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Correspondence should be addressed to Werner Hürlimann, whurlimann@bluewin.ch

Received 30 March 2009; Revised 30 September 2009; Accepted 15 October 2009

Recommended by José Marı́a Sarabia
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1. Introduction

Based on [1], the author has studied the general affine transform X of the random variable Y
defined byX = U[A(α)+B(α)·ψ(Y )], where ψ(x) andU(x) are twice differentiable monotone
increasing functions, and A(α), B(α) are deterministic functions of the affine parameter
vector α such that B(α) > 0. The work in [2] determines exact maximum likelihood estimators
of parameters in order statistics distributions with exponential, Pareto, and Weibull parent
distributions. The article [3] recovers the older result by the work in [4] that the Pareto is
an exponential transform, and also notes that the latter result is not restricted to the Pareto,
but applies to a lot of distributions like the truncated Cauchy, Gompertz, log-logistic, para-
logistic, inverse Weibull, and log-Laplace.

A further contribution in this area is offered. Based on the method introduced in [5],
we determine the analytical form that parametric models may take for specific maximum
likelihood estimators of the affine parameters in a general affine transform family. Applied
to the generalised Pareto distribution, of great importance in extreme value theory and
its applications (e.g., [6, 7]), one observes that the simultaneous maximum likelihood
equations of the affine parameters cannot have a common solution. Therefore, the highly
desirable maximum likelihood method is not applicable to this distribution. Fortunately,
this pathological situation can be removed by enlarging the generalised Pareto to a four-
parameter family. The resulting new family, called Pareto type IV model, includes as special
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cases the generalised Pareto and the Beta of type II. Finally, it is worthwhile to mention the
construction of alternative statistical models of Pareto type II and III in [8], and of type IV
in [9]. A recent discussion of the Pareto type III is [10] and a useful monograph including
Pareto type distributions is [11]. This paper is organized as follows.

Section 2 recalls the general affine transform family (GATF) and its relevance. Our
main result concerns the possible form GATF models may take given specific maximum
likelihood estimators (MLE) for their affine parameters and is derived in Section 3. Section 4
shows that our method does not apply to the generalised Pareto distribution and introduces
the new Pareto type IV model. Section 5 concludes and gives a short outlook on further
research.

2. General Affine Transform Families

Let X,Y be random variables with distribution functions FX, FY and densities fX, fY
(provided they exist). Suppose that the distributions and densities depend on a parameter
vector θ = (α, γ)with values in the parameter spaceΘ ⊂ Rm, where α = (α1, . . . , αr) is a vector
of affine parameters, γ = (γ1, . . . , γs) is a vector of shape parameters, and m = r + s. We assume
that the functions ψ(x) and U(x) are continuous twice-differentiable monotone increasing
with inverses ϕ(x) = ψ−1(x) and T(x) = U−1(x). Moreover, these functions do not depend on
α but may depend on γ .

Definition 2.1. The general affine transform X of Y (GATF) is the random variable defined by
X = U[A(α)+B(α)·ψ(Y )] via a three-stage transformation. First, Y is nonlinearly transformed
to ψ(Y ), then positively linear transformed to T(Y ) = A(α) + B(α) · ψ(Y ), with B(α) > 0,
and again nonlinearly transformed to X = U[T(Y )]. The constants A(α) and B(α) are
called location and scale parameters. A GATF family F{Y} = {X = U[A(α) + B(α) · ψ(Y )] ∼
FX(x; θ), θ = (α, γ) ∈ Θ} is a set of parameterised GATF X of Y whose distributions and
densities satisfy the relationships

FX(x) = FY
{
ϕ

[
T(x) −A(α)

B(α)

]}
, (2.1)

fX(x) =
1

B(α)
· T ′(x) · ϕ′

[
T(x) −A(α)

B(α)

]
· fY

{
ϕ

[
T(x) −A(α)

B(α)

]}
. (2.2)

In applications, very often special cases are most useful. Using [1, Table 1], the main types
are summarized in [3, Table 2.1]. Some typical examples illustrate the relevance of the GATF
as the generalised Pareto and the gxh-family [3, Examples 2.1 and 2.2].

3. GATF Families with Prescribed Maximum Likelihood Estimators

Consider a random sample ξ = (X1, . . . , Xn) of size n, where Xi are independent and
identically distributed random variables, and denote the common random variable by X.
For a real functionH(x), we define and denote the mean value ofH(ξ) by

H(ξ) =
1
n

n∑
i=1

H(Xi). (3.1)
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It is assumed that sample mean value equations likeH(ξ/α̂) = 1 have a unique solution α̂ =
α̂(ξ,H). Our main result characterizes GATF families by the form of the maximum likelihood
estimators for their affine parameters. The proof makes use in [12, Theorem 2.2].

Theorem 3.1. Given is a GATF X = U[A(α) + B(α) · ψ(Y )] with support IX = [aX, bX] and affine
parameter vector α = (α1, . . . , αr) ∈ Θ ⊂ Rr . Suppose that the distribution function FX(x) of X is
twice differentiable, and that the MLE of the kth affine parameter αk is solution of one of the following
mean value equations.

Case 1.

Bk =
∂B(α)
∂αk

/= 0, Ak =
∂A(α)
∂αk

arbitrary, k ∈ {1, . . . , r1},

Sk

(
T(ξ) −A(α̂)

B(α̂)
+
Ak

Bk

)
= 1,

(3.2)

with some real function Sk(x).

Case 2.

Bk =
∂B(α)
∂αk

≡ 0, Ak =
∂A(α)
∂αk

/= 0, k ∈ {r1 + 1, . . . , r},

Lk

(
T(ξ) −A(α̂)

B(α̂)

)
= 0,

(3.3)

with some real function Lk(x).

Then there exists a twice-differentiable and monotone increasing function Qk(x) with
derivative qk(x) = Q′

k(x), and constants ck, dk /= 0 such that

ckSk(x) + 1 − ck = −x · d
dx

ln
{
qk(x)

}
, in Case 1, (3.4)

dkLk(x) = − d

dx
ln
{
qk(x)

}
, in Case 2. (3.5)

Furthermore, for simultaneous maximum likelihood estimation of the affine parameters, the following
compatibility conditions must be satisfied:

(
x +

Aj

Bj

)
·
(
ciSi

(
x +

Ai

Bi

)
+ 1 − ci

)
=
(
x +

Ai

Bi

)
·
(
cjSj

(
x +

Aj

Bj

)
+ 1 − cj

)
,

i, j ∈ {1, . . . , r1},
(3.6)

ciSi

(
x +

Ai

Bi

)
+ 1 − ci =

(
x +

Ai

Bi

)
· djLj(x), i ∈ {1, . . . , r1}, j ∈ {r1 + 1, . . . , r}, (3.7)

diLi(x) = djLj(x), i, j ∈ {r1 + 1, . . . , r}. (3.8)
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Under these conditions, the distribution function has the unique representation

FX(x) =
Qi((T(x) −A)/B + (Ai/Bi)) −Qi((T(aX) −A)/B + (Ai/Bi))
Qi((T(bX) −A)/B + (Ai/Bi)) −Qi((T(aX) −A)/B + (Ai/Bi))

=
Qj((T(x) −A)/B) −Qj(T(aX) −A/B)
Qj(T(bX) −A/B) −Qj(T(aX) −A/B) ,

(3.9)

for all x ∈ IX = [aX, bX], i ∈ {1, . . . , r1}, j ∈ {r1 + 1, . . . , r}.

Proof. We proceed as in [5, proof of Theorem 2.1].

Case 1 (k ∈ {1, . . . , r1}). Using (2.2) and the relations Y = ϕ((T(X) − A)/B), ϕ′[ψ(Y )] =
ψ ′(Y )−1, one obtains for the negative of the random log-likelihood of X the expression

−	(X) = lnB(α) − ln T ′(X) + lnψ ′(Y ) − ln fY (Y ). (3.10)

Denoting partial derivatives with respect to αk with a lower index k and making use of

Yk = ϕ′
(
T(X) −A

B

)
· −AkB − (T(X) −A)Bk

B2
= −Ak + Bkψ(Y )

Bψ ′(Y )
, (3.11)

one obtains from (3.10) the expression for the partial derivative

− B

Bk
· 	k(X) = 1 −

(
ψ(Y ) + (Ak/Bk)

ψ ′(Y )

)
·
(
ψ ′′(Y )
ψ ′(Y )

− d

dY
ln
{
fY (Y )

})
. (3.12)

By assumption (3.2), one has using [12, Theorem 2.2] that

− B

Bk
· 	k(X) = ck ·

{
1 − Sk

(
ψ(Y ) +

Ak

Bk

)}
(3.13)

for some constant ck /= 0. By comparison y(x) = ψ(x) + (Ak/Bk) solves the second-order
differential equation

y′′

y′ −
{
ckSk

(
y
)
+ 1 − ck

} · y′

y
=

d

dx
ln
{
fY (x)

}
. (3.14)

Setting gk(x) = (ckSk(x) + (1 − ck))/x and multiplying with y′, this simplifies to

y′′ − d

dx
ln
{
fY (x)

} · y′ − gk
(
y
) · y′2 = 0. (3.15)

Transform it to the equivalent system of first-order equations in (y1 = y, y2) [13, Chapter 19]:

y′
1 = y2, y′

2 =
d

dx
ln
{
fY (x)

} · y2 + gk(y1) · y2
2 . (3.16)
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The second differential equation is of Bernoulli type [13, Chapter 2]. Setting y2 = z−12 , this is
equivalent to the simpler system in (y1, z2):

y′
1 = z

−1
2 , z′2 = − d

dx
ln
{
fY (x)

} · z2 + gk(y1). (3.17)

The second equation is linear inhomogeneous of first order and has the homogeneous
solution z2 = Ck · fY (x)−1. By variation of the constant, one sees that C′

k(x) = −gk(y1) · fY (x).
On the other side, from the first equation in (3.17), one has y′ = y′

1 = z−12 = Ck(x)
−1 · fY (x),

hence fY (x) = y′
1 · Ck(x). Together, this shows the following separated differential equation:

d

dx
ln{Ck(x)} = −gk

(
y
) · y′. (3.18)

Assume momentary that gk(x) has an integral such that G′
k(x) = gk(x) for some Gk(x). Then,

(d/dx) ln{Ck(x)} = −(d/dx)Gk(y) has the solution Ck(x) = C−1
k

· exp{−G(y)}, Ck > 0. It
follows that the general solution of the second differential equation in (3.17) is given by

z2 =
exp

{−Gk

(
y
)}

CkfY (x)
. (3.19)

The first differential equation in (3.17) implies the separated differential equation

y′ · exp{−Gk

(
y
)}

= Ck · fY (x). (3.20)

Assume momentary that there exists a twice-differentiable function Qk(x) such that Gk(x) =
− ln{Q′

k
(x)}(gk(x) = G′

k
(x) = −(Q′′

k
(x)/Q

′
k
(x))). The general solution to (3.20) yields the

relationship

FY (x) =
1
Ck

{
Qk

(
y
)
+Dk

}
, Ck > 0, Dk ∈ R. (3.21)

Setting x = Y and using that y(x) = ψ(Y ) + (Ak/Bk) = (T(X) −A)/B + (Ak/Bk), one gets the
random relation FY (Y ) = (1/Ck){Qk((T(X)−A)/B + (Ak/Bk)) +Dk}, which implies by (2.1)
that

FX(x) =
1
Ck

{
Qk

(
T(x) −A

B
+
Ak

Bk

)
+Dk

}
, x ∈ IX. (3.22)

Setting qk(x) = Q′
k
(x), one obtains the density function

fX(x) =
T ′(x)
BCk

qk

(
T(x) −A

B
+
Ak

Bk

)
, x ∈ IX. (3.23)
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The side conditions
∫bX
aX
fX(x)dx = 1, FX(bX) = 1, imply that the constants are determined by

Ck = Qk

(
T(bX) −A

B
+
Ak

Bk

)
−Qk

(
T(aX) −A

B
+
Ak

Bk

)
, Dk = −Qk

(
T(aX) −A

B
+
Ak

Bk

)
.

(3.24)

The validity of the representation (3.9) for i ∈ {1, . . . , r1} is shown. Since FY (x) has been
assumed twice differentiable, so is Qk(x), and

ckSk(x) + 1 − ck = xgk(x) = xG′
k(x) = −x · d

dx
ln
{
qk(x)

}
, (3.25)

as claimed in (3.4). In particular, the two momentary assumptions made above, that is,
gk(x) = G′

k(x) and Gk(x) = − ln{Q′
k(x)}, are fulfilled.

Case 2 (k ∈ {r1 + 1, . . . , r}). Since Bk ≡ 0, one has similarly to (3.11) the relationship

Yk = − Ak

Bψ ′(Y )
. (3.26)

From (3.10), one obtains for the partial derivative of the random log-likelihood the relation

− B

Ak
· 	k(X) =

1
ψ ′(Y )

·
(
ψ ′′(Y )
ψ ′(Y )

− d

dY
ln
{
fY (Y )

})
. (3.27)

By assumption (3.2) and again in [12, Theorem 2.2], one has

− B

Ak
· 	k(X) = dk · Lk

(
ψ(Y )

)
(3.28)

for some constant dk /= 0. Through comparison, it follows that y(x) = ψ(x) must solve

y′′ − d

dx
ln
{
fY (x)

} · y′ − dk · Lk
(
y
) · y′2 = 0. (3.29)

Proceeding as in Case 1, one obtains a twice-differentiable function Qk(x), with derivative
qk(x) = Q′

k
(x), such that dkLk(x) = −(d/dx) ln{qk(x)} and FY (x) = (1/Ck){Qk(y)+Dk}, Ck >

0, Dk ∈ R. As in Case 1, one concludes that (3.9) for j ∈ {r1 + 1, . . . , r}must hold.
It remains to show the compatibility conditions (3.6)–(3.8). Through differentiation of

(3.9), one obtains the probability density functions

fX(x) =
T ′(x)
BCi

qi

(
T(x) −A

B
+
Ai

Bi

)
=
T ′(x)
BCj

qj

(
T(x) −A

B

)
, (3.30)

for all x ∈ IX, i ∈ {1, . . . , r1}, j ∈ {r1 + 1, . . . , r}. Three subcases are possible.
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Subcase 1 (i, j ∈ {1, . . . , r1}). From (3.30), one gets that qj(x + (Ai/Bi)) = C · qi(x + (Aj/Bj))
with C = Cj/Ci. Using (3.4), one obtains without difficulty the compatibility condition (3.6).

Subcase 2 (i ∈ {1, . . . , r1}, j ∈ {r1+1, . . . , r}). From (3.30), one sees that qj(x) = C·qi(x+(Aj/Bj))
with C = (Cj/Ci). Using (3.4) and (3.5), one shows without difficulty condition (3.7).

Subcase 3 (i, j ∈ {r1 + 1, . . . , r}). From (3.30), one obtains that qj(x) = C · qi(x) with C =
Cj/Ci. Using (3.5), one shows without difficulty condition (3.8). The proof of Theorem 3.1 is
complete.

4. A Pareto Type IV Model

The generalised Pareto distribution is the GATF defined byX = A(α)+B(α)·ψ(Y )with ψ(x) =
exp(γ1x), γ1 > 0, Y exponential with mean one, A(α) = α2 − α1, B(α) = α1, α = (α1, α2) ∈ R2

+,
θ = (α1, α2, γ1) ∈ Θ = R3

+. Its probability density function is

fX(x) =
1

α1γ1

(
1 +

x − α2
α1

)−(1+(1/γ1))
, x ≥ α2. (4.1)

Applying Theorem 3.1, one sees that the MLE of α1, α2 are determined by the real functions

S1(x) =
1 + γ1
1 + x

, L2(x) = −1 + γ1
γ1x

. (4.2)

According to Theorem 3.1, there are functions

q1(x) = (1 + x)−(1+(γ1/γ1)), q2(x) = x−1+(γ1/γ1), (4.3)

and constants c1 = −γ−11 , d2 = −1 such that

c1S1(x) + 1 − c1 = −x · d
dx

ln
{
q1(x)

}
, d2L2(x) = − d

dx
ln
{
q2(x)

}
, (4.4)

and the compatibility condition (3.7) is fulfilled. For any random sample ξ = (X1, . . . , Xn)
from this family, one observes that the simultaneous maximum likelihood equations

1 + γ1
1 + ((ξ − α2)/α1) = 1,

1
1 + ((ξ − α2)/α1) = 0, (4.5)

cannot have a common solution, hence the maximum likelihood method is not applicable.
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The described pathological situation can be removed in a simple way thanks to
Theorem 3.1. Our construction is motivated by the following question. What is the most
general affine transform family with MLE of the affine parameter α1 that is determined by
the mean value equation S1((ξ − α2)/α1) = 1?. By Theorem 3.1, Case 1, there must exist a
constant γ2 and a function q1(x) such that

γ2S1(x) + 1 − γ2 = −x · d
dx

ln
{
q1(x)

}
. (4.6)

Using [5], formula (3.1) one obtains

q1(x) = xγ2−1 · exp
{
−γ2

∫
S1(x)
x

dx

}
= x−(1+γ1γ2) · (1 + x)(1+γ1)γ2 . (4.7)

A corresponding probability density function is

fX(x) =
1
Cα1

·
(
x − α2
α1

)−(1+γ1γ2)
·
(
1 +

x − α2
α1

)(1+γ1)γ2
, x ≥ α2. (4.8)

One notes that two well-known subfamilies are included, namely, the generalised
Pareto (4.1) obtained by setting γ1γ2 = −1, and the Beta of type II obtained by setting
p = −γ1γ2 > 0, q = −γ2 > 0. This suggests the name “generalised Pareto-Beta” but we prefer
the simpler nomenclature “Pareto type IV model” for the new four-parameter family (4.8).
Applying Theorem 3.1, one sees that the MLE of α1 and α2 are determined by

S1(x) =
1 + γ1
1 + x

, L2(x) =

(
1 + γ1

)
γ2

x
− 1 + γ1γ2

x − 1
. (4.9)

There are functions

q1(x) = x−(1+γ1γ2) · (1 + x)(1+γ1)γ2 , q2(x) = (x − 1)−(1+γ1γ2) · x(1+γ1)γ2 , (4.10)

and constants c1 = γ2, d2 = −1 such that

c1S1(x) + 1 − c1 = −x · d
dx

ln
{
q1(x)

}
, d2L2(x) = − d

dx
ln
{
q2(x)

}
, (4.11)

and the compatibility condition (3.7), that is,

γ2S1(x − 1) + 1 − γ2 = −(x − 1)L2(x), (4.12)

is fulfilled. For a random sample ξ = (X1, . . . , Xn), the MLE of α1 and α2 solves the
simultaneous equations

1 + γ1
1 + ((ξ − α2)/α1) = 1,

1 + γ1γ2
(ξ − α2)/α1 = γ2. (4.13)

The value of the normalising constant in (4.8) depends only on the shape vector γ = (γ1, γ2).
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Proposition 4.1. Assume that γ2, γ1γ2 are not integers. Then the normalising constant of the Pareto
type IV model (4.8) is determined by the infinite series expansion

C = C
(
γ1, γ2

)
=

∞∑
k=0

((
1 + γ1

)
γ2

k

)
2k − (

1 + γ1
)
γ2(

k − γ2
)(
k − γ1γ2

) , (4.14)

where
(
α

k

)
= (α(α − 1) . . . (α − k + 1))/k!, k ≥ 1,

(
α

0

)
= 1, is a generalised binomial coefficient.

Proof. From the observation made above, one notes that

C =
∫∞

0
q1(x)dx =

∫∞

0
x−(1+γ1γ2)(1 + x)(1+γ1)γ2dx =

∫∞

0
xγ2−1

(
1 + x−1

)(1+γ1)γ2
dx. (4.15)

To obtain convergent integrals, separate calculation in two parts and make a substitution to
get

C =
∫1

0
x−(1+γ1γ2)(1 + x)(1+γ1)γ2dx +

∫1

0
x−(1+γ2)(1 + x)(1+γ1)γ2dx. (4.16)

The binomial expansion (1 + x)α =
∑∞

k=0

(
α

k

)
xk, valid for x ∈ (0, 1) [14, (18.7), page 134],

yields the series

C =
∞∑
k=0

((
1 + γ1

)
γ2

k

)
·
{∫1

0
xk−1−γ1γ2dx +

∫1

0
xk−1−γ2dx

}
. (4.17)

Under the assumption γ2, γ1γ2 /= k, this implies without difficulty the expression (4.14).

5. Conclusions and Outlook

The proposed method is not the only way to generalize the Pareto family (4.1). The recent
note [9] extends this family to the family

fX(x) =
c

α1γ1
·
(
x − α2
α1

)c−1
·
(
1 +

(
x − α2
α1

)c)−(1+(1/γ1))
, x ≥ α2, (5.1)

which looks similar to (4.8), except for the “power law” component in the second bracket,
but has different statistical properties. An advantage of (5.1) is certainly the analytical closed-
form expression for the survival function given by

SX(x) =
(
1 +

(
x − α2
α1

)c)−(1+1/γ1)
, x ≥ α2. (5.2)
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To conclude, several advantages of (4.8) can be noted, in particular, the simple MLE
estimation of the affine parameters and the inclusion of the very important generalised Pareto
distribution as a submodel. From a statistical viewpoint, the interest of the extended model
(4.8) is two-fold. First, it may provide a better fit of the data than any submodel. Second, it
yields a simple statistical procedure to choose among submodels like the generalised Pareto
and the Beta of type II. Only the model “closest” to the full model will be retained. A detailed
comparison of these two four parameter Pareto families is left to further research.
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