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Upper bounds for eigenvalues of a solution to continuous time coupled algebraic Riccati
equation (CCARE) and discrete time coupled algebraic Riccati equation (DCARE) are
developed as special cases of bounds for the unified coupled algebraic Riccati equation
(UCARE). They include bounds of the maximal eigenvalues, the sums of the eigenvalues
and the trace.
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I. INTRODUCTION

It is well known that algebraic Riccati and Lyapunov equations are
widely applied to various engineering areas such as signal processing
and, especially, control theory. In the area of control systems analysis
and design, these equations play important roles in system stability
analysis, optimal controllers and filters design, the transient behavior
estimates, efc. There are many numerical algorithms of computation
of their solution. Despite that the problem to find bounds to the
solution of these equation has been intensively studied in past two
decades. The surveys of such results can be found in [14,9,10].
Majority of papers in this area deal separately with continuous or
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discrete type Riccati equation. Recently, a unified approach for con-
tinuous and discrete Riccati equation has been proposed in [15].
Based on this treatment in [16, 6, 7] the bounds for the unified Riccati
and Lyapunov equations have been obtained. The reasons that prob-
lem to estimate the upper and lower bounds of these equation has
become an attractive topic are that the bounds are also applied to
solve many control problems such as stability analysis [12, 18], time-
delay system controller design [13], estimation of the minimal cost
and the suboptimal controller design [11], convergence of numerical
algorithms [3], robust stabilization problem [4] and so on. The last
example is connected with linear dynamical systems with Markovian
jumps in parameter values, which have recently attracted a great deal
of interest. Considering the linear-quadratic problem for such a system
instead of one equation a set of coupled algebraic equations arises.
And all the reasons mentioned above could be repeated to show in
what way the bounds for coupled algebraic Riccati and Lyapunov
equations can be used. There is one more reason why it is important to
have an estimation for the solution of the coupled Riccati equation.
On the contrary to the standard Riccati equation the problem of
numerical solving of the coupled Riccati equation is not well studied.
There are only few numerical algorithms ([1,2,19]) and all of them
are recurrent so the efficiency of evaluating depends on how close to
the final solution the algorithm’s starting value is.

The objective of this paper is to present bounds for the sums of the
eigenvalues of the solution of the unified coupled algebraic Riccati
equation. In the limiting cases we obtain bounds for the discrete
coupled algebraic Riccati equation and continuous coupled algebraic
Riccati equation. This paper seems to be the first where the upper
bounds for such a type of Riccati equation are proposed.

The eigenvalues \(X), i=1,...,n, of a symmetric matrix X € R” *"
are assumed to be arranged such that

A(X) 2 2(X) 2 -+ 2 M(X).

All our results will be expressed concisely by using the following scalar
functions

— 2
fla,b,c) = 2T Va +2¢ : the bz,
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When we consider the discrete time jump linear-quadratic control
problem the following coupled Riccati equation (DCARE) arises [5]:

Qi +A:ﬁgA; - A:ﬁ',éi(R] + é;iiéi)_lE;F]Aj - Pi = 0, (1)
where

Fi=23 byPs
JjES

andAi, Qb PieRn x n’ ﬁieR" xma RiERm x m’ﬁije [01 1]9 ZjESﬁzj = 11
i€ S, S is a finite set. We assume that p; > 0. Using the following
notation

- S b;
A; = \/piAi, B; = \/piBiR; 2, py==%, Fi= Zp P
Dii jE€S
we can write (1) as
Qi+ AFiA; — AJFiBi(I + B/F;B))"'BiFiA; — P; = 0 @)

where

Fi= Zpij =P+ Zpypj.
JES J#i

For the continuous time jump linear-quadratic control problem the
following coupled Riccati equation (CCARE) arises [20]:
O+ PiA; + AP — PBR;'BiPi + Y qyP; = 0. (3)
jes

Aia Qi’ PI'ERnxns BieRnxm’ RiERmxm’ qyeRa Z/'ES qd=0’
g;>0, i€ S, S is a finite set. In this case we also introduce a new
notations

- 1 ~
A1=Ai+-2-%‘11, B; = BiR,; 12,

Using this notation we can rewrite (3) as
Qi+ PiA; + AiP; — PBiB[P; + ) q;P; = 0. 4)
J#

The first important observation is that both DCARE (3) and CCARE
(4) can be obtained as special cases of the following unified coupled
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algebraic Riccati equation (UCARE)

0i+ FA;+AjF; + AAJFA;
—(I+AA)F.B(I+ ABFB) ' BiFi(I + AA) + Y myP;=0. (5)
i
where
Fi=A Eijj + P;. (6)

#

and 4,, Q;, P,eR" ™", B,e R" ™, 7y, A€[0,00), i€ S, § is a finite set
with s elements. In our future consideration we assume that there
exists positive definite solution of (5).

Remark 1 For A =0 and =g, UCARE (5) reduces to CCARE (4)
and for A=1 and my=p; UCARE (5) reduces to DCARE (3) by
substituting 4, by 4,— L

We need the following lemmas.

LemmAa 1 ([17]) LetX,YeR"*"withX=X',Y=Y', X, Y>O0. Then
the following inequalities hold

} !
D MXY) < Y X)) M(Y), (7
=t P
! } !
D MEAY) <Y N(X) + Y (), (8)
=t =1 =

foranyl=1,...,n.
LemmA 2 ([17]) For l=1,...,n, let

Zxk < Z}’k’ (9)

for real numbers arranged in nonincreasing order. Then

l ]
> wexe <Y wen, (10)
k=1 k=1

where real numbers u;. arranged in nonincreasing order, are nonnegative.
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LemMmaA 3 ([8]) Let matrix P>0, and matrix R>0. For any I=
1,...,n

i,\ (P +R)Y < i Ae(P) (1)
= = LT NP i (B

il. MAIN RESULTS

Using the matrix identity
(I+ST)' =1-S{I+7T15)7'T,
where S, Te R**", (5) can be transformed to

Fi=(I+ DAY (F7' + ABB) ™' (I+ AA) + A myPy + AQ:. (12)
J#i

and using (6) we have

P = (I+ AA) (F7' + AB;B) ™' (I + AA) + AQ.. (13)

LEMMA 4  Let positive definite matrices P;, i € S satisfy the UCARE (5)
and assume that there exists a positive constant o such that

1
YN n(P)<a, (14)
i€ S k=1
forl=1,...,nandi€S. Then
1
> M(Pi) <f(Wi,2U;,2V)) (15)
k=1
Jorl=1,...,nand i€ S, where

!
a; =1+ AMN(A; + A} + AAA), qi= Z/\k(Qi)7
k=1

1
1+ ANe(Ai + A} + AAJA)

T'=E - Ui=ai(l - A max m),

= AXy_k+1(BiB)) » Ui=a JES,j#i 2
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Wi=T;+ Aoa; jmax, my — UT; — AUy,
Vi = Aaza,T,-jtenst’zj)’cé R + AqiTi + A? aamjgng;; i7fij.
Proof From (13) it follows, by using (7) and (8), that

Z Me(P) < Z M((I + DAY (F;' + ABB) (I + AAy))
k=1

+A Z (1)

k=1
1
< Y MU+ DAY (T + AAYM((FT' + ABB) ™)
k=1
1

+ AZ)\k(Qi)- (16)

k=1
Now (11) with P=F; and R = AB;Bj, produces

e (Fy)
ZM(F: +ABiB)” ’)—21+Ak(Fi)A,.~Z+1(Abe",)’ 7

then an application of (10) with
we = M((I + A4) (T + A4)),  xi = M((F7' + AB:B) ™)
and

e (Fy)
14+ Me(Fi) An-r+1(AB;B))’

Ye =

gives

l
3TN + A4 (I + AA))N((F + AB;B) ™
k=1
Z Me((I + AA) (I + AA))Me(F))
= 14+ M(Fi)At+1(ABB))

Z (I + A4) (T + AA)))  Ae(Fi)Mn—k+1(AB;B)) (18)
/\n—k+1 (AB;B,) 1+ )\k(Fi)An—k+l(ABIB )
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The function f:[0,00) — R, f(x) = x/(1 + x) is concave it means that
for any x;€[0,00), ay€(0,00), k=1,...,I the following inequality
holds

l !
> ) <77 ZEL2R ), (19)
k=1

where T = Y"}_, . By (19) with

_ M+ 24)' (1 + A4y)
o =

= MF) i1 (ABB),
%k = Me(Fi) Mnt11(ABiB;) M—k+1(AB;Bj)

we have

i M((T+ DAY (I + DA))  Me(Fi)Mn_is1(ABBY)
& An—k+1(AB;B;) 1 4+ Me(Fi) An—r+1(AB;Bj)
 Tm M+ A4 (T + AA))N(F)
T T Yoy (U + A4 (T + DAY M (F)
T ((+ DAY (I + AAY) iy Me(Fy)
T T+ M((+ DAY (I + DAY) They Me(F)

(20)

and to obtain (20), the monotonicity of f was used. Combine (20)
with (18) and (16) gives

3 ne(p) < O+ AV U+ AA)) iy M)
S T T (T + DAY (T + AAY)) T Me(F)

!
+ A M(@). (21)
=1

Notice that by (8)

] ]
S MF) =) N (A > mP+ P;)
k=1 k=1

JES,j#

1 1
<y Amyhi(Py) + D Me(Py)
vy k=1

1 I
<A max my Z z M (Py) + Z M(P).  (22)
k=1

JESH " S Ti k=l
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We can rewrite (14) as

! l
Y S M) o= APy (23)
JES,j#i k=1 k=1
Then (22) and (23) imply

I 1
M(F) <A max mja+ (1 —A max =y Me(P)). 24
; K(F)SA max o+ (1-A max, ”); W(Po)- - (24)

Since the function g: [0, 00) — R, g(x) = (ax/(b+cx)), a, b, ¢ > 0 is non-
decreasing we can use the bound (24) in (21) and obtain

1 1l
S MP) <A M(Q)
k=1 k=1

T ((1+ A4 (1 + AA)) (Amaxy  spmyer+ (1= Amaxy ¢ symmy) Ty M(Pr)
T+ (T + DAY (I + AA))(Amaxy es s mye+ (1 - Amaxy e s my) Ties Me(Pr))

Solving this inequality with respect to ch___l M(P;) and rearranging
imply result (15). |

LEMMA 5 Let the positive definite matrices P;, i€ S satisfy the UCARE
(5). The

z i Me(P)) <f(W,2U,2V) = a, (25)

ies k=1

forl=1,...,nandi€S, where

i
a=1+ Amg:;CAl(Ai + A+ AAA), g= ZZ)\k(Qi)a
! ies k=1

i
_ 1+ AXNc(A; + A} + AAJA;)
T=max ; Mo BB)

U= (A( max mj) + l)a, W=7Ts—TUs— AUq, V = ATsq.
ij €S

Proof Summing (21) over i€ S we have

! T (( + AA) (I + AAY) Yy Me(F)
iezs ?;‘T AP < iezs Ti+ M(( + AA) (I + AA)) Thoy Me(Fi)

}
+A) D (@)

i€es k=1
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Th(( + AA) (T + AA)) Yok Me(F)
T&T+ Al((1+ AA) (I + DA)) Ty Me(F)

+AY Y M), 26)

i€S k=1

where T=max;cs T;. To estimate the first term on the right hand
side we again use the inequality (19) with f:[0,00) — R, f(x) =
(Tx/(T + x)),

1 . .
o=, xi= (I +44) (I +A4)) Y M(F), i€S.
k=1

On this way we have
Th (I + AA) (I + AA)) Yoy Me(F)
S3T + (U + DAY (I + AAY)) iy Me(Fi)
T, Y esOn((+ AA) (T + AA)) i Me(F))
T Ts+ Yo sOn((+ AA) (I + AA)) iy Me(F1))

Ts(Yie5 ket Me(Fi)) maxie s\ (I + AA) (I + AAY)))
T Ts+ (Dres Yoket Me(Fr)) maxies(h (I + DAY (T + AAy)))

(27)
Notice that by (8)
Y RE) =3 (AZw,-,-P, +p,.)
i€S k=1 i€S k=1 J#i
1 1
< Z Aﬂ'ijAk(Pj) + Z E )\k(Pi)
i€S k=1j€S,j#i i€S k=1
1 1
=A ( Yy ,\k(P,)) + 0D (P
i€s \jesj# k=1 ies k=1
1 1
< A( max ﬂ'g) ZZAk(Pi) + Z A (Pi)
hieSi "/ {8 =t ies k=1

_ (A<ﬁg§#m,) + 1) 3 n(p). (28)

ieS k=1
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From (26), (27) and (28) we can conclude that

1 1
SO MPY <A (@)

1€Sk=1 leSk=1

(8 o ) 1) S b AP mas (0 (0 A 1+ 84))

1 (8(,an, 1) 1) Dres Thoo (P mane s (+04) (1+840)

- (29)

Solving this inequality with respect to Zies22=l Mc(P;) and rear-
ranging imply result (25). n

Specializing the result of Lemmas 4 and 5 to the DCARE and
CCARE according to Remark 1, we obtain the following two
theorems.

THEOREM 1 Let the positive definite matrices P; i€ S satisfy the
CCARE (4). Then

1
D M(P) <F(Waiy 2,2Vei), (30)
k=1
where

a. =f(W,2,2V,),

1
w, =s( max X7 -max)q(Ag-t—A,)) max E 1 (BB )
e
1
V. = smax A
¢ es ZAn-kﬂ(BjB}),eZs; (@)

= - (A
Wci ( 2’?’-’; ‘IV A1( 1+Ai)) ZAn—k+l (B B;)

Vei = aczAn—k+l(B B’)jes,j#iqj

+ Z Me(Q1) Z A —k+1(B‘BI
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THEOREM 2 Let the positive definite matrices P;, i€ S satisfy the
DCARE (2). Then

1
> Ne(Pi) < (War, 2Uut, 2Var) (31)
k=1
forl=1,...,nand i€ S, where
ag =f(Wd, 2U,, 2Vd),

]
- M(AA))
Wa=smaxd 5 BB

I I
Ak (AiA;-)
sUamax Ek=1 M—k+1(BiBj) Ua Z M),

ies k=1

Us= 1 M(AA),
o= (o o+ 1) maria)

] ’ ]
A (AiA]) M (AAL)
Va = sm""}: Nni+1(BiB]) 163 Z < Xoi11(BiB)

I
_ Z Ak (AjA;) Z
le An—.k+1 (B B’) ] qdi Ak(Ql)’
— 'A. R U - .
adW = Tg + aahi(AA) jmax, py A1(AjA) (1 jgg’lj);ipy) Ty

- ‘AN 1 - )
At (AiA,)( ,é”s‘,’ﬁe,-p‘f) Qi

V = aghi (AA)T, T, A(A;
aV = ag1(AA) dijzng]?:ﬁpy+th @i + o (. Ai)qdijggﬁiwy

lll. CONCLUSIONS

The upper bounds for the sums of eigenvalues of the solution to
unified-type coupled algebraic Riccati equation are presented in this
paper. In the special cases the results reduce to bounds for the con-
tinuous and discrete coupled algebraic equations.
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