-}).

This proves (12).
It follows from (8) that (10) is equivalent to

n-1 n-I

b(n)jkaja,,_jalcan_tc 0, (15)
j=l k=

where n= 2,3,... Now we apply induction on n. Note that b(2)
j -2k= b(3)jk 0 and suppose aj=qJ-a, j= 1,... ,n- 1, where
q=a2/a. From (12) and (15), we obtain a,,=q"-al. Therefore, the
equality (10) holds if and only if

alfff() ao + aqn-n ao -n=l

This concludes the proof ofTheorem 1.
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