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Lognormal distribution has abundant applications in various fields. In literature, most inferences
on the two parameters of the lognormal distribution are based on Type-I censored sample data.
However, exact measurements are not always attainable especially when the observation is below
or above the detection limits, and only the numbers of measurements falling into predetermined
intervals can be recorded instead. This is the so-called grouped data. In this paper, we will show
the existence and uniqueness of the maximum likelihood estimators of the two parameters of the
underlying lognormal distribution with Type-I censored data and grouped data. The proof was
first established under the case of normal distribution and extended to the lognormal distribution
through invariance property. The results are applied to estimate the median and mean of the
lognormal population.
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1. Introduction

Lognormal distribution has been used to model many skewed frequency distributions,
especially to model continuous random quantities in medical, physical, chemical, biological,
toxicological, economical, and environmental processes.

For example, in medicine, the red cell volume distributions; size distributions of
plaques in Alzheimer’s patients; surgical procedure times; survival times of breast and
ovarian cancer; all have been modeled by lognormal distribution by various researchers. Tai
et al. [1] and Mould et al. [2] validated the use of the lognormal model for predicting long-
term survival rates of laryngeal cancer patients using short-term follow-up data.
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It is also common to apply the lognormal distribution for fatigue life and residual
strength of composite materials [3], reliability analysis [4], size distributions in economics
and actuarial sciences [5], cell growth [6], and many other phenomena.

In all these studies, it is critical to estimate the parameters of a lognormal distribution.
A random variable follows lognormal distribution LN(μ, σ) if the logarithm of the random
variable follows normal distribution N(μ, σ). Thus to estimate the parameters (μ, σ), it
suffices to convert the lognormal data to normal data by log-transformation. In literature,
the estimation of these two parameters was considered with complete sample, or in most
cases Type-I censored sample. However, estimation with grouped data has not yet been
studied. We complement this literature by proposing maximum likelihood estimators (MLEs)
of the two parameters that are based on grouped sample data (i.e., interval censored
data).

The paper is organized as follows. In Section 2, we will show that the MLEs of the
two parameters exist uniquely under mild conditions and thus the asymptotic normality of
the estimators. The results are applied to derive the point and confidence interval estimation
of the mean and median of the underlying lognormal distribution in Section 2.1. Section 3
provides the simulation results comparing the properties of the estimator based on grouped
sample to those of type I censoring. Section 4 contains study results of a practical problem by
the above method. To facilitate reading, proofs are relegated to the appendix.

2. Main Results

In this section, we will first show that the MLEs of the parameters μ and σ of a normal
population N(μ, σ2) based on grouped data uniquely exist. Here, the grouped data refers
to the following. Assume that a sample X1, . . . , Xn is drawn from a normal population,
the values of Xjs are unknown; however, according to k preestablished partition points
τ1 < τ2 < · · · < τk, we know ni, the number of Xjs that fall into the interval [τi−1, τi),
1 ≤ i ≤ k + 1 where τ0 ≡ −∞ and τk+1 ≡ ∞. Denote the density of the standard
normal distribution N(0, 1) as ϕ(t), then the density of N(μ, σ2) distribution is f(t;μ, σ) =
(1/σ)ϕ((t − μ)/σ), −∞ < μ < ∞, σ > 0. In order to prove our results, we consider
two new parameters θ1 = μ/σ and θ2 = 1/σ. There is a one-to-one correspondence
between (μ, σ) and (θ1, θ2), namely, μ = θ1/θ2 and σ = 1/θ2. We will show that the
MLEs of θ1 and θ2 based on grouped data uniquely exist. Then due to the invariance
property of MLEs, the existence and uniqueness of the MLEs of (μ, σ) follow. With the
new parameters (θ1, θ2), the CDF of N(μ, σ2) can be expressed as Φ(θ2t − θ1) where Φ(·)
is the CDF of the standard normal distribution, and the log-likelihood function lnL is given
by

lnL = c + n1 lnΦ(θ2τ1 − θ1) + nk+1 ln[1 −Φ(θ2τk − θ1)]

+
k∑

i=2

ni ln[Φ(θ2τi − θ1) −Φ(θ2τi−1 − θ1)],
(2.1)

where c is a known constant.
Before proceed, we present two lemmas. Please refer to the appendix for the proofs of

the lemmas.
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Lemma 2.1. Assume n1 + nk+1 < n, nj−1 + nj < n, 2 ≤ j ≤ k + 1. For any given η > 0, there exists a
compact subsetK ≡ K(η) ⊂ (−∞,∞) × (0,∞) such that

{
(θ1, θ2) : lnL(θ1, θ2) ≥ −η} ⊂ K. (2.2)

Basically, Lemma 2.1 means that the log-likelihood function lnL(θ1, θ2) will not
achieve its maximum value at the boundary of its domain.

Lemma 2.2. Let g(u, v) ≡ ln(Φ(u) −Φ(v)) for v < u. Then the Hessian matrixH∗ of g(u, v),

H∗ =

⎛
⎜⎜⎜⎝

∂2g

∂u2

∂2g

∂u∂v

∂2g

∂u∂v

∂2g

∂v2

⎞
⎟⎟⎟⎠, (2.3)

is negative definite.

Theorem 2.3. Suppose that the observed n1, . . . , nk+1 satisfy n1 + nk+1 < n and nj−1 + nj < n, ∀2 ≤
j ≤ k + 1, then the MLEs of parameters μ and σ of normal populationN(μ, σ2) uniquely exist.

Proof. We need only to show that the MLEs of parameters θ1 and θ2 uniquely exist. According
to the results of Mäkeläinen et al. [7], in order to show the existence and uniqueness of the
MLEs of (θ1, θ2), it is sufficient to verify the following two conditions.

(i) For any given η > 0, (2.2) holds.

(ii) The Hessian matrix of lnL,

H(θ1, θ2) =

(
∂2 lnL
∂θi∂θj

)
, (2.4)

is negative definite at every point (θ1, θ2) ∈ (−∞,∞) × (0,∞).

Condition (i) is certainly satisfied by Lemma 2.1. Therefore, to prove the theorem, we
need only to show (ii), that is, the log-likelihood function lnL is negative definite function of

θ = (θ1, θ2) ∈ (−∞,∞) × (0,∞). (2.5)

To this end we should consider each of the three terms in the expression (2.1) of
lnL(θ).
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Let g1(θ) ≡ lnΦ(θ2τ1 − θ1). It is evident that the Hessian matrix of g1 is

H1 ≡

⎛
⎜⎜⎜⎜⎝

∂2g1

∂θ2
1

∂2g1

∂θ1∂θ2

∂2g1

∂θ1∂θ2

∂2g1

∂θ2
2

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

ϕ′(θ2τ1 − θ1)Φ(θ2τ1 − θ1) − Q
Φ(θ2τ1 − θ1)

2
−τ1

ϕ′(θ2τ1 − θ1)Φ(θ2τ1 − θ1) − Q
Φ(θ2τ1 − θ1)

2

−τ1
ϕ′(θ2τ1 − θ1)Φ(θ2τ1 − θ1) − Q

Φ(θ2τ1 − θ1)
2

τ2
1

ϕ′(θ2τ1 − θ1)Φ(θ2τ1 − θ1) − Q
Φ(θ2τ1 − θ1)

2

⎞
⎟⎟⎟⎟⎠
,

(2.6)

where Q denotes ϕ2(θ2τ1 − θ1).
To show H1 is negative semidefinite, we will verify the following two conditions: (a)

∂2g/∂θ2
1 < 0 or ∂2g/∂θ2

2 < 0, ∀(θ1, θ2) ∈ (−∞,∞) × (0,∞); (b) the determinant of H1 is
nonnegative, that is, |H1| ≥ 0.

Note that (a) is equivalent to −(θ2τ1 − θ1)Φ(θ2τ1 − θ1) − ϕ(θ2τ1 − θ1) < 0, ∀(θ1, θ2) ∈
(−∞,∞) × (0,∞). This is true since y[1 − Φ(y)] < ϕ(y) holds for any y (see, e.g., Feller [8]).
Hence (a) is satisfied. The two rows of H1 are proportional, so |H1| = 0. Hence, the condition
(b) is satisfied. Therefore, H1 is negative semidefinite.

Now denote gk+1(θ) ≡ ln[1 −Φ(θ2τk − θ1)]. The Hessian matrix Hk+1 of gk+1 is

Hk+1≡

⎛
⎜⎜⎜⎜⎜⎝

−ϕ
′(θ2τk − θ1)[1 −Φ(θ2τk − θ1)] + ϕ2(θ2τk − θ1)

[1 −Φ(θ2τ1 − θ1)]
2

τk
ϕ′(θ2τk − θ1)F

[1−Φ(θ2τk− θ1)]
2

τk
ϕ′(θ2τk − θ1)F

[1 −Φ(θ2τk − θ1)]
2

−τ2
k

ϕ′(θ2τk − θ1)F
[1−Φ(θ2τk − θ1)]

2

⎞
⎟⎟⎟⎟⎟⎠
, (2.7)

where F denotes [1 −Φ(θ2τk − θ1)]
2 + ϕ2(θ2τk − θ1).

In the similar way as the above we can show that the matrix Hk+1 is negative
semidefinite.

Finally, let us consider h(θ1, θ2) ≡ ln[Φ(θ2τi − θ1) − Φ(θ2τi−1 − θ1)], 2 ≤ i ≤ k. Let
u = θ2τi − θ1, v = θ2τi−1 − θ1. Then h(θ1, θ2) = ln[Φ(u) −Φ(v)] ≡ g(u, v). The Hessian matrix
Hi associated with h(θ1, θ2) is

Hi =

⎛
⎜⎜⎜⎜⎝

∂2h

∂θ2
1

∂2h

∂θ1∂θ2

∂2h

∂θ1∂θ2

∂2h

∂θ2
2

⎞
⎟⎟⎟⎟⎠

=

(−1 −1

τi τi−1

)
⎛
⎜⎜⎜⎜⎝

∂2g

∂u2

∂2g

∂u∂v

∂2g

∂u∂v

∂2g

∂v2

⎞
⎟⎟⎟⎟⎠

(−1 τi

−1 τi−1

)
= A′H∗A, (2.8)
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where

H∗ =

⎛
⎜⎜⎜⎝

∂2g

∂u2

∂2g

∂u∂v

∂2g

∂u∂v

∂2g

∂v2

⎞
⎟⎟⎟⎠, A =

(−1 τi

−1 τi−1

)
, (2.9)

and A′ is the transpose of A. By Lemma 2.2, H∗ is negative definite. Therefore, Hi is negative
definite.

The Hessian matrix H of the log-likelihood function lnL(θ) can be expressed as H =
n1H1 + nk+1Hk+1 +

∑k
i=2 niHi. Since matrices H1 and Hk+1 are negative semidefinite, each

Hi (2 ≤ i ≤ k) is negative definite, and at least one ni > 0 by our assumptions, so H must be
negative definite. This completes the proof of the theorem.

Corollary 2.4. Under the conditions of Theorem 2.3, it holds that as n → ∞,

(
μ̂n

σ̂n

)
−
(
μ

σ

)
L−−−→N

(
0, I−1(μ, σ

))
, (2.10)

where L−→ means “converges in law,” and

I
(
μ, σ
)
= −E

⎛
⎜⎜⎜⎜⎝

∂2 lnL
∂μ2

∂2 lnL
∂μ∂σ

∂2 lnL
∂μ∂σ

∂2 lnL
∂σ2

⎞
⎟⎟⎟⎟⎠
. (2.11)

Proof. For each n > k, define An ≡ {n1 + nk+1 = n, ni−1 + ni = n, 1 ≤ i ≤ k}. Note
that P(lim supn→∞An) = 0. Hence the result follows from Theorem 2.3 and the asymptotic
normality of MLE (see, e.g., Lawless (2003)).

The same results as in Theorem 2.3 and Corollary 2.4 also hold for the case of Type-I
censored data. Let X1, . . . , Xn be a sample from an N(μ, σ2) population. Suppose that τ is a
predetermined detection limit. Without loss of generality, we will consider left censoring, the
common situation in environmental studies, that is, Xj will be observed if and only if Xj ≥ τ .
Even though Type-I is widely applied in literature, but according to the authors’ knowledge,
the existence and uniqueness of the MLEs of (μ, σ) have not been proved. This will be shown
in the following theorem.

Theorem 2.5. Suppose that the number of observable Xjs is at least 2, then the MLEs of (μ, σ)
uniquely exist based on the Type-I censored data with τ as detection limit.

Proof. The result can be proved in the same way as Balakrishnan and Mi [9].

Remark 2.6. (a) The same result holds for the case of right censoring; (b) the results of
Theorem 2.5 are true if each Xj is censored by detection limit τj (1 ≤ j ≤ n).
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2.1. Estimation of the Median and Mean

Suppose that random variable Y follows lognormal distribution LN(μ, σ2). With log-
transformation then X = lnY follows normal distribution N(μ, σ2). Lognormal distribution
has been used to model various continuous random variables as mentioned in Section 1.
Specifically, this distribution is frequently applied in environmental statistics. The lognormal
random variable Y has median m ≡ exp{μ} and mean ν ≡ E(Y ) = exp{μ + σ2/2}. The MLEs
of m and ν can easily be obtained as m̂ = exp{μ̂} and ν̂ = exp{μ̂+ σ̂2/2} due to the invariance
property of MLE. We can also obtain approximate confidence intervals form and ν as follows.

Denote the inverse of the matrix I(μ, σ) in Corollary 2.4 to Theorem 2.3 as

I−1(μ, σ
)
=

(
β11 β12

β21 β22

)
. (2.12)

It is obvious that μ̂n − μ L−→ N(0, β11), by large sample theory we have exp{μ̂n} − exp{μ} L−→
N(0, (exp {μ}2)β11). From these, an approximate (1 − α)100% confidence interval of m can be

obtained as exp{μ̂n} ± zα/2(exp{μ̂n}
√
β̂11), here zα/2 is the upper α/2 percentile, and β̂11 is

obtained from substituting μ̂n and σ̂ for μ and σ in the expression of β11. Similarly, it holds
that as n → ∞

eμ̂n+σ̂
2
n/2 − eμ+σ2/2 L−−−→N

(
0, τ2

)
, (2.13)

where

τ2 =
(
eμ+σ

2/2, σeμ+σ
2/2
)
I−1(μ, σ

)
⎛

⎝ eμ+σ
2/2

σeμ+σ
2/2

⎞

⎠. (2.14)

Therefore, an approximate (1 − α)100% confidence interval of ν = exp{μ + σ2/2} is obtained
as

eμ̂n+σ̂
2
n/2 ± zα/2τ̂ , (2.15)

where τ̂ is obtained by substituting μ and σ by their MLEs μ̂n and σ̂n.

3. Simulation Studies

In this section, we will conduct simulation studies on the MLEs and confidence intervals of
μ and σ of normal distribution N(μ, σ2) based on grouped data. In addition, we will also
examine point and interval estimations of the mean and median of lognormal distribution
LN(μ, σ2). The results obtained from grouped data will be compared with those obtained
from Type-I censored data.
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Figure 1: Grouped data: τ1 = 2, τ2 = 2.5, τ3 = 3, τ4 = 3.5, τ5 = 4. Type I left censored data: τ = 2.

We create a population of size n by drawing n values from a normal population with
μ = 3 and σ = 2. Next, for a prefixed five partition points τi, 1 ≤ i ≤ 5, we record the number
of this population that fall into each interval [τi−1, τi). Each such samples are consider to be
observed sample. The MLEs of μ and σ are then computed based on this observed sample.
This process is repeated 5,000 times. Different sample size and 6 sets of partition points are
considered for comparisons purpose.

We compute the MLEs of θ1 = μ/σ and θ2 = 1/σ by solving the likelihood equations

∂ lnL
∂θ1

= 0,

∂ lnL
∂θ2

= 0,

(3.1)

using SAS IMSL nonlinear equation solver. Then the MLEs μ̂ = μ̂n and σ̂ = σ̂n of μ and σ are
readily obtained by the invariance of MLE. According to the large sample properties of MLEs
stated in Corollary 2.4 to Theorem 2.3, we know that (μ̂n, σ̂n) is asymptotically normally
distributed. Thus we can obtain approximate confidence intervals for μ and σ.

Type-I censored data are very common in various experiments. It is widely used in life
test in order to save test time. Particularly, in environmental data analysis, values are often
reported simply as being below detection limit along with the stated detection limit. The data
obtained in this way are Type-I left singly censored. To compare the performance of the MLEs
based on the grouped data with those obtained from Type-I left singly censored data, we will
use τ1 as the “detection limit”. Figures 1, 2, 3, 4, 5, and 6 present the estimated MLEs of μ
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Figure 2: Grouped data: τ1 = 1.5, τ2 = 2.5, τ3 = 3.5, τ4 = 4.5, τ5 = 5.5. Type I left censored data: τ = 1.5.
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Figure 3: Grouped data: τ1 = 0, τ2 = 1.5, τ3 = 3, τ4 = 4.5, τ5 = 6. Type I left censored data: τ = 0.
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Figure 4: Grouped data: τ1 = −1.5, τ2 = 1, τ3 = 3.5, τ4 = 6, τ5 = 8.5. Type I left censored data: τ = −1.5.
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Figure 5: Grouped data: τ1 = −2, τ2 = 0, τ3 = 2, τ4 = 4, τ5 = 6. Type I left censored data: τ = −2.
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Figure 6: Grouped data: τ1 = −3.5, τ2 = −0.5, τ3 = 2.5, τ4 = 5.5, τ5 = 8.5. Type I left censored data: τ = −3.5.

Table 1: Grouped data: τ1 = 2, τ2 = 2.5, τ3 = 3, τ4 = 3.5, τ5 = 4.

S.S m̂ ν̂

n Average A.W. C.R. Average A.W. C.R.
30 21.992 33.374 90.9% 245.490 1517.674 70.7%
35 21.665 31.882 91.7% 229.715 2810.490 78.8%
40 21.441 29.207 92.9% 231.326 2356.412 81.4%
50 21.211 25.697 93.4% 222.684 1632.301 82.9%
100 20.614 17.983 94.5% 199.014 647.065 85.6%

Table 2: Grouped data: τ1 = 1.5, τ2 = 2.5, τ3 = 3.5, τ4 = 4.5, τ5 = 5.5.

S.S m̂ ν̂

n Average A.W. C.R. Average A.W. C.R.
30 21.660 34.091 92.4% 245.569 1835.284 85.4%
35 21.320 30.027 92.1% 211.600 794.547 81.9%
40 21.159 27.386 93.4% 205.518 763.310 84.1%
50 20.884 24.588 94.4% 190.732 525.019 83.3%
100 20.465 16.790 94.3% 167.344 343.435 90.0%

and σ under six different partition sets {τ1 < τ2 < τ3 < τ4 < τ5} with n ranges from 15 to 215.
The results of median and mean of the lognormal population are listed in Tables 1, 2, 3, 4, 5,
and 6.
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Table 3: Grouped data: τ1 = 0, τ2 = 1.5, τ3 = 3, τ4 = 4.5, τ5 = 6.

S.S m̂ ν̂

n Average A.W. C.R. Average A.W. C.R.
30 21.657 31.826 92.7% 203.855 845.742 82.2%
35 21.397 29.168 93.4% 189.163 679.646 83.8%
40 21.201 26.989 93.1% 181.097 558.176 84.6%
50 20.974 23.931 93.6% 172.924 429.353 85.1%
100 20.495 16.577 94.3% 159.906 274.166 89.2%

Table 4: Grouped data: τ1 = −1.5, τ2 = 1, τ3 = 3.5, τ4 = 6, τ5 = 8.5.

S.S m̂ ν̂

n Average A.W. C.R. Average A.W. C.R.
30 21.752 32.374 92.4% 176.952 610.020 80.1%
35 21.381 29.635 92.5% 169.389 512.877 81.2%
40 21.247 28.552 92.6% 168.496 552.496 85.0%
50 21.179 24.738 93.8% 166.919 373.012 83.3%
100 20.507 17.132 94.3% 156.027 264.165 88.8%

Table 5: Grouped data: τ1 = −2, τ2 = 0, τ3 = 2, τ4 = 4, τ5 = 6.

S.S m̂ ν̂

n Average A.W. C.R. Average A.W. C.R.
30 21.688 32.743 93.1% 183.834 659.789 79.8%
35 21.496 29.564 92.3% 180.633 569.356 82.7%
40 21.141 27.514 92.5% 175.077 554.142 84.1%
50 21.093 24.082 93.1% 170.522 360.508 82.7%
100 20.562 16.932 94.3% 158.738 266.687 89.1%

From these figures (grouped data: solid line, type I censoring: dotted line), it is
easy to see that estimations under both data situations improved dramatically with the
increasing sample size. The estimated values are very close to the true values with error
less than 0.003% when n > 30. The choice of τ ’s does not seem to affect the result much
except in Figure 6, where τ1 = −3.5, τ2 = −0.5, τ3 = 2.5, τ4 = 5.5, τ5 = 8.5, an interval
which most samples will be observed in the middle and few on the either side. From those
figures, it is not hard to see that the estimation with grouped data are uniformly better than
those based on type I censoring data, especially in the estimation of σ, with exception in
few isolated cases. Moreover, it is interesting to observe how the μ̂ and σ̂ approach the
true value differently with μ taking the oscillated routine and σ tends to be consistently
underestimated.

4. An Application

Let us consider a sample of 47 observations from the guidance document USEPA [10,
pages 6.22–6.25]. The data describe the measures of 1,2,3,4-Tetrachlorobenzene (TcCB)
concentrations (in parts per billion, usually abbreviated ppb) from soil samples at a
“Reference” site.
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Table 6: Grouped data: τ1 = −3.5, τ2 = −0.5, τ3 = 2.5, τ4 = 5.5, τ5 = 8.5.

S.S m̂ ν̂

n Average A.W. C.R. Average A.W. C.R.
30 21.641 32.122 90.8% 170.705 505.267 77.8%
35 21.386 30.498 92.8% 167.457 517.091 80.3%
40 21.250 28.960 93.5% 164.214 555.646 83.9%
50 21.035 26.623 95.2% 161.572 583.249 88.7%
100 20.469 17.481 94.1% 154.492 271.900 88.7%

Table 7: Grouped data: τ1 = −0.71, τ2 = −0.61, τ3 = −0.41, τ4 = −0.21, τ5 = 0.11.

n 95% CI for μ 95% CI for σ 95% CI for m 95% CI for ν
47 (−0.771,−0.426) (0.354, 0.709) (0.455, 0.645) (0.525, 0.741)

The normal Q-Q plot for the log-transformed TcCB data shown in the book of Millard
and Neerchal (2001) indicates that the lognormal distribution appears to provide a good fit
to the original data. The book gives ν̂(c) = 0.60 as the MLE of the mean of the lognormal
distribution, and CI(c) = [0.51, 0.68] as an approximate 95% confidence interval for ν based
on the complete sample data with the 47 observations. The book also uses 0.5 as the detection
limit, that is, any observation lower than 0.5 will be censored, which yields 19 censored
observations and 28 uncensored observations. The censored data then give ν̂(I) = 0.606 as
the MLE of ν and CI(I) = [0.51, 0.73] as an approximate 95% confidence interval for ν.

To apply the results in Section 2 for computing the MLEs of the parameters of this
lognormal distribution, we first transform the original data to their logarithms and thus the
log-transformed data constitute a sample from a normal distribution, then obtain n1 = 19,
n2 = 5, n3 = 7, n4 = 6, n5 = 5, n6 = 5 by using the following five partition points τ1 =
−0.71, τ2 = −0.61, τ3 = −0.41, τ4 = −0.21, τ5 = 0.11. Solving the corresponding log-likelihood
equations gives μ̂(g) = −0.599, σ̂(g) = 0.532, m̂(g) = 0.549, and ν̂(g) = 0.633. Approximate
95% confidence intervals for μ, σ, m, and ν are given in Table 7.

Appendix

Proof of Lemma 2.1. To prove the lemma, it is sufficient to verify the following three limits:

lim
θ2 → 0+

sup
−∞<θ1<∞

lnL(θ1, θ2) = −∞; (A.1)

lim
θ2 →∞

sup
−∞<θ1<∞

lnL(θ1, θ2) = −∞; (A.2)

lim
|θ1|→∞

sup
θ2>0

lnL(θ1, θ2) = −∞. (A.3)

To see (A.1), from the assumption n1 + nk+1 < n, there exists an index, say
i, such that 2 ≤ i ≤ k and ni > 0. We have lnL(θ1, θ2) ≤ ni ln

∫θ2τi−θ1

θ2τi−1−θ1
ϕ(t)dt ≤

ni ln[θ2(τi − τi−1)ϕ(0)]. So sup−∞<θ1<∞ lnL(θ1, θ2) ≤ ni[lnϕ(0) + ln(τi − τi−1) + ln θ2] and
lim supθ2 → 0+sup−∞<θ1<∞ lnL(θ1, θ2) ≤ limθ2 → 0+ni[lnϕ(0)+ln(τi−τi−1)+ln θ2] = −∞. Therefore,
(A.1) holds.
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To show (A.2), we denote I ≡ {1 ≤ j ≤ k + 1, nj > 0}. For each fixed θ2 > 0, it is
evident that lnL(θ1, θ2) =

∑
i∈I ni ln

∫θ2τi−θ1

θ2τi−1−θ1
ϕ(t)dt ≡ M(θ2). Thus sup−∞<θ1<∞ lnL(θ1, θ2) =

sup−∞<θ1<∞M(θ2).
Note that, lim|θ1|→∞M(θ1) = −∞, so there exists θ∗1 = θ∗1(θ2) ∈ (−∞,∞), such that

sup−∞<θ1<∞ lnL(θ1, θ2) = lnL(θ∗1, θ2) =
∑

i∈I ni ln
∫θ2τi−θ∗1
θ2τi−1−θ∗1

ϕ(t)dt. Consider function g(x) ≡
|x| exp(x2/2). For any given large number A > 0, it is easy to see that there exists x0 > 0
such that g(x) >

√
2π exp(x2/2), ∀|x| > x0.

Denote c ≡ min1≤j≤k+1(τj − τj−1) > 0. For any θ2 > x0/c, from our assumptions there
exists an index, say i, belonging to I satisfying (a) ni > 0; (b) the following two quantities
θ2τi−1 − θ∗1 = θ2(τi−1 − θ∗1/θ2) and θ2τi − θ∗1 = θ2(τi − θ∗1/θ2) have the same sign; and (c)
|τi−1 − θ∗1/θ2| > c, and |τi − θ∗1/θ2| > c.

Note that, if i ∈ I, and both θ2τi−1 − θ∗1 > 0 and θ2τi − θ∗1 > 0, then

∫θ2τi−θ∗1

θ2τi−1−θ∗1
ϕ(t)dt <

1
θ2τi−1 − θ∗1

∫θ2τi−θ∗1

θ2τi−1−θ∗1
tϕ(t)dt

=
1

θ2τi−1 − θ∗1
[
ϕ
(
θ2τi−1 − θ∗1

) − ϕ(θ2τi − θ∗1
)]

<
ϕ
(
θ2τi−1 − θ∗1

)

θ2τi−1 − θ∗1
=

1√
2π g

(
θ2τi−1 − θ∗1

) .

(A.4)

If θ2 > x0/c, then θ2τi−1−θ∗1 = θ2(τi−1−θ∗1/θ2) > (x0/c)c = x0 and so g(θ2τi−1−θ∗1) >
√

2π expA.
Consequently,

ni ln
∫θ2τi−θ∗1

θ2τi−1−θ∗1
ϕ(t)dt < ni ln

1√
2π exp(A)

= ni
(
− ln

√
2π −A

)
< −niA < −A. (A.5)

This further implies

sup
−∞<θ1<∞

lnL(θ1, θ2) = lnL
(
θ∗1, θ2

)
=
∑

j∈I
nj ln

∫θ2τj−θ∗1

θ2τj−1−θ∗1
ϕ(t)dt

< ni ln
∫θ2τi−θ∗1

θ2τi−1−θ∗1
ϕ(t)dt < −A, ∀θ2 >

x0

c
.

(A.6)

If i ∈ I, but both τi−1 − θ∗1/θ2 < −c and τi − θ∗1/θ2 < −c, then similarly, it can be shown
that (A.6) is true again. Therefore, we see that for any given large number A > 0, it holds that

sup
−∞<θ1<∞

lnL(θ1, θ2) < −A, ∀θ2 >
x0

c . (A.7)

Due to the arbitrariness of A > 0, we conclude that (A.1) is true.
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To verify (A.3), we let θ2τk+1 − θ1 = ∞ and θ2τ0 − θ1 = −∞ for any (θ1, θ2) ∈ (−∞,∞) ×
(0,∞). For any fixed θ1 ∈ (−∞,∞), we have

lnL(θ1, θ2) =
∑

j∈I
nj ln

∫θ2τj−θ1

θ2τj−1−θ1

ϕ(t)dt ≡M(θ2). (A.8)

It can be easily verified that M(θ2) → −∞ as θ2 → 0+ or θ2 → ∞. Thus, there exists
θ∗2 ≡ θ∗2(θ1) ∈ (0,∞) such that supθ2>0 lnL(θ1, θ2) = lnL(θ1, θ

∗
2).

We define function g(x), x0 for any given A > 0, and c > 0 as before. Consider any
sequence {θ1m, m ≥ 1} ⊂ (−∞,∞) with |θ1m| → ∞ as m → ∞. Let θ∗2m ≡ θ∗2(θ1m) and
{θ∗2mr

, r ≥ 1} be any converging subsequence of {θ2m, m ≥ 1}, η ≡ limm→∞θ∗2mr
≤ ∞. Let us

study two cases.

Case 1 (η = ∞). Notice that for any r ≥ 1, by our assumptions there exists at least one index,
say i, in I such that (a) ni > 0; (b) |τi−1 − θ1mr/θ

∗
2mr

| > c and |τi − θ1mr/θ
∗
2mr

| > c; (c) τi−1 −
θ1mr/θ

∗
2mr

and τi − θ1mr/θ
∗
2mr

have the same sign.
Since θ∗2m → ∞ asm → ∞, there exists r0 sufficiently large such that θ∗2mr

> x0/c, ∀r ≥
r0. Thus,

∣∣∣θ∗2mr
τi−1 − θ1mr

∣∣∣ = θ∗2mr

∣∣∣∣∣τi−1 −
θ1mr

θ∗2mr

∣∣∣∣∣ > x0, ∀r ≥ r0,

∣∣∣θ∗2mr
τi − θ1mr

∣∣∣ = θ∗2mr

∣∣∣∣∣τi −
θ1mr

θ∗2mr

∣∣∣∣∣ > x0, ∀r ≥ r0.

(A.9)

From these, as what we did before we obtain

lnL
(
θ1mr , θ

∗
2mr

)
< ni ln

∫θ∗2mr τi−θ1mr

θ∗2mr τi−1−θ1mr

ϕ(t)dt < −A, ∀r ≥ r0, (A.10)

this implies limr→∞ lnL(θ1mr , θ
∗
2mr

) = −∞.

Case 2 (0 ≤ η <∞). In this case, the inequality limr→∞ lnL(θ1mr , θ
∗
2mr

) = −∞ can be proved in
the same way as Case 1.

From the results in the above two cases, we conclude that limm→∞ lnL(θ1m, θ
∗
2m) = −∞.

Since {θ1m, m ≥ 1} is an arbitrary sequence satisfying |θ1m| → ∞, so finally (A.3) is true.

Proof of Lemma 2.2. For any given v < u, we have g(u, v) ≡ ln(Φ(u) − Φ(v)). The Hessian
matrix of g(u, v) is

H∗ =

⎛
⎜⎜⎜⎜⎝

ϕ′(u)(Φ(u) −Φ(v)) − ϕ2(u)

(Φ(u) −Φ(v))2

ϕ(u)ϕ(v)

(Φ(u) −Φ(v))2

ϕ(u)ϕ(v)

(Φ(u) −Φ(v))2
−ϕ

′(v)(Φ(u) −Φ(v)) + ϕ2(v)

(Φ(u) −Φ(v))2

⎞
⎟⎟⎟⎟⎠
. (A.11)
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In order to prove H∗ is negative definite, the following two conditions must be satisfied: (i)
∂2g/∂u2 < 0 or ∂2g/∂v2 < 0; (ii) the determinant of the Hessian matrix H∗ is positive.

The inequality ∂2g/∂v2 < 0 is equivalent to ϕ(v) > v(Φ(u) − Φ(v)). This inequality
follows from y[1 −Φ(y)] < φ(y), ∀y. Thus the desired inequality is true.

From the expression of H∗, it follows that

(Φ(u) −Φ(v))2|H∗|

= −ϕ′(u)ϕ′(v)(Φ(u) −Φ(v))2 − ϕ′(u)ϕ2(v)(Φ(u) −Φ(v)) + ϕ2(u)ϕ′(v)(Φ(u) −Φ(v)).
(A.12)

The inequality |H∗| > 0 is equivalent to uϕ(v)−vϕ(u)−uv(Φ(u)−Φ(v)) > 0. We discuss three
cases.

Case 1 (v < u ≤ 0). We have −u(Φ(u)−Φ(v)) =
∫u
v −uϕ(t)dt <

∫u
v − tϕ(t)dt = ϕ(u)−ϕ(v). From

this, we see that

uϕ(v) − vϕ(u) − uv(Φ(u) −Φ(v))

> uϕ(v) − vϕ(u) + v[ϕ(u) − ϕ(v)] = (u − v)ϕ(v) > 0.
(A.13)

Case 2 (v < 0 < u). It is obvious that uϕ(v) − vϕ(u) − uv(Φ(u) −Φ(v)) > 0.

Case 3 (0 < v < u). It holds that

v(Φ(u) −Φ(v)) =
∫u

v

vϕ(t)dt <
∫u

v

tϕ(t)dt =
∫u

v

− ϕ′(t)dt = ϕ(v) − ϕ(u). (A.14)

From this, we see that −uv(Φ(u) − Φ(v)) > −u(ϕ(v) − ϕ(u)) = −uϕ(v) + uϕ(u) since u > 0. It
means that uϕ(v) − uϕ(u) − uv(Φ(u) − Φ(v)) > 0. This further implies that uϕ(v) − vϕ(u) −
uv(Φ(u) −Φ(v)) > 0 since u > v > 0. Hence, in all the three cases, we obtain |H∗| > 0.

From all the above, we conclude that both conditions (i) and (ii) are satisfied and thus
the Hessian matrix H∗(u, v) is negative definite.

Notations

S.S.: Sample size
μ̂(g), σ̂(g): MLEs of μ, σ with grouped data
μ̂(I), σ̂(I): MLEs of μ, σ with type I left censored data
m̂: MLE of median m = exp{μ} of LN(μ, σ2) distribution with grouped data
v̂: MLE of mean v = exp{μ + σ2/2} of LN(μ, σ2) distribution with grouped data
Average: The average of estimates from 5000 simulations
A.W.: The average width of 5000 approximate 95% confidence intervals
C.R.: The average coverage rate of 5000 approximate 95% confidence intervals.
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