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We study a two-sample homogeneity testing problem, in which one sample comes from a popula-
tionwith density f(x) and the other is from amixture populationwithmixture density (1−λ)f(x)+
λg(x). This problem arises naturally from many statistical applications such as test for partial dif-
ferential gene expression inmicroarray study or genetic studies for genemutation. Under the semi-
parametric assumption g(x) = f(x)eα+βx, a penalized empirical likelihood ratio test could be con-
structed, but its implementation is hindered by the fact that there is neither feasible algorithm for
computing the test statistic nor available research results on its theoretical properties. To circum-
vent these difficulties, we propose an EM test based on the penalized empirical likelihood. We
prove that the EM test has a simple chi-square limiting distribution, and we also demonstrate its
competitive testing performances by simulations. A real-data example is used to illustrate the pro-
posed methodology.

1. Introduction
Let x1, . . . , xn0 be a random sample from a population with distribution function F, and let y1,
. . . , yn1 be a random sample from a population with distribution functionH. Testing whether
the two populations have the same distribution, that is, H0 : F = H versus H1 : F /=H, with
both F and H completely unspecified, will require a nonparametric test. Since H1 : F /=H is
a very broad hypothesis, many times one may want to consider some more specified alterna-
tive, for example, the two populations only differ in location. In the present paper, we will
consider a specified alternative in which one of the two samples has amixture structure. More
specifically, we have

x1, . . . , xn0

i.i.d.∼ f(x), y1, . . . , yn1

i.i.d.∼ h
(
y
)
= (1 − λ)f

(
y
)
+ λg
(
y
)
, (1.1)
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where f(x) = dF(x)/dx, g(y) = dG(y)/dy, h(y) = dH(y)/dy, and λ ∈ (0, 1) is an unknown
parameter sometimes called contamination proportion. The problem of interest is to testH0 :
f = h or equivalently λ = 0. This particular two-sample problem arises naturally in a variety
of statistical applications such as test for partial differential gene expression in microarray
study, genetic studies for gene mutation, case-control studies with contaminated controls, or
the test of a treatment effect in the presence of nonresponders in biological experiments (see
Qin and Liang [1] for details).

If no auxiliary information is available, this is merely the usual two-sample goodness-
of-fit problem. There has been extensive literature on it; see Zhang [2] and references therein.
However, these tests are not suitable for the specific alternative with a mixture structure as
they might be inferior comparing with methods that are designed for the specific alternative.
In this paper, wewill propose an empirical likelihood-based testing procedure for this specific
mixture alternative under Anderson’s semiparametric assumption [3]. Motivated by the logi-
stic regression model, the semiparametric assumption proposed by Anderson [3] links the
two distribution functions F and G through the following equation:

log
g(x)
f(x)

= α + βx, (1.2)

where α and β are both unknown parameters. There are many examples where the logarithm
of the density ratio is linear in the observations.

Example 1.1. Let F and G be the distribution functions of Binomial (m, p1) and Binomial (m,
p2), respectively. We refer the densities f and g to the probability mass functions correspond-
ing to F and G, respectively. Then,

log
g(x)
f(x)

= m log
{
1 − p2
1 − p1

}
+ log

{
p2
(
1 − p1

)

p1
(
1 − p2

)

}

x. (1.3)

Example 1.2. Let F be the distribution function of N(μ1, σ
2) and G the distribution function

ofN(μ2, σ
2). Then,

log
g(x)
f(x)

=
1

2σ2

(
μ2
1 − μ2

2

)
+

1
σ2

(
μ2 − μ1

)
x. (1.4)

In practice, one may need to apply some sort of transformation to the data (e.g., loga-
rithm transformation) in order to justify the use of the semiparametric model assumption
(1.2).

Example 1.3. Let F and G be the distribution functions of logN(μ1, σ
2) and logN(μ2, σ

2), res-
pectively. It is clear that the density ratio is a linear function of the log-transformed data:

log
g(x)
f(x)

=
1

2σ2

(
μ2
1 − μ2

2

)
+

1
σ2

(
μ2 − μ1

)
logx. (1.5)
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Example 1.4. Let F andG be the distribution functions of Gamma (m1, θ) and Gamma (m2, θ),
respectively. In this case,

log
g(x)
f(x)

= log
{
Γ(m1)
Γ(m2)

}
+ (m1 −m2) log θ + (m2 −m1) logx. (1.6)

The semiparametric modeling assumption (1.2) is very flexible and has the advantage
of not putting any specific restrictions on the functional form of f . Under this assumption,
various approaches have been proposed to test homogeneity in the two-sample problem (see
[1, 4, 5] and references therein). This paper adds to this literature by introducing a new type
of test statistics which are based on the empirical likelihood [6, 7].

The empirical likelihood (EL) is a nonparametric likelihood method which has many
nice properties paralleling to the likelihood methods, for example, it is range-preserving,
transform-respect, Bartlett correctable, and a systematic approach to incorporating auxiliary
information [8–11]. In general, if the parameters are identifiable, the empirical likelihood ratio
(ELR) test has a chi-square limiting distribution under null hypothesis. However, for the
aforementioned testing problem, the parameters under H0 are not identifiable, which results
in an intractable null limiting distribution for the ELR test. To circumvent this problem, we
would add a penalty to the log EL to penalize λ being too close to zero. Working like a soft
threshold, the penalty makes the parameters roughly identifiable. Intuitively, the penalized
(or modified) ELR test should restore the usual chi-square limiting distribution. Unfortunate-
ly two things hinder the direct use of the penalized ELR test. One is that, to the best of our
knowledge, there is no feasible algorithm to compute the penalized ELR test statistic. The
other one is that there has been no research on the asymptotic properties of the penalized ELR
test. Therefore, one cannot obtain critical values for the penalized ELR test regardless through
simulations or an asymptotic reference distribution.We find that the EM test [12, 13] based on
the penalized EL is a nice solution to the testing problem.

The remainder of this paper is organized as follows. In Section 2, we introduce the ELR
and the penalized ELR. The penalized EL-based EM test is given in Section 3. A key computa-
tional issue of the EM test is discussed in Section 4. Sections 5 and 6 contain a simulation study
and a real-data application, respectively. For clarity, all proofs are postponed to the appendix.

2. Empirical Likelihood

Let {t1, . . . , tn0 , tn0+1, . . . , tn} = {x1, . . . , xn0 , y1, . . . , yn1} denote the combined two-sample data,
where n = n0+n1. Under Anderson’s semiparametric assumption (1.2), the likelihood of two-
sample data (1.1) is

L =
n0∏

i=1

dF(ti)
n∏

j=n0+1

[
1 − λ + λeα+βtj

]
dF
(
tj
)
. (2.1)

Let ph = dF(th), h = 1, . . . , n. The EL is just the likelihood Lwith constraints ph ≥ 0,
∑n

h=1 ph =
1 and

∑n
h=1 ph(e

α+βth − 1) = 0. The corresponding log-EL is

l =
n∑

h=1

log ph +
n1∑

j=1

log
[
1 − λ + λeα+βyj

]
. (2.2)
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We are interested in testing

H0 : λ = 0 or
(
α, β
)
= (0, 0). (2.3)

Under the null hypothesis, the constraint
∑n

h=1 ph(e
α+βth−1) = 0 will always hold and supH0

l =
−n logn. Under alternative hypothesis, for any fixed (λ, α, β), maximizing l with respect to
ph’s leads to the log-EL function of (λ, α, β):

l
(
λ, α, β

)
= −

n∑

h=1

log
[
1 + ξ
(
eα+βth − 1

)]
− n log n +

n1∑

j=1

log
[
1 − λ + λeα+βyj

]
, (2.4)

where ξ is the solution to the following equation:

n∑

h=1

eα+βth − 1
1 + ξ
(
eα+βth − 1

) = 0. (2.5)

Hence, the EL ratio function R(λ, α, β) = 2{l(λ, α, β) + n logn} and the ELR is denoted as R =
supR(λ, α, β).

The null hypothesis H0 holds for λ = 0 regardless of (α, β), or (α, β) = (0, 0) regardless
of λ. This implies that the parameter (λ, α, β) is not identifiable under H0, resulting in rather
complicated asymptotic properties of the ELR. One may consider the modified or penalized
likelihood method [14] and define the penalized log-EL function pl(λ, α, β) = l(λ, α, β) +
log(λ). Accordingly the penalized EL ratio function is

pR
(
λ, α, β

)
= 2
{
pl
(
λ, α, β

) − pl(1, 0, 0)
}

= −2
n∑

h=1

[
1 + ξ
(
eα+βth − 1

)]

+ 2
n1∑

j=1

log
(
1 − λ + λeα+βyj

)
+ 2 log(λ),

(2.6)

where ξ is the solution to (2.5). The penalty function log(λ) goes to −∞ as λ approaches 0.
Therefore, λ is bounded away from 0, and the null hypothesis in (2.3) then reduces to (α, β) =
(0, 0). That is, the parameters in the penalized log-EL function is asymptotically identifiable.
However, the asymptotic behavior of the penalized ELR test is still complicated. Meanwhile,
the computation of the penalized ELR test statistic is another obstacle of the implementation
of the penalized ELR method. No feasible and stable algorithm has been found for this pur-
pose. An EL-based EM test proposed in this paper provides an efficient way to solve the pro-
blem.

3. EL-Based EM Test

Motivated by Chen and Li [12] and Li et al. [13], we propose an EM test based on the penali-
zed EL to test the hypothesis (2.3). The EM test statistics are derived iteratively. We first
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choose a finite set of Λ = {λ1, . . . , λL} ⊂ (0, 1], for instance, Λ = {0.1, 0.2, . . . , 0.9, 1.0}, and a
positive integer K (2 or 3 in general). For each l = 1, . . . , L, we proceed the following steps.

Step 1. Let k = 1 and λ
(k)
l

= λl. Calculate (α
(k)
l

, β
(k )
l

) = argmaxα,β p R(λ(k)
l

,α, β).

Step 2. Update (λ, α, β) by using the following algorithm for K − 1 times.

Substep 2.1. Calculate the posterior distribution,

w
(k)
jl

=
λ
(k)
l exp

(
α
(k)
l + β

(k)
l yj

)

1 − λ
(k)
l

+ λ
(k)
l

exp
(
α
(k)
l

+ β
(k)
l

yj

) , j = 1, . . . , n1, (3.1)

and update λ by

λ
(k+1)
l = argmax

λ

⎧
⎨

⎩

n1∑

j=1

(
1 −w

(k)
jl

)
log(1 − λ) +

n1∑

j=1

w
(k)
jl log(λ) + log(λ)

⎫
⎬

⎭
. (3.2)

Substep 2.2. Update (α, β) by (α(k+1)
l

, β
(k+1)
l

) = argmaxα,βpR(λ
(k+1)
l

, α, β).

Substep 2.3. Let k = k + 1 and continue.

Step 3. Define the test statistics M(K)
n (λl) = pR(λ(K)

l
, α

(K)
l

, β
(K)
l

).

The EM test statistic is defined as

EM(K)
n = max

{
M

(K)
n (λl), l = 1, . . . , L

}
. (3.3)

We reject the null hypothesisH0 when the EM test statistic is greater than some critical value
determined by the following limiting distribution.

Theorem 3.1. Suppose ρ = n1/n ∈ (0, 1) is a constant. Assume the null hypothesis H0 holds and
E(th) = 0 and Var(th) = σ2 ∈ (0,∞) for h = 1, . . . , n. For l = 1, . . . , L and any fixed k, it holds that

λ
(k)
l − λl = op(1), α

(k)
l = Op

(
n−1
)
, β

(k)
l =

y − x

λlσ2
+ op
(
n−1/2

)
, (3.4)

where x = (1/n0)
∑n0

i=1 xi and y = (1/n1)
∑n1

j=1 yj .

Remark 3.2. The assumption Eth = 0 is only for convenience purpose and unnecessary. Other-
wise, we can replace th and α with th − E(th) and α + βE(th).

Theorem 3.3. Assume the conditions of Theorem 3.1 hold and 1 ∈ Λ. Under the null hypothesis (2.3),
EM(K)

n → Ø2
1 in distribution, as n → ∞.

We finish this section with an additional remark.
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Remark 3.4. We point out that the idea of the EM-test can also be generalized to more general
models such as log(g(x)/f(x)) = α + β1x + · · · + βkx

k for some integer k or log(g(x)/f(x)) =
α + β1t1(x) + · · · + βktk(x) with ti(·) ’s being known functions.

4. Computation of the EM Test

A key step of the EM test procedure is to maximize pR(λ, α, β) with respect to (α, β) for fixed
λ. In this section, we propose a computation strategy which provides stable solution to this
optimization problem. Throughout this section, λ is suppressed to be fixed.

The objective function is pR(λ, α, β) = G(ξ∗, α, β) where

G
(
ξ, α, β

)
= −2

n∑

h=1

log
[
1 + ξ
(
eα+βth − 1

)]
+ 2

n1∑

j=1

log
[
1 − λ + λeα+βyj

]
+ 2 log(λ) (4.1)

and ξ∗ = ξ∗(α, β) is the solution to

∂G

∂ξ
= −2

n∑

h=1

eα+βth − 1
1 + ξ
(
eα+βth − 1

) = 0. (4.2)

If (α, β) is the maximum point of pR(λ, α, β), it should generally satisfy

∂G

∂α
= −2

n∑

h=1

ξeα+βth

1 + ξ
(
eα+βth − 1

) + 2
n1∑

j=1

λeα+βyj

1 − λ + λeα+βyj
= 0. (4.3)

Combining (4.2) and (4.3) leads to

ξ =
1
n

n1∑

j=1

λeα+βyj

1 − λ + λeα+βyj
. (4.4)

Putting this expression of ξ back into (4.1), we have a new function

H
(
α, β
)
= −2

n∑

h=1

log

⎧
⎨

⎩
1 +
(
eα+βth − 1

) 1
n

n1∑

j=1

λeα+βyj

1 − λ + λeα+βyj

⎫
⎬

⎭

+ 2
n1∑

j=1

log
(
1 − λ + λeα+βyj

)
.

(4.5)

It can be verified that H(α, β) is almost surely concave in a neighborhood of (0, 0) given λ,
which means that maximizingH(α, β)with respect to (α, β) gives the maximum of pR(λ, α, β)
for fixed λ. The stability of the method is illustrated by the following simulation study.
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5. Simulation Study

We consider two models in Examples 1.3 and 1.4 with μ1 = 0, μ2 = μ, and σ2 = 1 for
Example 1.3, andm1 = 1,m2 = m, and θ = 1 for Example 1.4. Nominal levels of 0.01, 0.05, and
0.10 are considered. The logarithm transformation is applied to the original data before using
the EM test. The initial set Λ = {0.1, 0.2, . . . , 1} and iteration number K = 3 are used to calcu-
late the EM test statistic.

One competitive method for testing homogeneity under the semiparametric two-sam-
ple model is the score test proposed by Qin and Liang [1]. This method is based on

S
(
α, β
)
=

∂l
(
λ, α, β

)

∂λ

∣
∣
∣
∣
∣
λ=0

=
n1∑

j=1

(
eα+βyj − 1

)
, (5.1)

where l(λ, α, β) is the log empirical likelihood function given in (2.4). Let (α̂1, β̂1) =
argmaxα,βl(1, α, β). The score test statistic was defined as T1 = S(α̂1, β̂1)/(1+n1/n0), which has
a χ2

1 limiting distribution under the null hypothesis.
We compare the EM test and the score test in terms of type I error and power. We calcu-

late the type I errors of eachmethod under the null hypothesis based on 20,000 repetitions and
the power under the alternative models based on 2,000 repetitions. For fair comparison, sim-
ulated critical values are used to calculate the power. We consider two sample sizes: 50 and
200 and K = 1, 2, 3. Tables 1 and 2 contain the simulation results for the log-normal models
and Tables 3 and 4 for the gamma models.

The results show that the EM test and the score test have similar type I errors. For both
methods, the type I errors are somehow larger than the nominal levels when the sample size is
n = 50; they are close to the nominal levels when the sample size is increased to n = 200. For
the log-normal models, two methods have almost the same power when the alternatives are
close to each other such as μ = 1; the EM test becomes much more powerful when the alterna-
tives are distant and the sample size increases. In the case of n = 50, λ = 0.2, μ = 3, and nomi-
nal level 0.01, the EM test has a 10% gain in power compared with the score test; the gain
rushes up to almost 30% when λ = 0.1, μ = 3, and the sample size increases to n = 200. For the
gamma models, the advantage of the EM test is more obvious. For both sample sizes n = 50
and 200, the EM test is more powerful than the score test.

6. Real Example

We apply our EM test procedure to the drug abuse data [15] in a study of addiction to mor-
phine in rats. In this study, rats got morphine by pressing a lever and the frequency of lever
presses (self-injection rates) after six-day treatment with morphine was recorded as response
variable. The data consist of the number of lever presses for five groups of rats: four treatment
groups with different dose levels and one saline group (control group).

We analyzed the response variables (the number of lever presses by rats) of the treat-
ment group at the first dose level and the control group. The data is tabulated in Table 3 of Fu
et al. [5]. Following Boos and Browine [16] and Fu et al. [5], we analyze the transformed data,
log10(R+ 1)with R being the number of lever presses by rats. Instead of using the parametric
models as Boos and Browine [16] and Fu et al. [5], we adopt Anderson’s semiparametric
approach. That is, we assume that the response variables in control group comes from f(x),
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Table 1: Type I error and power comparisons (%) of the EM test and the score test (SC test) for log-normal
model: n0 = n1 = 50.

λ μ Level EM(1)
n EM(2)

n EM(3)
n SC test

0 10 11.9 12.2 12.2 11.5
0 5 6.3 6.5 6.5 6.4
0 1 1.6 1.6 1.6 1.9

0.1 1 10 14.8 14.5 14.5 14.6
0.1 1 5 8.5 8.6 8.6 8.6
0.1 1 1 2.5 2.5 2.5 2.4

0.1 2 10 27.2 28.1 28 25.6
0.1 2 5 17.8 18.4 18.4 16.7
0.1 2 1 6.6 6.7 6.7 6.2

0.1 3 10 47.1 48.3 48.3 41.4
0.1 3 5 34.2 35.6 35.4 30.8
0.1 3 1 15.4 15.6 15.6 14.9

0.2 1 10 25.5 25.9 26 25.6
0.2 1 5 16.4 16.4 16.4 17
0.2 1 1 5.4 5.3 5.3 5.7

0.2 2 10 62.2 62.7 62.7 56.7
0.2 2 5 50.6 51.3 51.2 45.9
0.2 2 1 28.4 28.5 28.5 24.7

0.2 3 10 88.3 88.8 88.8 81
0.2 3 5 81 82.3 82.3 73.4
0.2 3 1 61.7 61.9 61.9 51.5

0.3 1 10 43.3 42.9 42.8 42.8
0.3 1 5 31.3 31.1 31.1 31.6
0.3 1 1 14.2 14.2 14.2 13.9

0.3 2 10 88.1 88.5 88.5 84.2
0.3 2 5 80.8 80.8 80.8 76.8
0.3 2 1 61.5 61.5 61.5 55.3

0.3 3 10 99.3 99.3 99.3 97
0.3 3 5 98 98.2 98.2 94.8
0.3 3 1 93 93.2 93.2 85.2

while the response variables in treatment group comes from h(x) = (1 − λ)f(x) + λg(x)
with g(x)/f(x) = exp(α + βx). The EM test statistics for testing homogeneity under the
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Table 2: Type I error and power comparisons (%) of the EM test and the score test (SC test) for log-normal
model: n0 = n1 = 200.

λ μ Level EM(1)
n EM(2)

n EM(3)
n SC test

0 10 10.4 10.5 10.6 10.2
0 5 5.5 5.6 5.6 5.4
0 1 1.2 1.2 1.2 1.2

0.1 1 10 26.5 26.7 26.5 26.2
0.1 1 5 17.2 17.2 17.2 16.4
0.1 1 1 5.8 5.9 6 5.6

0.1 2 10 68.3 69 69.2 58.4
0.1 2 5 58.5 58.8 58.9 47.4
0.1 2 1 37 37.1 37.4 25.1

0.1 3 10 96.4 96.8 97 84.4
0.1 3 5 94.6 94.8 95.2 77.6
0.1 3 1 86.2 87.2 87.4 58.6

0.2 1 10 63 62.9 62.8 62.1
0.2 1 5 50.2 50 50 49.4
0.2 1 1 27.8 27.6 27.5 26.2

0.2 2 10 99.2 99.3 99.4 97.5
0.2 2 5 98.6 98.6 98.6 95
0.2 2 1 95.1 95.2 95.2 85.5

0.2 3 10 100 100 100 100
0.2 3 5 100 100 100 99.9
0.2 3 1 100 100 100 99.2

0.3 1 10 89.5 89.5 89.6 89
0.3 1 5 84 83.9 83.9 82.6
0.3 1 1 65.1 64.9 64.6 63

0.3 2 10 100 100 100 100
0.3 2 5 100 100 100 99.9
0.3 2 1 100 100 100 99.7

0.3 3 10 100 100 100 100
0.3 3 5 100 100 100 100
0.3 3 1 100 100 100 100

semiparametric two-sample model are found to be EM(1)
n = 14.090, EM(2)

n = 14.150, and
EM(3)

n = 14.167. Calibrated by the χ2
1 limiting distribution, the P values are all around 0.02%.



10 Journal of Probability and Statistics

Table 3: Type I error and power comparisons (%) of the EM test and the score test (SC test) for gamma
model: n0 = n1 = 50.

λ m Level EM(1)
n EM(2)

n EM(3)
n SC test

0 10 12.2 12.5 12.5 12.1
0 5 6.4 6.6 6.6 6.7
0 1 1.4 1.4 1.4 2.3

0.1 2 10 14.9 15.1 15.2 12
0.1 2 5 8.8 8.9 8.9 6.4
0.1 2 1 2.8 2.8 2.8 0.6

0.1 3 10 19.6 19.9 19.9 14.1
0.1 3 5 13.2 13.2 13.2 7.7
0.1 3 1 4.3 4.4 4.4 1

0.1 4 10 25.5 26.4 26.5 17
0.1 4 5 17.5 17.9 17.9 9.2
0.1 4 1 6.3 6.4 6.4 1.1

0.2 2 10 22.9 22.7 22.8 17.6
0.2 2 5 14.4 14.3 14.3 9.2
0.2 2 1 4.5 4.7 4.7 1.2

0.2 3 10 39.6 39.9 40 27.4
0.2 3 5 29.1 29.5 29.5 16.7
0.2 3 1 14.3 14.4 14.4 4

0.2 4 10 61.1 61.7 61.7 37
0.2 4 5 49.2 49.6 49.6 24.1
0.2 4 1 28.4 28.6 28.6 6.6

0.3 2 10 36.3 36.4 36.4 28.6
0.3 2 5 26.1 25.9 25.9 16.9
0.3 2 1 11.9 11.9 11.9 3.1

0.3 3 10 67.2 67.2 67.2 48.9
0.3 3 5 55.8 55.8 55.8 35.1
0.3 3 1 34 34 34.1 11.3

0.3 4 10 87.9 88.1 88.2 67.5
0.3 4 5 81.8 82.2 82.2 53.4
0.3 4 1 63.1 63.3 63.4 21.4

We also applied the score test of Qin and Liang [1]. The score test statistic is 9.417 with the P
value equal to 0.2% calibrated by the χ2

1 limiting distribution. We also used the permutation



Journal of Probability and Statistics 11

Table 4: Type I error and power comparisons (%) of the EM test and the score test (SC test) for gamma
model: n0 = n1 = 200.

λ m Level EM(1)
n EM(2)

n EM(3)
n SC test

0 10 11.2 11.3 11.3 11.1
0 5 5.9 5.9 6 5.7
0 1 1.2 1.2 1.2 1.4

0.1 2 10 23.1 22.7 22.7 19.7
0.1 2 5 14.2 14.2 14.2 11.7
0.1 2 1 5.1 5.1 5.2 3.1

0.1 3 10 39.6 39.8 39.9 29.5
0.1 3 5 29 29.4 29.6 19
0.1 3 1 13.2 13.4 13.5 4.8

0.1 4 10 62.3 62.5 62.7 37.5
0.1 4 5 52.2 52.5 52.8 26.2
0.1 4 1 32.5 33.2 33.7 8.5

0.2 2 10 49 48.9 48.9 43.8
0.2 2 5 36.6 36.7 36.5 30.6
0.2 2 1 19.4 19.4 19.4 11.4

0.2 3 10 88.2 88.2 88.4 73
0.2 3 5 81.5 81.6 81.6 61.2
0.2 3 1 64.6 64.6 64.8 34.6

0.2 4 10 98.9 98.9 98.9 87.1
0.2 4 5 98 98.1 98.1 79.7
0.2 4 1 94.3 94.2 94.2 54.5

0.3 2 10 78.5 78.5 78.6 73
0.3 2 5 70.1 70 70 62.5
0.3 2 1 48.7 48.8 48.8 34.9

0.3 3 10 99.2 99.2 99.2 96.1
0.3 3 5 98.8 98.8 98.8 93
0.3 3 1 96.5 96.5 96.5 78.8

0.3 4 10 100 100 100 99.4
0.3 4 5 100 100 100 98.7
0.3 4 1 100 100 100 92.5

methods to get the P values of the two types of tests. Based on 50,000 permutations, the P
values of the three EM test statistics are all around 0.03%, and the P value of the score test is
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around 0.5%. In accordance with Fu et al. [5], both methods suggest a significant treatment
effect, while the proposed EM test has much stronger evidence than the score test.

Appendix

Proofs

The proofs of Theorems 3.1 and 3.3 are based on the three lemmas given below. Lemma A.1
assesses the order of the maximum empirical likelihood estimators of α and βwith λ bounded
away from 0 under the null hypothesis. Lemma A.2 shows that the EM iteration updates the
value of λ by the amount of order op(1). Theorem 3.1 is then proved by iteratively using
Lemmas A.1 and A.2. Lemma A.3 gives an approximation of the penalized ELR for any λ
bounded away from 0, based on which we prove Theorem 3.3.

Lemma A.1. Assume the conditions of Theorem 3.1. Let λ ∈ [ε, 1] for some constant ε > 0 and
(α, β) = argmaxα,βpR(λ, α, β). Then, we have

α = Op

(
n−1
)
, β =

y − x

λσ2
+ op
(
n−1/2

)
(A.1)

with x = 1/n0
∑n0

i=1 xi and y = 1/n1
∑n1

j=1 yj .

Proof. Since λ ≥ ε > 0, the parameters (α, β) in the empirical likelihood ratio are identifiable.
Therefore, (α, β) are

√
n-consistent to the true value (0, 0), that is, α = Op(n−1/2) and β =

Op(n−1/2) [10].
Following the arguments in Section 4, the maximum empirical likelihood estimate

(α, β) should satisfy (here λ is suppressed to λ)

∂G
(
ξ, α, β

)

∂α
= −2

n∑

h=1

ξeα+βth

1 + ξ
(
eα+βth − 1

) + 2
n1∑

j=1

λeα+βyj

1 − λ + λeα+βyj

= 0, (A.2)

∂G
(
ξ, α, β

)

∂β
= −2

n∑

h=1

ξeα+βth th

1 + ξ
(
eα+βth − 1

) + 2
n1∑

j=1

λeα+βyj yj

1 − λ + λeα+βyj

= 0 (A.3)

with

ξ =
1
n

n1∑

j=1

λeα+βyj

1 − λ + λeα+βyj

. (A.4)

Applying Taylor expansion on the right-hand side of (A.4), we get

ξ =
n1

n
λ + op(1). (A.5)
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Further applying first-order Taylor expansion to (A.2) and using (A.4), we get

nξ
(
1 − ξ
)
α + ξ
(
1 − ξ
) n∑

h=1

thβ − n1λ
(
1 − λ
)
α − λ

(
1 − λ
) n1∑

j=1

yjβ = Op(n)
(
α2 + β

2
)
. (A.6)

Note that both α and β are of order Op(n−1/2) and that both
∑n

h=1 th and
∑n1

j=1 yj have order

Op(n1/2). Combining (A.5) and (A.6) yields n1λ(λ−n1/nλ)α = Op(1). Therefore, α = Op(n−1).
Similarly, first-order Taylor expansion of (A.3) results in

0 = −ξ
n∑

h=1

th − ξ
(
1 − ξ
) n∑

h=1

thα − ξ
(
1 − ξ
) n∑

h=1

t2hβ

+ λ
n1∑

j=1

yj + λ
(
1 − λ
) n1∑

j=1

yjα + λ
(
1 − λ
) n1∑

j=1

y2
j β +Op(n)

(
α2 + β

2
)
.

(A.7)

With the same reasoning as for α, it follows from (A.7) that

{
n1λ

(
1 − n1

nλ

)
σ2 − n1λ

(
1 − λ
)
σ2
}

β = λ
n1∑

j=1

yj − n1

n
λ

n∑

h=1

th + op
(
n1/2
)
. (A.8)

After some algebra, we have β = (y − x)/(λσ2) + op(n−1/2), which completes the proof.

Suppose that λ, α, and β have the properties given in Lemma A.1. For j = 1, . . . , n1, let
wj = λ exp(α + βyj)/(1 − λ + λ exp(α + βyj)). The updated value of λ is

λ
∗
= argmax

λ

⎧
⎨

⎩

n1∑

j=1

(
1 −wj

)
log(1 − λ) +

n1∑

j=1

wj log(λ) + log(λ)

⎫
⎬

⎭
. (A.9)

It can be verified that the close form of λ
∗
is given by λ

∗
= (1/(n1 + 1))(

∑n1
j=1 wj + 1). We now

show that the above iteration only changes the value of λ by an op(1) term.

Lemma A.2. Assume the conditions of Lemma A.1 hold. Then, λ
∗
= λ + op(1).

Proof. Let λ̂ =
∑n1

j=1 wj/n1. According to Lemma A.1, α = op(1) and β = op(1). Applying the
first-order Taylor expansion, we have

λ̂ =
1
n1

n1∑

j=1

λ exp
(
α + βyj

)

1 − λ + λ exp
(
α + βyj

) = λ +Op(1)
(
α + β

)
= λ + op(1). (A.10)
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Some simple algebra work shows that

λ
∗ − λ̂ =

1 − λ

n1 + 1
= op(1). (A.11)

Therefore, λ
∗
= λ + op(1), and this finishes the proof.

Proof of Theorem 3.1. With the above two technical lemmas, the proof is the same as that of
Theorem 1 in Li et al. [13] and therefore is omitted.

The next lemma is a technical preparation for proving Theorem 3.3. It investigates the
asymptotic approximation of the penalized ELR for any λ bounded away from 0.

Lemma A.3. Assume the conditions of Theorem 3.1 and λ ∈ [ε, 1] for some ε > 0. Then,

pR
(
λ, α, β

)
= nρ
(
1 − ρ
)
σ−2(y − x

)2 + 2 log
(
λ
)
+ op(1). (A.12)

Proof. With Lemma A.1, we have α = Op(n−1) and β = Op(n−1/2). Applying second-order
Taylor expansion on pR(λ, α, β) and noting that ∂pR/∂α|(α,β)=(0,0) = 0, we have

pR
(
λ, α, β

)
= 2

⎛

⎝−ξ
n∑

h=1

th + λ
n1∑

j=1

yj

⎞

⎠ β −
⎧
⎨

⎩
ξ
(
1 − ξ
) n∑

h=1

t2h − λ
(
1 − λ
) n1∑

j=1

y2
j

⎫
⎬

⎭
β
2

+ 2 log
(
λ
)
+ op(1).

(A.13)

Using (A.5) and the facts that both
∑n

h=1 t
2
h
/n and

∑n1
j=1 y

2
j /n1 converge to σ2 in probability,

the above expression can be simplified to

pR
(
λ, α, β

)
= 2

n1n0

n
λ
(
y − x

)
β − n1n0

n
λ
2
σ2β

2
+ 2 log

(
λ
)
+ op(1). (A.14)

Plugging in the approximation β = (y − x)/(λσ2) + op(n−1/2), we get

pR
(
λ, α, β

)
=

n1n0

n

(
y − x

)2

σ2
+ 2 log

(
λ
)
+ op(1)

= nρ
(
1 − ρ
)
σ−2(y − x

)2 + 2 log
(
λ
)
+ op(1).

(A.15)

This completes the proof.

Proof of Theorem 3.3. Without loss of generality, we assume 0 < λ1 < λ2 < · · · < λL = 1. Accord-
ing to Theorem 3.1 and Lemma A.3, for l = 1, . . . , L, we have

pR
(
λ
(K)
l , α

(K)
l , β

(K)
l

)
= nρ
(
1 − ρ
)
σ−2(y − x

)2 + 2 log(λl) + op(1). (A.16)
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This leads to

EM(K)
n = max

1≤l≤L
pR
(
λ
(K)
l , α

(K)
l , β

(K)
l

)
= nρ
(
1 − ρ
)
σ−2(y − x

)2 + op(1), (A.17)

where the remainder is still op(1) since the maximum is taken over a finite set.
Note that when n tends to infinity,

√
n(y − x) −→ N(0, σ2/[ρ(1 − ρ)]) in distribution.

Therefore,

EM(K)
n −→ χ2

1 (A.18)

in distribution as n goes to infinity. This completes the proof.
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