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We extend the foundation of probability in samples with rare events that are potentially
catastrophic, called black swans, such as natural hazards, market crashes, catastrophic climate
change, and species extinction. Such events are generally treated as “outliers” and disregarded.
We propose a new axiomatization of probability requiring equal treatment in the measurement
of rare and frequent events—the Swan Axiom—and characterize the subjective probabilities that
the axioms imply: these are neither finitely additive nor countably additive but a combination of
both. They exclude countably additive probabilities as in De Groot (1970) and Arrow (1971) and
are a strict subset of Savage (1954) probabilities that are finitely additive measures. Our subjective
probabilities are standard distributions when the sample has no black swans. The finitely additive
part assigns however more weight to rare events than do standard distributions and in that
sense explains the persistent observation of “power laws” and “heavy tails” that eludes classic
theory. The axioms extend earlier work by Chichilnisky (1996, 2000, 2002, 2009) to encompass the
foundation of subjective probability and axiomatic treatments of subjective probability by Villegas
(1964), De Groot (1963), Dubins and Savage (1965), Dubins (1975) Purves and Sudderth (1976)
and of choice under uncertainty by Arrow (1971).

1. Introduction

Black swans are rare events with important consequences, such as market crashes, natural
hazards, global warming, and major episodes of extinction. This article is about the
foundations of probability when catastrophic events are at stake. It provides a new axiomatic
foundation for probability requiring sensitivity both to rare and frequent events. The
study culminates in Theorem 6.1, that proves existence and representation of a probability
satisfying three axioms. The last of these axioms requires sensitivity to rare events, a property
that is desirable but not respected by standard probabilities. The article shows the connection
between those axioms and the Axiom of Choice at the foundation of Mathematics. It defines
a new type of probabilities that coincide with standard distributions when the sample is
populated only by relatively frequent events. Generally, however, they are a mixture of
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countable and finitely additive measures, assigning more weight to black swans than do
normal distributions, and predicting more realistically the incidence of “outliers,” “power
laws,” and “heavy tails” [1, 2].

The article refines and extends the formulation of probability in an uncertain world.
It provides an argument, and formalization, that probabilities must be additive functionals
on L∞(U) (where U is a σ-field of ”events” represented by their indicator bounded and real
valued functions), that are neither countably additive nor finitely additive. The contribution
is to provide an axiomatization showing that subjective probabilities must lie in the full space
L∗
∞ rather than L1 as the usual formalization (Arrow, [3]) forcing countable additivity implies.

The new axioms refine both Savage’s [4] axiomatization of finitely additive measures, and
Villegas’ [5] and Arrow’s [3] that are based on countably additive measures, and extend both
to deal more realistically with catastrophic events.

Savage [4] axiomatized subjective probabilities as finitely additive measures repre-
senting the decision makers’ beliefs, an approach that can ignore frequent events as shown
in the appendix. To overcome this, Villegas [5] and Arrow [3] introduced an additional
continuity axiom (called “Monotone Continuity”) that yields countably additivity of the
measures. However Monotone Continuity has unusual implications when the subject is
confronted with rare events, for example, it predicts that in exchange for a couple of
cents, one should be willing to accept a small risk of death (measured by a countably
additive probability), a possibility that Arrow called “outrageous” [3, Pages 48–49]. This
article defines a realistic solution: for some, very large, payoffs and in certain situations,
one may be willing to accept a small risk of death—but not in others. This means that
Monotone Continuity holds in some cases but not in others, a possibility that leads to the
axiomatization proposed in this article and is consistent with the experimental observations
reported by (Chanel and Chichilnisky [6, 7]). The results are as follows. We show that
countably additive measures are insensitive to black swans: they assign negligible weight to
rare events, no matter how important these may be, treating catastrophes as outliers. Finitely
additive measures, on the other hand, may assign no weight to frequent events, which is
equally troubling. Our new axiomatization balances the two approaches and extends both,
requiring sensitivity in the measurement of rare as well as frequent events. We provide an
existence theorem for probabilities that satisfy our axioms, and a characterization of all that
do.

The results are based on an axiomatic approach to choice under uncertainty and
sustainable development introduced by Chichilnisky [8–10] and illuminate the classic issue
of continuity that has always been at the core of “subjective probability” axioms (Villegas,
[5], Arrow [3]). To define continuity, we use a topology that tallies with the experimental
evidence of how people react to rare events that cause fear (Le Doux [11], Chichilnisky [12]),
previously used by Debreu [13] to formalize a market’s Invisible Hand, and by Chichilnisky
[9, 12, 14] to axiomatize choice under uncertainty with rare events that inspire fear. The new
results provided here show that the standard axiom of decision theory, Monotone Continuity,
is equivalent to De Groot’s Axiom SP4 that lies at the foundation of classic likelihood theory
(Proposition 2.1) and that both of these axioms underestimate rare events no matter how
catastrophic they may be. We introduce here a new Swan Axiom (Section 3) that logically
negates them both, show it is a combination of two axioms defined by Chichilnisky [9, 14]
and prove that any subjective probability satisfying the Swan Axiom is neither countably
additive nor finitely additive: it has elements of both (Theorem 4.1). Theorem 6.1 provides
a complete characterization of all subjective probabilities that satisfy linearity and the Swan
Axiom, thus extending earlier results of Chichilnisky [1, 2, 9, 12, 14].
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There are other approaches to subjective probability such as Choquet Expected Utility
Model (CEU, Schmeidler, [15]) and Prospect Theory (Kahneman and Tversky, [16, 17]). They
use a nonlinear treatment of probabilities of likelihoods (see, e.g., Dreze, [18], or Bernstein,
[19]), while we retain linear probabilities. Both have a tendency to give higher weight to
small probabilities, and are theoretical answers to experimental paradoxes found by Allais in
1953 and Ellsberg in 1961, among others refuting the Independence Axiom of the Subjective
Expected Utility (SEU) model. Our work focuses instead directly on the foundations of
probability by taking the logical negation of the Monotone Continuity Axiom. It is striking
that weakening or rejecting this axiom—respectively, in decision theory and in probability
theory—ends up in probability models that are more in tune with observed attitudes when
facing catastrophic events. Presumably each approach has advantages and shortcomings. It
seems that the approach offered here may be superior on four counts: (i) it retains linearity
of probabilities, (ii) it identifies Monotone Continuity as the reason for underestimating
the measurement of catastrophic events, an axiom that depends on a technical definition of
continuity and has no other compelling feature, (iii) it seems easier to explain and to grasp,
and therefore (iv) it may be easier to use in applications.

2. The Mathematics of Uncertainty

Uncertainty

Uncertainty is described by a set of distinctive and exhaustive possible events represented
by a family of sets {Uα}, α ∈ N, whose union describes a universe U =

⋃
α Uα. An event

U ∈ U is identified with its characteristic function φU : U → R where φU(x) = 1 when
x ∈ U and φU(x) = 0 when x /∈U. The subjective probability of an event U is a real number
W(U) that measures how likely it is to occur according to the subject. Generally we assume
that the probability of the universe is 1 and that of the empty set is zero W(∅) = 0. In
this article we make no difference between subjective probabilities and likelihoods, using
both terms intercheangeably. Classic axioms for subjective probability (resp. likelihoods)
are provided by Savage [4] and De Groot [20]. The likelihood of two disjoint events is
the sum of their likelihoods: W(U1 ∪ U2) = W(U1) + W(U2) when U1 ∩ U2 = ∅; a
property called additivity. These properties correspond to the definition of a probability
or likelihood as a finite additive measure on a family (σ-algebra) of measurable sets of U,
which is Savage’s [4] definition of subjective probability. W is countably additive when
W(

⋃∞
i=1 Ui) =

∑∞
i=1 W(Ui) whenever Ui∩Uj if i/= j. A purely finitely additive probability is one

that is additive but not countably additive. Savage’s subjective probabilities can be purely
finitely additive or countably additive. In that sense they include all the probabilities in this
article. However as seen below, this article excludes probabilities that are either purely finitely
additive, or countably additive, and therefore our characterization of a subjective probability
is strictly finer than that of Savage’s [4], and different from the view of a measure as a
countably additive set function (e.g. De Groot , [21]) The following Axioms were introduced
by Villegas [5]; and others for the purpose of obtaining countable additivity.

Monotone Continuity Axiom (MC) (Arrow [3])

For every two events f and g with W(f) > W(g), and every vanishing sequence of events
{Eα}=1,2... (defined as follows: for all α, Eα+1 ⊂ Eα and

⋂∞
α=1 Eα = ∅) there exists N such that

altering arbitrarily the events f and g on the set Ei,where i > N, does not alter the subjective
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probability ranking of the events, namely, W(f ′) > W(g ′), where f ′ and g ′ are the altered
events.

This axiom is equivalent to requiring that the probability of the sets along a vanishing
sequence goes to zero. Observe that the decreasing sequence could consist of infinite intervals
of the form (n,∞) for n = 1, 2 . . . . Monotone continuity therefore implies that the likelihood
of this sequence of events goes to zero, even though all its sets are unbounded. A similar
example can be constructed with a decreasing sequence of bounded sets, (−1/n, 1/n) for n =
1, 2 . . . , which is also a vanishing sequence as it is decreasing and their intersection is empty.

De Groot’s Axiom SP4 (De Groot, [20], Chapter 6, page 71)

IfA1 ⊃ A2 ⊃ · · · is a decreasing sequence of events and B is some fixed event that is less likely
than Ai for all i, then the probability of the intersection

⋂∞
i Ai is larger than that of B.

The following proposition establishes that the two axioms presented above are one
and the same; both imply countable additivity.

Proposition 2.1. A relative likelihood (subjective probability) satisfies the Monotone Continuity
Axiom if and only if it satisfies Axiom SP4. Each of the two axioms implies countable additivity.

Proof. Assume that De Groot’s axiom SP4 is satisfied. When the intersection of a decreasing
sequence of events is empty

⋂
i Ai = ∅ and the set B is less likely to occur than every

set Ai, then the subset B must be as likely as the empty set; namely, its probability must
be zero. In other words, if B is more likely than the empty set, then regardless of how
small is the set B, it is impossible for every set Ai to be as likely as B. Equivalently, the
probability of the sets that are far away in the vanishing sequence must go to zero. Therefore
SP4 implies Monotone Continuity. Reciprocally, assume that MC is satisfied. Consider a
decreasing sequence of events Ai and define a new sequence by substracting from each set
the intersection of the family, namely, A1 − ⋂∞

i Ai, A2 − ⋂∞
i Ai, . . . . Let B be a set that is

more likely than the empty set but less likely than every Ai. Observe that the intersection
of the new sequence is empty,

⋂∞
i (Ai −

⋂∞
i Ai) = ∅ and since Ai ⊃ Ai+1 the new sequence

is, by definition, a vanishing sequence. Therefore by MC limiW(Ai −
⋂∞

i Ai) = 0. Since
W(B) > 0, B must be more likely than Ai −

⋂∞
i Ai for some i onwards. Furthermore,

Ai = (Ai −
⋂∞

i Ai) ∪ (
⋂∞

i Ai) and (Ai −
⋂∞

i Ai) ∩ (
⋂∞

i Ai) = ∅, so that W(Ai) > W(B) is
equivalent to W(Ai −

⋂∞
i Ai) + W(

⋂∞
i Ai) > W(B). Observe that W(

⋂∞
i Ai) < W(B) would

contradict the inequality W(Ai) = W(Ai −
⋂∞

i Ai) + W(
⋂∞

i Ai) > W(B), since as we saw
above, by MC, limiW(Ai −

⋂∞
i Ai) = 0, and W(Ai −

⋂∞
i Ai) + W(

⋂∞
i Ai) > W(B). It follows

that W(
⋂∞

i Ai) > W(B), which establishes De Groots’s Axiom SP4. Therefore Monotone
Continuity is equivalent to De Groot’s Axiom SP4. A proof that each of the axioms implies
countable additivity is in Villegas [5], Arrow [3] and De Groot [20].

The next section shows that the two axioms, Monotone Continuity and SP4, are biased
against rare events no matter how catastrophic these may be.

3. The Value of Life

The best way to explain the role of Monotone Continuity is by means of an example provided
by Arrow [3, Pages 48–49]. He explains that if a is an action that involves receiving one cent,
b is another that involves receiving zero cents, and c is a third action involving receiving
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one cent and facing a small probability of death, then Monotone Continuity requires that the
third action involving death and one cent should be preferred to the action with zero cents
if the probability of death is small enough. Even Arrow says of his requirement “this may
sound outrageous at first blush. . .” (Arrow [3, Pages 48–49]). Outrageous or not, Monotone
Continuity (MC) leads to neglect rare events with major consequences, like death. Death is a
black swan.

To overcome the bias we introduce an axiom that is the logical negation of MC:
this means that sometimes MC holds and others it does not. We call this the Swan Axiom,
and it is stated formally below. To illustrate this, consider an experiment where subjects
are offered a certain amount of money to choose a pill at random from a pile, which is
known to contain one pill that causes death. It was shown experimentally (Chanel and
Chichilnisky [7]) that in some cases people accept a sum of money and choose a pill provided
that the pile is large enough—namely, when the probability of death is small enough—thus
satisfying the Monotone Continuity axiom and determining the statistical value of their lives.
But there are also cases where the subjects will not accept to choose any pill, no matter
how large is the pile. Some people refuse the payment of one cent if it involves a small
probability of death, no matter how small the probability may be (Chanel and Chichilnisky,
[6, 7]). This conflicts with the Monotone Continuity axiom, as explicitly presented by Arrow
[3].

Our Axiom provides a reasonable resolution to this dilemma that is realistic and
consistent with the experimental evidence. It implies that there exist catastrophic outcomes
such as the risk of death, so terrible that one is unwilling to face a small probability of death to
obtain one cent versus nothing, nomatter how small the probability may be. According to our
Axiom, no probability of death may be acceptable when one cent is involved. Our Axiom also
implies that in other cases there may be a small enough probability that the lottery involving
death may be acceptable, for example if the payoff is large enough to justify the small risk.
This is a possibility discussed by Arrow [3]. In other words: sometimes one is willing to take
a risk with a small enough probability of a catastrophe, in other cases one is not. This is the
content of our Axiom, which is formally stated as follows.

The Swan Axiom

This axiom is the logical negation of Monotone Continuity: There exist events f and g with
W(f) > W(g), and for every vanishing sequence of events {Ei}i=1,2... an N > 0 such that
altering arbitrarily the events f and g on the set Ei,where i > N, does not alter the probability
ranking of the events, namely, W(f ′) > W(g ′), where f ′ and g ′ are the altered events. For
other events f and g with W(f) > W(g), there exist vanishing sequence of events {Ei}i=1,2...
where for every N, altering arbitrarily the events f and g on the set Ei, where i > N, does
alter the probability ranking of the events, namely W(f ′) < W(g ′), where f ′ and g ′ are the
altered events.

Definition 3.1. A probabilityW is said to be biased against rare events or insensitive to rare events
when it neglects events that are small according to Villegas and Arrow; as stated in Arrow
[3, page 48]: “An event that is far out on a vanishing sequence is “small” by any reasonable
standards” (Arrow [3, page 48]). Formally, a probability is insensitive to rare events when
given two events f and g and any vanishing sequence of events {Ej}, ∃N = N(f, g) > 0,
such that W(f) > W(g) ⇔ W(f ′) > W(g ′) for all f ′, g ′ satisfying f ′ = f and g ′ = g a.e. on
Ec
j ⊂ R when j > N, and Ec denotes the complement of the set E.
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Proposition 3.2. A subjective probability satisfies Monotone Continuity if and only if it is biased
against rare events.

Proof. This is immediate from the definitions of both [3, 12].

Corollary 3.3. Countably additive probabilities are biased against rare events.

Proof. It follows from Propositions 2.1 and 3.2 [9, 12].

Proposition 3.4. Purely finitely additive probabilities are biased against frequent events.

Proof. See example in the appendix.

Proposition 3.5. A subjective probability that satisfies the Swan Axiom is neither biased against rare
events, nor biased against frequent events.

Proof. This is immediate from the definition.

4. An Axiomatic Approach to Probability with Black Swans

This section proposes an axiomatic foundation for subjective probability that is unbiased
against rare and frequent events. The axioms are as follows:

Axiom 1. Subjective probabilities are continuous and additive.

Axiom 2. Subjective probabilities are unbiased against rare events.

Axiom 3. Subjective probabilities are unbiased against frequent events.

Additivity is a natural condition and continuity captures the notion that “nearby”
events are thought as being similarly likely to occur; this property is important to ensure
that “sufficient statistics” exist. “Nearby” has been defined by Villegas [5] and Arrow [3] as
follows: two events are close or nearby when they differ on a small set as defined in Arrow
[3], see previous section. We saw in Proposition 3.2 that the notion of continuity defined by
Villegas and Arrow—namely, monotone continuity—conflicts with the Swan Axiom. Indeed
Proposition 3.2 shows that countably additive measures are biased against rare events. On
the other hand, Proposition 3.4 and the Example in the appendix show that purely finitely
additive measures can be biased against frequent events. A natural question is whether there
is anything left after one eliminates both biases. The following proposition addresses this
issue.

Theorem 4.1. A subjective probability that satisfies the Swan Axiom is neither finitely additive nor
countably additive; it is a strict convex combination of both.

Proof. This follows from Propositions 3.2, 3.4 and 3.5, Corollary 3.3 above, and the fact that
convex combinations of measures are measures. It extends Theorem 6.1 of Section 6 below,
which applies to the special case where the events are Borel sets in R or in an interval (a, b) ⊂
R.
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Theorem 4.1 establishes that neither Savage’s approach nor Villegas’ and Arrow’s
satisfy the three axioms stated above. These three axioms require more than the additive
subjective probabilities of Savage, since purely finitely additive probabilities are finitely
additive and yet they are excluded here. At the same time the axioms require less than the
countably subjective additivity of Villegas and Arrow, since countably additive probabilities
are biased against rare events. Theorem 4.1 above shows that a strict combination of both
does the job.

Theorem 4.1 does not however prove the existence of likelihoods that satisfy all three
axioms. What is missing is an appropriate definition of continuity that does not conflict with
the Swan Axiom. The following section shows that this can be achieved by identifying an
event with its characteristic function, so that events are contained in the space of bounded
real-valued functions on the universe space U, L∞(U), and endowing this space with the sup
norm.

5. Axioms for Probability with Black Swans, in R or (a, b)

From here on events are the Borel sets of the real line R or the interval (a, b). This is a
widely used case that make the results concrete and allows to compare the results with the
earlier axioms on choice under uncertainty of Chichilnisky [9, 12, 14]. We use a concept of
“continuity” based on a topology that was used earlier by Debreu [13] and by Chichilnisky
[1, 2, 9, 10, 12, 14]: observable events are in the space of measurable and essentially bounded
functions L = L∞(R) with the sup norm ‖f‖ = ess supx∈R|f(x)|. This is a sharper and more
stringent definition of closeness than the one used by Villegas and Arrow, since two events
can be close under the Villegas-Arrow definition but not under ours, see the appendix.

A subjective probabiliy satisfying the classic axioms by De Groot [20] is called a
standard probability, and is countably additive. A classic result is that for any event f ∈ L∞
a standard probability has the formW(f) =

∫
Rf(x) ·φ(x)dμ,where φ ∈ L1(R) is an integrable

function in R.
The next step is to introduce the new axioms, show existence and characterize all the

distributions that satisfy the axioms. We need more definitions. A subjective probability W :
L∞ → R is called biased against rare events, or insensitive to rare events when it neglects events
that are small according to a probability measure μ on R that is absolutely continuous with
respect to the Lebesgue measure. Formally, a probability is insensitive to rare events when
given two events f and g ∃ε = ε(f, g) > 0, such that W(f) > W(g) ⇔ W(f ′) > W(g ′) for
all f ′, g ′ satisfying f ′ = f and g ′ = g a.e. on A ⊂ R and μ(Ac) < ε. Here Ac denotes the
complement of the set A. W : L∞ → R is said to be insensitive to frequent events when given
any two events f, g ∃ε(f, g) > 0 that W(f) > W(g) ⇔ W(f ′) > W(g ′) for all f ′, g ′ satisfying
f ′ = f and g ′ = g a.e. on A ⊂ R and μ(Ac) > 1 − ε. W is called sensitive to rare (respectively
frequent) events when it is not insensitive to rare (respectively frequent) events.

The following three axioms are identical to the axioms in last section, specialized to
the case at hand.

Axiom 1. W : L∞ → R is linear and continuous.

Axiom 2. W : L∞ → R is sensitive to frequent events.

Axiom 3. W : L∞ → R is sensitive to rare events.
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The first and the second axiom agree with classic theory and standard likelihoods
satisfy them. The third axiom is new.

Lemma 5.1. A standard probability satisfies Axioms 1 and 2, but it is biased against rare events and
therefore does not satisfy Axiom 3.

Proof. Consider W(f) =
∫
Rf(x)φ(x)dx,

∫
Rφ(x)dx = K < ∞. Then

W
(
f
)
+W

(
g
)
=
∫

R

f(x)φ(x)dx +
∫

R

g(x)φ(x)dx

=
∫

R

f(x) + g(x) · φ(x)dx = W
(
f + g

)
,

(5.1)

since f and g are characteristic functions and thus positive. Therefore W is linear. W is
continuous with respect to the L1 norm ‖f‖1 =

∫
R|f(x)|φ(x)dμ because ‖f‖∞ < ε implies

W
(
f
)
=
∫

R

f(x) · φ(x)dx =
∫

R

∣
∣f(x)

∣
∣ · φ(x)dx ≤ ε

∫

φ(x)dx = εK. (5.2)

Since the sup norm is finer than the L1 norm, continuity in L1 implies continuity with
respect to the sup norm (Dunford and Schwartz, [22]). Thus a standard subjective probability
satisfies Axiom 1. It is obvious that for every two events f, g, with W(f) > W(g), the
inequality is reversed namely W(g ′) > W(f ′) when f ′ and g ′ are appropriate variations of
f and g that differ from f and g on sets of sufficiently large Lebesgue measure. Therefore
Axiom 2 is satisfied. A standard subjective probability is however not sensitive to rare events,
as shown in Chichilnisky [1, 2, 9, 10, 12, 14, 23].

6. Existence and Representation

Theorem 6.1. There exists a subjective probability W : L∞ → R satisfying Axioms 1, 2, and 3. A
probability satisfies Axioms 1, 2 and 3 if and only if there exist two continuous linear functions on L∞,
denoted φ1 and φ2 and a real number λ, 0 < λ < 1, such that for any observable event f ∈ L∞

W
(
f
)
= λ

∫

xεR

f(x)φ1(x)dx + (1 − λ)φ2
(
f
)

(6.1)

where φ1 ∈ L1(R, μ) defines a countably additive measure on R and φ2 is a purely finitely additive
measure.

Proof. This result follows from the representation theorem by Chichilnisky [9, 12].

Example 6.2 (“Heavy” Tails). The following illustrates the additional weight that the new
axioms assign to rare events; in this example in a form suggesting “heavy tails.” The finitely
additive measure φ2 appearing in the second term in (6.1) can be illustrated as follows. On
the subspace of events with limiting values at infinity, L′

∞ = {fεL∞ : limx→∞(x) < ∞},
define φ2(f) = limx→∞f(x) and extend this to a function on all of L∞ using Hahn Banach’s
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theorem. The difference between a standard probability and the likelihood defined in (6.1)
is the second term φ2, which focuses all the weight at infinity. This can be interpreted as a
“heavy tail,” a part of the distribution that is not part of the standard density function φ1 and
gives more weight to the sets that contain terminal events, namely sets of the form (x,∞).

Corollary 6.3. In samples without rare events, a subjective probability that satisfies Axioms 1, 2, and
3 is consistent with classic axioms and yields a countably additive measure.

Proof. Axiom 3 is an empty requirement when there are no rare events while, as shown above,
Axioms 1 and 2 are consistent with standard relative likelihood.

7. The Axiom of Choice

There is a connection between the new axioms presented here and the Axiom of Choice
that is at the foundation of mathematics (Godel, [24]), which postulates that there exists a
universal and consistent fashion to select an element from every set. The best way to describe
the situation is by means of an example, see also Dunford and Schwartz [22], Yosida [25, 26],
Chichilnisky and Heal [27], and Kadane and O’Hagan [28].

Example 7.1 (illustration of a purely finitely additive measure). Consider a possible measure
ρ satisfying the following: for every interval A ⊂ R, ρ(A) = 1 if A ⊃ {x : x > a, for some
a ∈ R}, and otherwise ρ(A) = 0. Such a measure would not be countably additive, because
the family of countably many disjoint sets {Vi}i=0,1,... defined as Vi = (i, i + 1]

⋃
(−i − 1,−i],

satisfies Vi
⋂
Vi = ∅when i /= j, and

⋃∞
i=0 Vi =

⋃∞
i=0(i, i+1]

⋃
(−i−1,−i] = R, so that ρ(

⋃∞
i=0 Vi) = 1,

while
∑∞

i=0 ρ(Vi) = 0, which contradicts countable additivity. Since the contradiction arises
from assuming that ρ is countably additive, such a measure could only be purely finitely
additive.

One can illustrate a function on L∞ that represents a purely finitely additive measure ρ
if we restrict our attention to the closed subspace L′

∞ of L∞ consisting of those functions f(x)
in L∞ that have a limit when x → ∞, by the formula ρ(f) = limx→∞f(x), as in Example 6.2
of the previous section. The function ρ(·) can be illustrated as a limit of a sequence of delta
functions whose supports increase without bound. The problem however is to extend the
function ρ to another defined on the entire space L∞. This could be achieved in various ways
but as we will see, each of them requires the Axiom of Choice.

One can use Hahn—Banach’s theorem to extend the function ρ from the closed
subspace L′

∞ ⊂ L∞ to the entire space L∞ preserving its norm. However, in its general
form Hahn—Banach’s theorem requires the Axiom of Choice (Dunford and Schwartz, [22]).
Alternatively, one can extend the notion of a limit to encompass all functions in L∞ including
those with no standard limit. This can be achieved by using the notion of convergence along
a free ultrafilter arising from compactifying the real line R as by Chichilnisky and Heal [27].
However the existence of a free ultrafilter also requires the Axiom of Choice.

This illustrates why any attempts to construct purely finitely additive measures, requires
using the Axiom of Choice. Since our criteria include purely finitely additive measures, this
provides a connection between the Axiom of Choice and our axioms for relative likelihood.
It is somewhat surprising that the consideration of rare events that are neglected in standard
statistical theory conjures up the Axiom of Choice, which is independent from the rest of
mathematics (Godel, [24]).
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Example A.1 (Illustration of a probability that is biased against frequent events). Consider the
function W(f) = lim infxεR(f(x)). This is insensitive to frequent events of arbitrarily large
Lebesgue measure (Dunford and Schwartz, [22]) and therefore does not satisfy Axiom 2. In
addition it is not linear, failing Axiom 1.

Example A.2 (two approaches to “closeness”). Consider the family {Ei} where Ei = [i,∞),
i = 1, 2, . . . . This is a vanishing family because for all i, Ei ⊃ Ei+1 and

⋂∞
i=1 Ei = ∅. Consider

now the events fi(t) = K when t ∈ Ei and fi(t) = 0 otherwise, and gi(t) = 2K when t ∈ Ei

and gi(t) = 0 otherwise. Then for all i, supEi |fi(t) − gi(t)| = K. In the sup norm topology this
implies that fi and gi are not “close” to each other, as the difference fi − gi does not converge
to zero. No matter how far along the vanishing sequence Ei the two events fi, gi differ by
K. Yet since the events fi, gi differ from f ≡ 0 and g ≡ 0 respectively only in the set Ei, and
{Ei} is a vanishing sequence, for large enough i they are as “close” as desired according to
Villegas-Arrow’s definition of “nearby” events.

The Dual Space L∗
∞: Countably Additive and Finitely Additive Measures

The space of continuous linear functions on L∞ with the sup norm is the “dual” of L∞, and
is denoted L∗

∞. It has been characterized, for example, in Yosida [25, 26]. L∗
∞ consists of the

sum of two subspaces (i) L1 functions g that define countably additive measures ν on R by
the rule ν(A) =

∫

Ag(x)dxwhere
∫

R|g(x)|dx < ∞ so that υ is absolutely continuous with respect
to the Lebesgue measure, and (ii) a subspace consisting of purely finitely additive measures.
A countable measure can be identified with an L1 function, called its “density,” but purely
finitely additive measures cannot be identified by such functions.

Example A.3. Illustration of a Finitely Additive Measure that is not Countably Additive
See Example 7.1 in Section 7.
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