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We propose a cross-validation method suitable for smoothing of kernel quantile estimators. In
particular, our proposed method selects the bandwidth parameter, which is known to play a
crucial role in kernel smoothing, based on unbiased estimation of a mean integrated squared
error curve of which the minimising value determines an optimal bandwidth. This method is
shown to lead to asymptotically optimal bandwidth choice and we also provide some general
theory on the performance of optimal, data-based methods of bandwidth choice. The numerical
performances of the proposed methods are compared in simulations, and the new bandwidth
selection is demonstrated to work very well.

1. Introduction

The estimation of population quantiles is of great interest when one is not prepared to assume
a parametric form for the underlying distribution. In addition, due to their robust nature,
quantiles often arise as natural quantities to estimate when the underlying distribution is
skewed [1]. Similarly, quantiles often arise in statistical inference as the limits of confidence
interval of an unknown quantity.

Let X1, X2, . . . , Xn be independent and identically distributed random sample drawn
from an absolutely continuous distribution function F with density f . Further, let X(1) ≤
X(2) · · · ≤ Xn denote the corresponding order statistics. For (0 < p < 1) a quantile function
Q(p) is defined as follows:

Q
(
p
)
= inf

{
x : F(x) ≥ p

}
. (1.1)
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If Q̂(p) denotes pth sample quantile, then Q̂(p) = x([np]+1) where [np] denotes the integral
part of np. Because of the variability of individual order statistics, the sample quantiles suffer
from lack of efficiency. In order to reduce this variability, different approaches of estimating
sample quantiles through weighted order statistics have been proposed. A popular class of
these estimators is called kernel quantile estimators. Parzen [2] proposed a version of the
kernel quantile estimator as below:

Q̃K

(
p
)
=

n∑

i=1

[∫ i/n

i−1/n
Kh

(
t − p

)
dt

]

X(i). (1.2)

From (1.2) one can readily observe that Q̃K(p) puts most weight on the order statistics X(i),
for which i/n is close to p. In practice, the following approximation to Q̃K(p) is often used:

Q̃AK

(
p
)
=

n∑

i=1

[
n−1Kh

(
i/n − p

)]
X(i). (1.3)

Yang [3] proved that Q̃K(p) and Q̃AK(p) are asymptotically equivalent in terms of mean
square errors. Similarly, Falk [4] demonstrates that, from a relative deficiency perspective,
the asymptotic performance of Q̃AK(p) is better than that of the empirical sample quantile.

In this paper, we propose a cross-validation method suitable for smoothing of kernel
quantile estimators. In particular, our proposed method selects the bandwidth parameter,
which is known to play a crucial role in kernel smoothing, based on unbiased estimation of
a mean integrated squared error curve of which the minimising value determines an optimal
bandwidth. This method is shown to lead to asymptotically optimal bandwidth choice and
we also provide some general theory on the performance of optimal, data-based methods of
bandwidth choice. The numerical performances of the proposed methods are compared in
simulations, and the new bandwidth selection is demonstrated to work very well.

2. Data-Based Selection of the Bandwidth

Bandwidth plays a critical role in the implementation of practical estimation. Specifically,
the choice of the smoothing parameter determines the tradeoff between the amount of
smoothness obtained and closeness of the estimation to the true distribution [5]

Several data-based methods can be made to find the asymptotically optimal band-
width h in kernel quantile estimators for Q̃AK(p) given by (1.3). One of these methods use
derivatives of the quantile density for Q̃AK(p).

Building on Falk [4], Sheather and Marron [1] gave the MSE of Q̃AK(p) as follows. If
f is not symmetric or f is symmetric but p /= 0.5,

AMSE
(
Q̃AK

(
p
))

=
1
4
μ2(k)

2[Q′′(p
)]2

h4 + p
(
1 − p

)[
Q′(p

)]2
n−1 − R(K)

[
Q′(p

)]2
n−1h, (2.1)
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where R(K) = 2
∫∞
−∞ uK(u)K−1(u)du, μ2(k) =

∫∞
−∞ u2K(u)du and K−1 is the antiderivative of

K.
If Q′ > 0 then

hopt = α(K) · β(Q) · n−1/3, (2.2)

where α(K) = [R(K)/μ2(k)
2]

1/3
, β(Q) = [Q′(p)/Q′′(p)]2/3.

There is no single optimal bandwidth minimizing the AMSE(Q̃AK(p)) when F is
symmetric and p = 0.5. Also, If q = 0, we need higher terms and the AMSE(Q̃AK(p)) can
be shown to be

AMSE
(
Q̃AK

(
p
))

=
(
1
4
− 1
n

)
h4[Q′′(p

)]2
μ2(k)

2 + 2n−1h2[Q′′(p
)]2

∫
(
q − ht

)
tK(t)j(t)dt,

(2.3)

where j(t) =
∫ t
−∞ xK(x)dx, see Cheng and Sun [6].

In order to obtain hopt we need to estimate Q′ = q and Q′′ = q′. It follows from (1.3)
that the estimator of Q′ = q can be constructed as follows:

q̃AK

(
p
)
= Q̃′

AK

(
p
)
=

n∑

i=1

X(i)

[
Ka

(
(i − 1)

n
− p

)
−Ka

(
i

n
− p

)]
. (2.4)

Jones [7] derived that the AMSE(q̃AK(p)) as

AMSE
(
q̃AK

(
p
))

=
a4

4
μ2(k)

2[q′′
(
p
)]2 +

1
na

[
q
(
p
)]2

∫
K2(y

)
dy. (2.5)

By minimizing (2.5), we obtain the asymptotically optimal bandwidth for Q̃′
AK(p):

a∗
opt =

[[
Q′(p

)]2 ∫
K2(y

)
dy

n
[
Q′′′(p

)]2
μ2(k)

2

]1/5

. (2.6)

To estimate Q′′ = q′ in (2.2), we employ the known result

Q̃′′
AK

(
p
)
=

d

dp
Q̃′

AK

(
p
)
=

1
a2

n∑

i=1

X(i)

[
K′

(
(i − 1)/n − p

a

)
−K′

(
i/n − p

a

)]
, (2.7)
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and it readily follows that

a∗∗
opt =

[
3
[
Q′(p

)]2 ∫
K

′2(x)dx

n
[
Q′′′′(p

)]2
μ2(k)

2

]1/7

(2.8)

which represents the asymptotically optimal bandwidth for Q̃′′
AK(p). By substituting a = a∗

opt
in (2.4) and a = a∗∗

opt in (2.7)we can compute hopt.

3. Cross-Valdation Bandwidth Selection

Whenmeasuring the closeness of an estimated and true function themean integrated squared
(MISE) defined as

MISE(h) = E

∫1

0

{
Q̃
(
p
) −Q

(
p
)}2

dp (3.1)

is commonly used as a global measure of performance.
The value which minimises MISE(h) is the optimal smoothing parameter, and it is

unknown in practice. The following ASE(h) is the discrete form of error criterion approxi-
mating MISE(h):

ASE(h) =
1
n

n∑

i=1

{
Q̃

(
i

n

)
−Q

(
i

n

)}2

. (3.2)

The unknown Q(p) is replaced by Q̂(p) and a function of cross-validatory procedure is
created as:

1
n

n∑

i=1

{
Q̃−i

(
i

n

)
− Q̂

(
i

n

)}2

, (3.3)

where Q̃−i(i/n) denotes the kernel estimator evaluated at observation xi, but constructed
from the data with observation xi omitted.

The general approach of crossvalidation is to compare each observation with a value
predicted by the model based on the remainder of the data. A method for density estimation
was proposed by Rudemo [8] and Bowman [9]. This method can be viewed as representing
each observation by a Dirac delta function δ(x − xi), whose expectation is f(x), and
contrasting this with a density estimate based on the remainder of the data. In the context
of distribution functions, a natural characterisation of each observation is by the indicator
function I(x − xi) whose expectation is F(x). This implies that the kernel method for density
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estimation can be expressed as

f̃(x) =
1
n

n∑

i=1

Kh(x − xi), (3.4)

when h → 0 Kh(x − xi) → δ(x − xi).
The kernel method for distribution function

F̃(x) =
1
n

n∑

i=1

W

(
x − xi

h

)
, (3.5)

where W is a distribution function, h is the bandwidth controls the degree of smoothing.
When h → 0

W

(
x − xi

h

)
−→ I(x − xi), (3.6)

where I(x − xi) is the indicator function

I(x − xi) =

{
1, if x − xi ≥ 0,
0, otherwise.

(3.7)

Now, from (1.3)when h → 0

Q̃AK
(
p
) −→ δ

(
i

n
− p

)
X(i), (3.8)

and thus a cross-validation function can be written as

CV(h) =
1
n

n∑

i=1

∫1

0

{
δ

(
i

n
− p

)
X(i) − Q̃−i

(
i

n

)}2

dp. (3.9)

The smoothing parameter h is then chosen to minimise this function. By subtracting a term
that characterise the performance of the true (p)we have

H(h) = CV(h) − 1
n

n∑

i=1

∫1

0

{
δ

(
i

n
− p

)
X(i) −Q

(
i

n

)}2

dp (3.10)
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which does not involve h. By expanding the braces and taking expectation, we obtain

H(h) =
1
n

n∑

i=1

∫1

0

{
Q̃2

−i

(
i

n

)
− 2δ

(
i

n
− p

)
X(i)Q̃−i

(
i

n

)
+ 2δ

(
i

n
− p

)
X(i)Q

(
i

n

)
−Q2

(
i

n

)}
dp.

(3.11)

When n → ∞ the (np)th order statistic x(np) is asymptotically normally distributed

x(np) ∼ AN

(

Q
(
p
)
,

p
(
1 − p

)

n
[
f
(
Q
(
p
))]2

)

,

E{H(h)} = E

[
1
n

n∑

i=1

∫1

0

{
Q̃2

−i

(
i

n

)
− 2δ

(
i

n
− p

)
X(i) Q̃−i

(
i

n

)
+ 2δ

(
i

n
− p

)
X(i) Q

(
i

n

)

−Q2
(

i

n

)}
dp

]

,

E{H(h)} =
1
n

n∑

i=1

∫1

0

[
E

{
Q̃2

−i

(
i

n

)}
− 2δ

(
i

n
− p

)
Q

(
i

n

)
E

{
Q̃−i

(
i

n

)}
+ 2δ

(
i

n
− p

)
Q2

(
i

n

)

−Q2
(

i

n

)]
dp,

E{H(h)} = E

∫1

0

{
Q̃n−1

(
i

n

)
−Q

(
i

n

)}2

dp,

(3.12)

where the notation Q̃n−1(i/n) with positive subscript denotes a kernel estimator based on
a sample size of n − 1. The proceeding arguments demonstrate that CV(h) provides an
asymptotic unbiased estimator of the true MISE(h) curve for a sample size n− 1. The identity
at (3.12) strongly suggests that crossvalidation should perform well.

4. Theoretical Properties

From (3.1), we can write MISE(h) =
∫1
0 bias

2(Q̃K(p))dp +
∫1
0 var(Q̃K(p))dp.

Sheather and Marron [1] have shown that

bias
(
Q̃K

(
p
))

=
1
2
h2μ2(k)Q′′(p

)
+ 0

(
h2
)
. (4.1)

while Falk [4, page 263] proved that

var
(
Q̃K

(
p
))

= p
(
1 − p

)[
Q′(p

)]2
n−1 − R(K)

[
Q′(p

)]2
n−1h + 0

(
n−1h

)
. (4.2)
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On combining the expressions for bias and variance we can express the mean integrated
square error as

MISE(h) =
1
4
h4μ2(k)

2
∫1

0

[
Q′′(p

)]2
dp + p

(
1 − p

)
∫1

0

[
Q′(p

)]2
dp n−1

− R(K)
∫1

0

[
Q′(p

)]2
dp n−1h + 0

(
h4 + n−1h

)
,

(4.3)

and for C1 = p(1 − p)
∫1
0 [Q

′(p)]2dp, C2 = R(K)
∫1
0 [Q

′(p)]2dp and C3 = μ2(k)
2 ∫1

0 [Q
′′(p)]2dp

the MISE can be expressed as

MISE(h) = C1n
−1 − C2n

−1h +
1
4
C3h

4 + 0
(
h4 + n−1h

)
. (4.4)

Therefore, the asymptotically optimal bandwidth is h0 = Cn−1/3, where C = {C2/C3}1/3.
We can see from (3.12) thatH(h)may be a good approximation to MISE(h) or at least

to that function evaluated for a sample of size n − 1 rather than n. Additionally, this is true if
we adjusted H(h) by adding the quantity

Jn =
∫1

0

{(
Q̂
(
p
) −Q

(
p
))2 − E

(
Q̂
(
p
) −Q

(
p
))2

}
. (4.5)

This quantity is demean and does not depend on h which makes it attractive for obtaining a
particularly good approximation to MISE(h).

Theorem 4.1. Suppose that Q(p) is bounded on [0, 1] and right continuous at the point 0, and that
K is a compactly supported density and symmetric about 0. Then, for each δ, ε, C > 0,

H(h) + J = MISE(h) + 02
{(

n−3/2 + n−1h3/2 + n−1/2h3
)
nδ

}
(4.6)

with probability 1, uniformly in 0 ≤ h ≤ Cnδ, as n → ∞.

(An outline proof of the above theorem is in the appendix).
From the above theorem, we can conclude that minimisation of H(h) produces a

bandwidth that is asymptotically equivalent to the bandwidth h0 that minimises MISE(h).

Corollary 4.2. Suppose that the conditions of previous theorem hold. If ĥ denotes the bandwidth that
minimises CV(h) in the range 0 ≤ h ≤ Cnδ, for any C > 0 and any 0 ≤ ε ≤ 1/3, then

ĥ

h0
−→ 1 (4.7)

with probability 1 as n → ∞.
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Figure 1: Left panel: plots of the quantile estimators for method 1 (solid line), method 2 (dotted line),
and true quantile (dashed line) for different sample sizes and for data from a normal distribution. Right
panel: box plots of mean squared errors for the quantile estimators for method 1 andmethod 2 for different
sample sizes.

5. A Simulation Study

A numerical study was conducted to compare the performances of the two bandwidth
selection methods. Namely, the method presented by Sheather and Marron [1] and our
proposed method.
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Figure 2: Left panel: plots of the quantile estimators for method 1 (solid line), method 2 (dotted line) and
true quantile (dashed line) for different sample sizes and for data from an exponential distribution. Right
panel: box plots of mean squared errors for the quantile estimators for method 1 andmethod 2 for different
sample sizes.

In order to account for different shapes for our simulation study we consider a
standard normal, Exp(1), Log-normal(0,1) and double exponential distributions and we
calculate 18 quantiles ranging from p = 0.05 to p = 0.95. Through the numerical study the
Gaussian kernel was used as the kernel function. Sample sizes of 100, 200 and 500 were used,
with 100 simulations in each case. The performance of the methods was assessed through the
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Figure 3: Left panel: plots of the quantile estimators for method 1 (solid line), method 2 (dotted line) and
true quantile (dashed line) for different sample sizes and for data from a Log-normal distribution. Right
panel: box plots of mean squared errors for the quantile estimators for method 1 andmethod 2 for different
sample sizes.

mean squared errors criterion (MSE). MSE(h) = E{Q̃(p) −Q(p)}2. And the relative efficiency
(R.E)

R.E =

[
MISEMethod 2

(
hMethod 2,opt

)

MISEMethod 1
(
hMethod 1,opt

)

]

. (5.1)
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Figure 4: Left panel: plots of the quantile estimators for method 1 (solid line), method 2 (dotted line) and
true quantile (dashed line) for different sample sizes and for data from a double exponential distribution.
Right panel: box plots of mean squared error for the quantile estimators for method 1 and method 2 for
different sample sizes.

Further, for comparison purposes we refer to our proposed method and that of Sheather and
Marron [1] as method 1 and method 2 respectively.

(a) Standard normal distribution (see Table 1 and Figure 1).
(b) Exponential distribution (see Table 2 and Figure 2).
(c) Log-normal distribution (see Table 3 and Figure 3).
(d) Double exponential distribution (see Table 4 and Figure 4).
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Table 1: Mean squared errors results for bandwidth selection methods for different sample sizes and for
data from a normal distribution.

p n = 100 n = 200 n = 500

0.05 method 1 0.34841956 0.321073870 0.298936771
method 2 0.29636758 0.164364738 0.090598082

0.10 method 1 0.07645956 0.065440575 0.054697205
method 2 0.04947745 0.022846355 0.015566907

0.15 method 1 0.02291501 0.013920668 0.007384189
method 2 0.02939708 0.013386234 0.005005849

0.20 method 1 0.01891919 0.009273746 0.003152866
method 2 0.02228828 0.010094172 0.003812209

0.25 method 1 0.01596948 0.008581398 0.003000777
method 2 0.01835912 0.008880639 0.003568772

0.30 method 1 0.01614981 0.008035667 0.003208531
method 2 0.01639148 0.008299838 0.003375445

0.35 method 1 0.01461880 0.007677567 0.003534028
method 2 0.01544790 0.007763629 0.003012045

0.40 method 1 0.01279474 0.007375428 0.002899081
method 2 0.01494506 0.007248497 0.002661230

0.45 method 1 0.01224268 0.006128817 0.002183302
method 2 0.01444153 0.006790490 0.002295830

0.55 method 1 0.01414050 0.006348893 0.001922013
method 2 0.01373258 0.006702430 0.002099446

0.60 method 1 0.01375373 0.006392721 0.002007274
method 2 0.01341763 0.006762798 0.002254869

0.65 method 1 0.01344773 0.006063502 0.002589679
method 2 0.01290569 0.006801901 0.002507202

0.70 method 1 0.01320832 0.006394102 0.002456085
method 2 0.01233948 0.007001064 0.002691678

0.75 method 1 0.01503264 0.007011867 0.002789939
method 2 0.01219829 0.007216326 0.002679609

0.80 method 1 0.01604847 0.007246605 0.002715445
method 2 0.01327836 0.007602346 0.002791240

0.85 method 1 0.01757171 0.009239589 0.004770755
method 2 0.01740931 0.009522181 0.003848474

0.90 method 1 0.03192379 0.023292975 0.019942754
method 2 0.03702774 0.018053976 0.012250413

0.95 method 1 0.15323893 0.147773963 0.150811561
method 2 0.24825188 0.146840177 0.092517440

We can compute and summarize the relative efficiency of hMethod 1,opt for the all
previous distributions in Table 5 .

From Tables 1, 2, 3, and 4, for the all distributions, it can be observed that in 52.3%
of cases our method produces lower mean squared errors, slightly wins Sheather-Marron
method.

Also, from Table 5 which describes the relative efficiency for hMethod 1,opt we can see
hMethod 1,opt more efficient from hMethod 2,opt for all the cases except the standard normal
distribution cases with n = 200, 500 and double exponential distribution cases with n = 500.
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Table 2: Mean squared errors results for bandwidth selection methods for different sample sizes and for
data from an exponential distribution.

p n = 100 n = 200 n = 500

0.05 method 1 0.001687025 0.0014699990 0.0014107454
method 2 0.0006023236 0.0002476745 8.122873e − 05

0.10 method 1 0.001306211 0.0009229338 0.0007744410
method 2 0.0008225254 0.0004075822 1.749150e − 04

0.15 method 1 0.001589646 0.0008940486 0.0006237375
method 2 0.0012963576 0.0006938287 3.186597e − 04

0.20 method 1 0.002187990 0.0011477063 0.0006801504
method 2 0.0019188172 0.0010358272 4.746909e − 04

0.25 method 1 0.002916417 0.0015805678 0.0008156225
method 2 0.0026838659 0.0014096523 6.303538e − 04

0.30 method 1 0.003827511 0.0019724207 0.0010289166
method 2 0.0036542688 0.0018358956 7.948940e − 04

0.35 method 1 0.004919618 0.0025540323 0.0012720751
method 2 0.0048301657 0.0023318358 9.724792e − 04

0.40 method 1 0.005868113 0.0031932355 0.0016253398
method 2 0.0060092243 0.0028998751 1.170038e − 03

0.45 method 1 0.007267783 0.0039962426 0.0021094081
method 2 0.0072785641 0.0035363816 1.417269e − 03

0.55 method 1 0.011776976 0.0065148222 0.0039208447
method 2 0.0110599156 0.0055548552 2.154130e − 03

0.60 method 1 0.012864521 0.0070366699 0.0026965785
method 2 0.0138585365 0.0070359561 2.626137e − 03

0.65 method 1 0.018173097 0.0086476349 0.0031472559
method 2 0.0169709413 0.0088832263 3.255114e − 03

0.70 method 1 0.021125532 0.0111607501 0.0041235720
method 2 0.0201049720 0.0114703180 4.201740e − 03

0.75 method 1 0.024025836 0.0150785289 0.0057215181
method 2 0.0229763952 0.0149490250 5.812526e − 03

0.80 method 1 0.037367344 0.0204676368 0.0081595071
method 2 0.0407106885 0.0181647976 8.020787e − 03

0.85 method 1 0.057785539 0.0317404871 0.0098128398
method 2 0.0838657681 0.0300656149 1.134861e − 02

0.90 method 1 0.078797379 0.0426418410 0.0152139697
method 2 0.1878456852 0.1117820016 2.156987e − 02

0.95 method 1 0.121239102 0.0810135450 0.0284524316
method 2 0.6668323836 0.4923732684 1.478679e − 01

So, we may conclude that in terms of MISE our bandwidth selection method is more
efficient than Sheather-Marron for skewed distributions but not for symmetric distributions.

6. Conclusion

In this paper we have a proposed a cross-validation-based-rule for the selection of bandwidth
for quantile functions estimated by kernel procedure. The bandwidth selected by our
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Table 3: Mean squared errors results for bandwidth selection methods for different sample sizes and for
data from a Log-normal distribution.

p n = 100 n = 200 n = 500

0.05 method 1 0.001663032 0.0010098573 0.0006568989
method 2 0.002384136 0.0007270441 0.0003613541

0.10 method 1 0.001863141 0.0008438333 0.0002915013
method 2 0.002601994 0.0008361475 0.0002981938

0.15 method 1 0.002633153 0.0013492870 0.0004451506
method 2 0.002623552 0.0011943144 0.0003738508

0.20 method 1 0.003753458 0.0019922356 0.0006866399
method 2 0.003107351 0.0014724525 0.0005685022

0.25 method 1 0.004956635 0.0027140878 0.0009886053
method 2 0.004564382 0.0022952079 0.0008557756

0.30 method 1 0.006480195 0.0035603171 0.0015897314
method 2 0.006436967 0.0031574264 0.0011938924

0.35 method 1 0.008858850 0.0047972372 0.0023446072
method 2 0.008443129 0.0038626105 0.0015443970

0.40 method 1 0.010053969 0.0055989143 0.0022496198
method 2 0.010893398 0.0051735721 0.0017579579

0.45 method 1 0.012998940 0.0069058362 0.0030102466
method 2 0.013607931 0.0063606758 0.0019799551

0.55 method 1 0.019687850 0.0115431473 0.0051386226
method 2 0.020581110 0.0100828810 0.0029554466

0.60 method 1 0.023881883 0.0129227902 0.0046644050
method 2 0.025845419 0.0129081138 0.0040301844

0.65 method 1 0.032155537 0.0160476126 0.0056732073
method 2 0.035737008 0.0167147469 0.0056528658

0.70 method 1 0.045027965 0.0249576836 0.0077709058
method 2 0.042681315 0.0223936302 0.0077616346

0.75 method 1 0.060715676 0.0318891176 0.0121926243
method 2 0.059276198 0.0323738749 0.0104119217

0.80 method 1 0.087694754 0.0450814911 0.0165993582
method 2 0.090704630 0.0530374710 0.0168162426

0.85 method 1 0.140537374 0.0840290373 0.0311728395
method 2 0.193857196 0.1131949907 0.0350218855

0.90 method 1 0.289944417 0.1642236062 0.0679038026
method 2 0.552092689 0.2763301818 0.1112433633

0.95 method 1 1.119717137 0.4764026616 0.1984216218
method 2 2.306672668 1.3159008668 0.2217620895

proposed method is shown to be asymptotically unbiased and in order to assess the
numerical performance, we conduct a simulation study and compare it with the bandwidth
proposed by Sheather and Marron [1]. Based on the four distributions considered the
proposed bandwidth selection appears to provide accurate estimates of quantiles and thus
we believe that the new bandwidth selection method is a practically useful method to get
bandwidth for the quantile estimator in the form (1.3).
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Table 4: Mean squared errors results for bandwidth selection methods for different sample sizes and for
data from a double exponential distribution.

p n = 100 n = 200 n = 500

0.05 method 1 0.35372420 0.288207742 0.251339747
method 2 0.45458819 0.315704320 0.051385372

0.10 method 1 0.07123072 0.043684160 0.029307307
method 2 0.14868952 0.097871072 0.023601368

0.15 method 1 0.05081769 0.025358946 0.009241326
method 2 0.09377244 0.035207151 0.010910214

0.20 method 1 0.02489079 0.015360242 0.007647199
method 2 0.04997348 0.024864359 0.008013159

0.25 method 1 0.01863802 0.012204904 0.004401402
method 2 0.03117942 0.019101033 0.006247279

0.30 method 1 0.01869611 0.012031162 0.004145965
method 2 0.02516932 0.014680335 0.004847191

0.35 method 1 0.01562279 0.009560873 0.003235724
method 2 0.02017404 0.011355808 0.003513386

0.40 method 1 0.01430068 0.007860775 0.002493813
method 2 0.01669505 0.009165203 0.002621345

0.45 method 1 0.01386331 0.007587705 0.002485022
method 2 0.01529664 0.008221501 0.002104265

0.55 method 1 0.01501458 0.007801051 0.002013993
method 2 0.01280613 0.007796411 0.002227569

0.60 method 1 0.01712203 0.009076922 0.002233672
method 2 0.01394454 0.009475605 0.002791236

0.65 method 1 0.01946241 0.011129870 0.003521070
method 2 0.01840894 0.012558998 0.003628169

0.70 method 1 0.02098394 0.011997405 0.003255335
method 2 0.02333092 0.015792466 0.004534060

0.75 method 1 0.02791943 0.016885471 0.004419826
method 2 0.02937457 0.019852122 0.005469359

0.80 method 1 0.03532806 0.021319714 0.005471649
method 2 0.04294634 0.024757804 0.007270187

0.85 method 1 0.05463890 0.030489951 0.011338629
method 2 0.08441144 0.035306415 0.012054182

0.90 method 1 0.09188621 0.058587164 0.030485192
method 2 0.14755444 0.083844232 0.024399440

0.95 method 1 0.28184945 0.224432372 0.180645893
method 2 0.51462209 0.319147435 0.076406491

Table 5: The relative efficiency (R.E) of hMethod 1,opt.

n Standard normal dist. Exponential dist. Log normal dist. Double exponential dist.
100 1.037276 2.636250 1.806082 1.520903
200 0.6986324 2.952808 2.096307 1.308667
500 0.4455828 2.324423 1.173547 0.4519134
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Appendix

Step 1. Let nH = S1 − 2S2, where
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Step 2. With Di(p) = Kh(i/n − p)X(i) −Q(p) and D0
i (p) = δ(i/n − p)X(i) −Q(p)
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Step 3. This step combines Steps 1 and 2 to prove that
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Step 4. This step establishes that
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Step 5. This step combines Steps 3 and 4, concluding that
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where μ(h) =
∫1
0 E(Di(p)D

0
i (p)).
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Let U = 02(ξ), for a random variable U = U(n) and a positive sequence ξ = ξ(n)

E
(
U2

)
= 0

(
ξ2
)
. (A.6)

Step 6. This step notes that
∫1
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= S + T , where
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and that S = S(1) + S(2) + (1 − n−1)g0, where

S(1) = n−2 ∑∑

i /= j

{
g
(
Xi,Xj

) − g1(Xi) − g1
(
Xj

)
+ g0

}
,

S(2) = 2n−1
(
1 − n−1

) n∑

i=1

{
g1(Xi) − g0

}
, g1(x) = E

{
g(x,X1)

}
, g0 = E

{
g1(X1)

}
.

(A.8)

Step 7. Shows that E{g(X1, X1)
2}= 0(1), E{g(X1, X2)

2} = 0(h3), E{g1(X1)
2} = 0(h6)var{T} =
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2
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Step 8. This step combines the results of Steps 5, 6, 7, obtaining
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Step 9. This step notes that μ(h) = 0(h) and

∫1

0
E
(
Q̃
(
p
) − Q̂

(
p
))2

=
∫1

0
E
(
Q̃
(
p
) −Q

(
p
))2

+
∫1

0
E
(
Q̂
(
p
) −Q

(
p
))2 − 2n−1μ(h). (A.10)

Step 10. This step combines Steps 8 and 9, establishing that
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This means that

E{H + J −MISE(h)}2 = 02
(
n−3/2 + n−1h3/2 + n−1/2h3

)
. (A.12)
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