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Multivariate phenotypes are frequently encountered in genetic association studies. The purpose
of analyzing multivariate phenotypes usually includes discovery of novel genetic variants of
pleiotropy effects, that is, affecting multiple phenotypes, and the ultimate goal of uncovering the
underlying genetic mechanism. In recent years, there have been new method development and
application of existing statistical methods to such phenotypes. In this paper, we provide a review
of the available methods for analyzing association between a single marker and a multivariate
phenotype consisting of the same type of components (e.g., all continuous or all categorical)
or different types of components (e.g., some are continuous and others are categorical). We
also reviewed causal inference methods designed to test whether the detected association with
the multivariate phenotype is truly pleiotropy or the genetic marker exerts its effects on some
phenotypes through affecting the others.

1. Introduction

Association studies, where the correlation between a genetic marker and a phenotype is
assessed, are useful for mapping genes influencing complex diseases. With reduction of
genotyping cost, completion of the HapMap Project [1], and more recently the 1000 Genomes
Project [2], genome-wide association studies (GWAS) with several hundred thousands to
tens of millions genotyped and/or imputed single nucleotide polymorphisms (SNPs) have
become a common approach nowadays to search for genetic determination of complex traits.

In the study of complex diseases, several correlated phenotypes, or a multivariate
(MV) phenotype with several components, may be measured to study a disorder or
trait. For example, hypertension is evaluated using systolic and diastolic blood pressures;
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a person’s cognitive ability is usually measured by tests in domains including memory,
intelligence, language, executive function, and visual-spatial function. The tests within and
between domains are correlated. Most published GWAS only analyzed each individual
phenotype separately, although results on related phenotypes may be reported together.
Published single phenotype GWAS have successfully identified a large number of novel
genetic variants predisposing to a variety of complex traits [3, 4]. However, majority of
the identified genetic variants only explain a small fraction of total heritability defined
as between individual phenotype variability attributable to genetic factors [4, 5]. It has
been hypothesized that current GWAS may be underpowered to detect many genetic
variants of moderate-to-small effects. Joint analysis of correlated phenotypes can exploit
the correlation among the phenotypes, which may lead to better power to detect additional
genetic variants with small effects across multiple traits or pleiotropy effects. Furthermore,
joint analysis avoids multiple testing penalty incurred in analyzing each phenotype
separately. Therefore, it is important to identify appropriate methods that fully utilize
information in multivariate phenotypes to detect novel genetic loci in genetic association
studies.

In addition to discovery of novel loci of potential pleiotropy effects, it is also
important to detangle the complex relationship between phenotype components and genetic
variants One of the frequently asked questions is whether a genetic variant affects multiple
phenotypes simultaneously (pleiotropy) or affects one phenotype through affecting another
phenotype. In this paper, we review methods for both purposes.

2. Methods for Detecting Association Using Multivariate Phenotypes

For all the methods mentioned in this section, the null hypothesis is no association between a
single genetic marker and any components of a multivariate (MV) phenotype; the alternative
hypothesis is the genetic maker associated with at least one phenotype component. Here we
reviewmethods for an MV phenotype consisting of all continuous, all categorical, or all time-
to-event components, and methods for MV phenotypes consisting of a mixture of different
types of components.

2.1. Regression Models

Regression models for clustered observations such as linear and generalized mixed effects
models, generalized estimating equations, and frailty models can be used to analyze the
association of a genetic marker with all continuous, categorical, or survival multivariate
phenotypes.

2.1.1. Mixed Effects Models

Mixed effects models such as linear mixed effects model (LME) and generalized linear mixed
effects model (GLMM) involve using fixed effects for the genetic marker effect and random
effects to account for correlation among multivariate phenotypes [6, 7].

Let yjk denote the kth (k = 1, . . . , K) continuous component of the K-dimensional
phenotype of the jth (j = 1, . . . , J) individual. Let gj be the genotype of a genetic marker of
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the jth individual, and X(gj) a score of the genotype. The linear mixed effects model takes
the following form:

yjk = β0 + βkX
(
gj
)
+ ηjk + ejk, (2.1)

where β0 is the intercept or other genetic or environmental fixed effects; βk is the fixed
effect size of X(gj) on the kth phenotype; ηjk(k = 1, . . . , K) ∼ N(0,Σ) are the random
effects correlated within jth person; ejk is the random errors iid. ∼ N(0, σ2

e ). Between any
two individuals, ηjk, k = 1, . . . , K are independent. Within a person, ηjk, k = 1, . . . , K are
correlated. The null hypothesis that the genetic marker is not associated with any phenotype
component corresponds to H0 : β1 =, . . . , βK = 0. The estimation of variance parameters
and fixed effect parameters can be obtained using restricted maximum likelihood method
(REML) [8, 9].

When yjk is categorical, it can be modeled with generalized mixed effects model
(GLMM) as follows:

E
(
yjk | ηk

)
= μ−1

(
β0 + βkX

(
gj
)
+ ηjk

)
, (2.2)

where μ is a link function and μ−1 is its inverse. For Gaussian distributed traits, μ is the
identity link, thus (2.2) is identical to the linear mixed effects model (2.1); for binary traits,
μ is the logit link μ(x) = ln(x/1 − x). For links other than identity function, the likelihood
for this model contains integrals without a close form solution. All existing algorithms for
likelihood maximization are either based on theoretical or numerical approximation [10, 11].

The null hypothesis under the LME or GLMM can be tested using the likelihood ratio
test or Wald chi-squared test. They can be implemented using SAS PROC Mixed or R lme4
package function lmer(). The Wald chi-squared test statistic takes the form βTcov(β)−1β ∼ χ2

K,
where β = (β1, . . . , βK) is estimated using (2.1) or (2.2). For example, Kraja et al. [12] have
employed a model similar to (2.1) to the analyses of bivariate continuous metabolic traits. We
can also fit a model assuming β1 = · · · = βK = β, that is, E(yjk | ηk) = μ−1(β0 + βX(gj) + ηjk),
where a single degree-of-freedom (df) test β̂/se(β̂) can be used to test the null hypothesis.
This test can be more powerful than the multi-df Wald chi-squared test if the effect sizes are
in the same direction and not very different. It, however, may lack power if the β1, . . . , βKare
very different, especially have different signs and cancel each other out.

2.1.2. Frailty Models

When the phenotypes are correlated survival times, frailty models can be used to fit the
association model. Suppose the survival or censoring times are tkj for the kth (k = 1, . . . , K)
phenotype of the jth (j = 1, . . . , J) individual. Let gj be the genotype of a genetic marker of
the jth individual, and X(gj) a score of the genotype as follows:

h
(
tkj ;X

(
gj
))

= h0
(
tkj

)
exp

(
β0 + βX

(
gj
)
+ ηkj

)
, (2.3)

where ηkj(j = 1, . . . , J) are subject specific random effects following N(0,Σ), and Σ is a K-
dimensional correlation matrix. This is the Gaussian frailty model. There is another class of
frailty models where exp(ηkj) follows a gamma distribution. A Gaussian or gamma frailty
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model assuming an exchangeable correlation within a person can be fitted using coxph() in
the survival package of R by including a frailty() term in the regressor. In addition, including
a cluster() term in coxph() fits generalized estimating equations (GEE) type of model that
assumes an independent working correlation matrix [13]. Frailty models with an arbitrary
prespecified Σ can be fitted with the coxme() in R coxme package for Gaussian random effects
model.

Fitting a mixed effects (frailty) model requires predetermining the correlation matrix
Σ of random effects ηjk within jth person. The correlation between the phenotypes yjk within
a person is attributable to the random effects ηjk and the fixed effects of the genetic marker.
However, since the fixed effects are unknown, it is impossible to directly infer the correlation
among the random effects. Misspecifying the correlation among random effects may result
in bias in the inference on fixed effects. But the bias seems to be small for genetic association
studies [14, 15].

2.1.3. Generalized Estimating Equations

Different from mixed effects model is a class of models called marginal models. Instead of
having random effects as regressors in addition to random errors to model correlation in
multivariable response, marginal models collapse the random effects and random residual
errors in the model. Generalized estimating equations (GEE) [16] solve the quasi-likelihood
score function as follows:

n∑

j=1

(
∂μj

∂β

)t

Vj
−1(Yj − μj

)
= 0, (2.4)

where Vj = A1/2
j R(α)A1/2

j , and R(α) is the working correlation matrix for the residual
correlation. The variance and covariance of β is estimated with the so-called robust variance
estimator [16]. Similar to the LME, single- or multi-df Wald test statistic can be usually used
to test that the genetic marker is not associated with any of the phenotypes.

In our experience, GEE results are inflated with low minor frequency SNPs and not as
powerful as LME in general [15, 17]. However, GEE is robust to misspecification of response
distribution or association model and thus can be used when the LME shows bias or inflation
due to these reasons.

2.2. Variable Reduction Method

Variable reduction approaches are in general only applicable to MV phenotype consisting of
all continuous phenotypes that are approximately normal distributed. It derives a single or a
few new phenotypes that are linear combinations of the original phenotypes, for example,

Ỹ = a1Y1 + a2Y2 + · · · + aKYK. (2.5)

Existing methods include principal components analysis (PCA) where for the first
component, ai, i = 1, . . . , K are coefficients that maximize the variance of Ỹ ; principal
component of heritability (PCH) with coefficients maximizing the total heritability of Ỹ [18]
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and penalized PCH applicable to high-dimensional data [19, 20]; and principal components
of heritability with coefficients maximizing the quantitative trait locus (QTL) heritability
(PCQH) of Ỹ [21–24], that is, the variance explained by the genetic marker. The PCQH
approaches are designed to maximize the individual phenotype variation explained by the
genetic marker and thus may be more powerful than PCA and PCH in genetic association
studies.

2.2.1. PCQH Approaches

The approaches proposed by Lange et al. [21, 25] and Klei et al. [23] involve using a subset
of the sample to estimate the coefficients in (2.5) that maximize the correlation between Ỹ
and the genetic marker. Specifically, in the estimation sample, the total phenotype variance is
partitioned into QTL variance and residual variance as follows:

Vp = Vq + Vε, (2.6)

where Vp is the K × K total phenotype variance-covariance matrix, Vq the QTL variance
matrix, and Vε the residual variancematrix. LetA = (α1, . . . , αK), then the variance of Ỹ = AtY
explained by the genetic marker is

h2
A =

AtVqA

AtVpA
. (2.7)

A that maximizes h2
A can be obtained by solving the following generalized eigen system [18]:

VqA = λVpA. (2.8)

Vq = var(β1X, . . . , βKX) can be approximated by Γ11tΓ, where Γ = diag(|β1|σx, . . . , |βK|σx),
σx is the sample standard deviation of the score of genotype X(g) across all individuals,
βi is estimated using the least squared estimator of Yi = α + βiX(g) + ε, and 1 =
(sign(β1), . . . , sign(βK)).

Lange et al. [21, 25] approaches are only applicable to family-based association design.
They suggest using the noninformative families or parental genotypes to estimate A because
these data will not contribute directly to the family-based association tests (FBAT). Then
perform FBAT of Ỹ on X(g). However, FBAT has low power in the absence of population
stratification [26] compared to population based approaches. Klei et al’s. [23] is a population-
based association approach where they randomly split the sample into two subsets: one used
to estimate A, the other used to test the association of Ỹ with X(g) via a linear regression
model: Ỹ = α + βX(g) + ε. This ensures valid P value in the association test.

2.2.2. Canonical Correlation Analysis

Canonical correlation analysis seeks coefficients so that the squared correlation between Ỹ

in (2.5), and the score of genetic marker, X(g), is maximized. Here ρ̂ = corr(Ỹ , X) is called
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Table 1: Relationship between MANOVA test statistics and canonical correlation for association test of
multivariate phenotype and a genetic marker.

MANOVA test f(ρ̂)
Roy’s largest root ρ̂2

Hotelling-Lawley trace ρ̂2/1 − ρ̂2
Wilks lambda 1 − ρ̂2
Pillai-Bartlett trace ρ̂2

estimated canonical correlation. To obtain ρ̂, the covariance matrix of Y and X is partitioned
as follows:

cov
[
Y
X

]
=
[
ΣYY ΣYX

ΣXY ΣXX

]
, (2.9)

where ΣYY is the K ×K matrix of the variance-covariance matrix of Y , ΣYX and its transpose
ΣXY are K × 1 and 1 × Kmatrix of the covariance matrix between Y and X, ΣXX is the
variance of X, a scalar. All these submatrices can be estimated using the respective sample

co-variance matrix. The canonical correlation, ρ̂ = ΣXYA/(AtΣYYAΣXX)
1/2

, is solved as the
squared root of the largest eigenvalue of Σ−1YYΣYXΣ−1XXΣXY , and the corresponding eigenvector
A contains the coefficients for constructing Ỹ . multivariate analysis of variance (MANOVA)
tests correspond to evaluating canonical correlation. Table 1 details the relationship between
ρ̂ and commonly reported test statistics in MANOVA of a multivariate phenotype Y on X(g)
[27].

These tests are implemented in SAS PROC GLM and R function summary.manova().
As part of the PLINK package specifically developed for genetic analysis, Ferreira et al.
[24] implemented the Wilks lambda, and its P value is obtained from F-approximation
F = (ρ̂2/K)/((1 − ρ̂2)/(n −K − 1)).

Canonical correlation analysis shares similarity with PCQH [23] in that both estimate
a linear combination of original phenotypes, so that the genotype score explains most of
the variation (in terms of percent of total variance and squared correlation, resp.) of the
new phenotype. The difference between the two approaches is that the canonical correlation
analysis evaluates squared correlation using whole sample, while PCQH estimates the
loadings using a subset of the sample and test the association in the rest of the sample.
Extensive simulation studies performed in [28]. The author of [28] showed that MANOVA
via Wilk’s lambda was substantially more powerful than PCQH [23]withK = 5 phenotypes.

2.3. Combining Test Statistics from Univariate Analysis

An alternative way to analyze multivariate phenotypes is to perform univariate phenotype-
genotype association test for each phenotype individually and then combine the test statistics
from the univariate analysis. The advantage of such approach is the simplicity, that is,
the methods to deal with univariate phenotypes are generally simpler than methods for
MV phenotypes. It is especially useful for analyzing multivariate phenotype consisting
of components of different types of distributions such as continuous, dichotomous, and
survival. Regression methods for analyzing such multivariate phenotype are generally
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complicated and not trivial to implement for MV phenotype with dimension > 2, see for
example, [29, 30].

In recent years, researchers have generated large amount of univariate GWAS results
for a variety of complex traits. Methods that combine the univariate results of multiple traits
to detect genetic markers associated with multiple phenotypes are appealing.

2.3.1. Methods for Homogeneous Genetic Effects across Phenotypes

Assume that T = [T1, T2, . . . , TK]
T is a vector of K test statistics obtained from association

analyses of each individual component phenotype against the genetic marker. Assume that T
follows a multivariate normal distribution with mean τ = (τ1, τ2, . . . , τK)

Tand a nonsingular
covariance matrix Σ. For example, T can be the β coefficients from least squared regression
model for individual components or the t-test statistics from the regression models. The null
hypothesis of no association to any phenotypes is H0: τ = (τ1, τ2, . . . , τK)

T = 0. O’Brien [31–33]
suggested the following linear combination of T1, T2, . . . , TK, with weight e = (1, 1, . . . , 1)T of
length K:

S = eTΣ−1T (2.10)

when τ1 = τ2 = · · · = τK /= 0 (2.10) is the most powerful test among a class of tests statistics
that are linear combinations of T1, T2, . . . , TK. Under the null hypothesis, S follows the normal
distribution with mean 0 and variance eTΣ−1e. To estimate Σ with GWAS results, Yang et al.
[34] suggested using the sample covariance matrix of the statistics on a large number of SNPs
genomewide with little or no linkage disequilibrium among them (say HapMap r2 < 0.1).

The power of O’Brien’s method depends on the assumption τ1 = τ2 = · · · = τK. When
the means are very different or with opposite signs, O’Brien’s method may not be efficient.
Yang et al. proposed a sample splitting approach that replaces the uniform weight eT by
weights w estimated using a portion of the sample and only used the remaining sample
to estimate T in (2.10), that is, S = wTΣ−1T. To overcome the variability introduced by a
random sample splitting, Yang et al. also evaluated a cross-validation approach that averages
the test statistics of 10 random splitting samples. The results showed that when τ1, τ2, . . . , τK
are of different magnitude or in opposite directions, O’Brien’s method is less powerful than
Yang et al., which indicates room for improvements for O’Brien’s method. However, the
sample splitting and cross-validation methods are less powerful than O’Brien’s method with
homogeneous effect sizes.

2.3.2. Methods for Heterogeneous Genetic Effects across Phenotypes

The limitation of O’Brien statistic is that it is not powerful for heterogeneous effects across
multiple phenotypes, especially if some effects are of opposite directions. Another class of
statistics that takes a quadratic form of the vector of the individual association statistic may
overcome the limitation. For example, the following Wald chi-squared type test statistic was
mentioned in Xu et al. [32].

Sw = TTΣ−1T. (2.11)
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The difference between (2.10) and (2.11) is that the vector e = (1, 1, . . . , 1)T is replaced by theT
in (2.11). S follows a chi-squared distribution with degree of freedom equal to the number of
the phenotypesK or rank ofΣ if it is not full rank. Due to the “curse of dimensionality,” power
of (2.11) is diminishing with the increased number of phenotypes. Similar problem has been
extensively studied and discussed in high-dimensional data analysis field and most recently
in the analyses of multiple rare variants. Borrowing ideas from these fields, we propose the
following test statistic that may be more powerful than (2.10) and (2.11) with heterogeneous
effects.

Ssq = TTT =
K∑

i=1

t2i . (2.12)

The difference between (2.12) and (2.11) is that there is no variance-covariance matrix in
(2.12). This statistic was first proposed by Pan [35] to analyze multiple rare or common
variants against a single phenotype, where the ti is the beta coefficient for the ith genetic
variant. Different from Pan [35], here ti is the association statistic for the ith phenotype with
a single marker. Based on the groundwork of Zhang [36], Pan [35] pointed out that the
distribution of (2.11) is a mixture of single degree-of-freedom chi-squared variates,

∑K
i=1 ciχ

2
1

where cis are the eigen values of Σ, that is, the variance-covariate matrix of ti. The distribution
of (2.12) can be well approximated by aχ2

d
+ b with

a =
∑K

i=1 c
3
i

∑K
i=1 c

2
i

, b =
K∑

i=1

ci −

(∑K
i=1 c

2
i

)2

∑K
i=1 c

3
i

, d =

(∑K
i=1 c

2
i

)3

(∑K
i=1 c

3
i

)2
. (2.13)

The P value is calculated as p(χ2
d

> (SSq − b)/a). The degree of freedom of the Ssq may
be less than K with highly correlated phenotypes. In addition, (2.12) does not have the
problem of instability observed for (2.10) and (2.11)when some of the components are highly
correlated (in one of our applications, a correlation ∼0.7 has resulted in inflated results for
(2.10) and (2.11)). We have developed an R package CUMP (combining univariate results of
multivariate phenotypes) that have implemented all the aforementioned combining statistics
approaches. The software can be downloaded at (http://people.bu.edu/qyang/), and a
short report of this software is submitted [37].

3. Identifying Pleiotropy

All the aforementioned methods can be used to detect association that is potentially due to
pleiotropy. But they do not answer the question if the detected association is truly pleiotropy,
that is, the marker locus affects all components of the MV phenotype directly. The detect
association can affect some of the phenotypes and/or mediate through these phenotypes
to affect the other phenotypes. Vansteelandt et al. [38] illustrated potential confounding
mechanism between the genotype of a genetic marker and a phenotype using a causal
diagram (Figure 1): the association between the genotype, denoted as G, and the response
phenotype Y can occur through the paths connecting the two variables along all unbroken
sequences of edges regardless of the direction of the arrows, given that there are no colliders
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U

L

K

G

Y

Figure 1: Causal diagram showing potential confounding mechanisms for the association between the
genotype of a genetic markerG and the phenotype Y . The variableK denotes the intermediate phenotype,
L the collection of known environmental and genetic risk factors, and U the unknown environmental
and genetic risk factors such as population stratification and unknown genetic variants in linkage
disequilibrium with G.

(i.e., variables in which two arrows converge, e.g., variables K and L in Figure 1) in the
sequence [39].

The genotype G may be associated with Y due to (1) direct causal effect, that is, G →
Y ; (2) through intermediate phenotype or risk factors, that is, G → K → Yor G → L →
K → Y ; (3) because of confounding factors, that is,G← U → Y orG← U → L → K → Y .

The authors showed that two commonly used approaches to detangle the complex
relationship between phenotypes, genotype, and traditional risk factors are flawed. The first
commonly used approach derives the residuals ofY regressing onK, say Ỹ = Y−βK, and then
the association between G and Ỹ is tested. The disadvantage of this approach is that not only
the direct causal effect ofK on Y is removed but also any indirect effect ofK on Y through G
(e.g., K ← G → Y and Y ← U ← L ← G → K) and other factors (e.g., K ← L → U → Y ).
Therefore β may be biased in the presence of confounding factors which leads to biased test
of G with Ỹ .

The second commonly used approach tests the direct effect of G on Y in a regression
model includingK and L as covariates. Adjustment of K removes the relationship between G
and Y throughG → K → Y ; however, becauseK is a collider (Figure 1), the adjustment ofK
induces a spurious association [39, 40] along the path G → K → L← U → Y . Additionally,
adjusting for L induces spurious associated through the path G → L← U → Y .

To overcome the limitation of the two commonly adapted approaches, Vansteelandt
et al. [38] proposed a least squared regression model to estimate the direct effect size of K
on Y . This regression model includes the suspected intermediate phenotype, the score of the
genetic marker genotype, X(G), and other common risk factors between the two phenotypes
as regressors:

E(Yi) = γ0 + γ1Ki + γ2Xi + γ3Li. (3.1)

The estimated effect size of the phenotype represents the direct effect of theK on Y , that is, not
confounded by the effect ofXmediated through any of the covariates. Then, a new phenotype
is created as the residual of the response subtract the effect of K only Ỹi = Yi − y − γ̂1(Ki − k).
Then, whether the G only exerts its effect on Y through K can be tested using any standard
association test statistic between the residual and the X. A negative result indicates that G
only exerts its effect on Y through K while a positive result indicates that the G has a direct
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effect on Y and/or a spurious effect through other confounders. Extensions of the method to
dichotomous and time-to-event outcomes have been proposed [41, 42].

4. Discussion

In this paper, we reviewed methods available for joint analyzing correlated phenotypes
in genetic association studies. Some of these methods are designed to detect potential
association with multiple phenotypes (pleiotropy), while the others are designed to test
whether the detected association with the MV phenotype is truly pleiotropy or the genetic
marker exerts its effects on some phenotypes through affecting the others.

For methods designed to detect association, each method has its own pros and cons.
Random effects model requires knowledge of residual correlation, and misspecifying the
correlation may incur inflation or power loss. Generalized estimating equations are robust
to misspecification of residual correlation, but it is inflated for low-frequency variants and
less powerful than random effects model in our experience. Variable reduction approaches
are appealing because correlated outcomes are reduced to a single or fewer number
of uncorrelated outcomes. However, in the presence of missing data in the outcomes,
individuals with missing data do not contribute to the analysis, which may result in power
loss. The approaches combining univariate association results are more flexible than the
other methods especially when MV phenotypes consist of a mixture of continuous, discrete,
and/or time-to-events data. Regression approaches have been developed to deal with such
phenotypes. But they are generally complicated and few available software implements
these methods. Since univariate association results are used, individuals with incomplete
observations still contribute to the analysis of available phenotypes. Simulations on all
continuous phenotypes indicated that the power of O’Brien’s method, one of the approaches
combining univariate association results is similar to regression and variable reduction
methods when the effects size are similar across multiple phenotypes [34].

All the approaches introduced here for population based approaches assume unre-
lated individuals. When there are related individuals in the data, not accounting for family
structure can result in inflation or power loss. Extension of introducedmethods to account for
family data are possible. For example, one may add a random effect in mixed effects model
to account for family structure. For approaches combining univariate association results, a
model that account for family structure need be used in the univariate analyses.

In terms of computational cost, mixed effects models may be most time consuming
since maximization of likelihood is required.

Finally, it has been shown that traditional causal inference is useful in distinguishing
true pleiotropy from other mechanisms that also result in genetic association with multiple
phenotypes. A related causal inference in recent genetic literature is Mendelian randomiza-
tion test [43–45]. This approach can be used to infer whether an intermediate phenotype has
a causal effect on an outcome phenotype, using genetic marker(s) in association with the
intermediate phenotype. Unlike a phenotype that is subject to the influence of uncontrolled
environmental factors and/or reverse causation of another phenotype, genotype(s) of genetic
marker(s) is(are) free of influence of environmental factors and reverse causation. For this
approach, marker genotype(s) is(are) used as an instrument variable. This test requires that
there is no pleiotropy effect of the genetic marker on outcome phenotype. Association of the
genotype and outcome phenotype indicates that the intermediate phenotype may causally
affect the outcome phenotype.
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5. URLs to Software Mentioned in This Paper

SAS: http://www.sas.com/,

R: http://www.r-project.org/,

CUMP: http://cran.r-project.org/web/packages/CUMP/index.html,

coxme: http://cran.r-project.org/web/packages/coxme/index.html,

gee: http://cran.r-project.org/web/packages/gee/index.html,

survival: http://cran.r-project.org/web/packages/survival/index.html,

lme4: http://cran.r-project.org/web/packages/lme4/index.html,

PLINK: http://pngu.mgh.harvard.edu/∼purcell/plink/.
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