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The classical linear filter can successfully filter the components from a time series for which
the frequency content does not change with time, and those nonstationary time series with
time-varying frequency (TVF) components that do not overlap. However, for many types of
nonstationary time series, the TVF components often overlap in time. In such a situation, the
classical linear filtering method fails to extract components from the original process. In this
paper, we introduce and theoretically develop the G-filter based on a time-deformation technique.
Simulation examples and a real bat echolocation example illustrate that the G-filter can successfully
filter a G-stationary process whose TVF components overlap with time.

1. Introduction and Background

In this paper we develop filters for G-stationary processes, which are nonstationary processes
with time-varying frequency (TVF) behavior. We begin with a very brief discussion of linear
filters since the filters we develop here are generalizations of the linear filter. The traditional
linear filter is defined as Y (t) = X ∗ a(t) =

∫+∞
−∞ X(t − u)a(u)du, where t ∈ (−∞,∞).

Letting PX(f) and PY (f) denote the power spectra of the stationary input and output
processes X(t) and Y (t), respectively, the fundamental filtering theorem states that PY (f) =
|A(f)|2PX(f), where A(f) =

∫∞
−∞ a(t)e−2πiftdt is the frequency response function [1]. The

importance of this result is that it provides information concerning how the filter, as
represented by the squared frequency response function, |A(f)|2, impacts the frequency
behavior of the output signal. This can be useful in designing filters with specific properties.
Linear filters are commonly used to “filter out” certain frequencies from a time series
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realization. In this discussion we will consider low-pass and high-pass filters which are de-
signed to remove the high-frequency behavior and low frequencies, respectively. We will use
the popular Butterworth filter (see [2]). The squared frequency response function of anNth
order low-pass Butterworth filter is given by

∣
∣A

(
f
)∣∣2 =

1

1 +
(
f/fc

)2N , (1.1)

where fc is the cutoff frequency, and N is the order of the filter. The frequency response
function for a high-pass Butterworth filter has a similar form. Traditional linear filters such as
the Butterworth filter can successfully extract components from stationary processes where
the frequency behavior of the data does not change with time. However, for many nonstation-
ary time series with time varying frequency (TVF) behavior, the time-invariant assumption of
traditional filters often results in the failure to extract TVF components from such processes.
Example 1.1 examines the application of the Butterworth filter on data containing time-
varying frequencies.

Example 1.1 (linear filter applied to TVF data). Figure 1(a) shows a realization of length n =
400 from the model

X(t) = cos
[
36π ln(t + 175) + ψ1

]
+ .5 cos

[
85π ln(t + 175) + ψ2

]
, (1.2)

where ψ1 = 1 and ψ2 = 1.59. The TVF behavior is clear, both in the data in Figure 1(a) and the
two components that are shown in Figures 1(b) and 1(c). However, it should be noted that the
frequency content at the beginning of the “low frequency” component (Figure 1(b)) is about
the same as that toward the end of the “high frequency” component seen in Figure 1(c). For
this reason, a Butterworth-type filter will not be able to completely separate the components.
In Figures 1(d) and 1(e) we show the results of 3rd order low-pass Butterworth filters
applied to the data in Figure 1(a) with fc = .15 and .06, respectively. In Figure 1(d) the cutoff
frequency, fc = .15, does a good job of extracting the low-frequency behavior for time t ≤ 100,
but toward the end of the signal, both components pass through the filter. This occurs since
the frequency behavior (which decreases with time) in the “high frequency” component
has decreased to the point that it passes through the filter with fc = .15. Figure 1(e)
shows the effects of lowering the cut off frequency to fc = .06. For t ≥ 250 the filter does
a reasonable job of extracting only the low-frequency component. However, the effect of
lowering the cut-off frequency is that neither the high- nor low-frequency componentpasses
through the filter toward the beginning of the data. In fact, because of the overlap in frequency
content between the first part of the signal in Figure 1(b) and the latter part of the signal in
Figure 1(c), no cut-off frequency will be able to separate these two components using a filter
such as the Butterworth.

The data set in Example 1.1 is a realization from an M-stationary process which is a
special case of the G-stationary processes that have been introduced to generalize the concept
of stationarity [3]. As illustrated above, current time-invariant linear filtering would have to
be adjusted in order to filter the data from a G-stationary processes. Baraniuk and Jones [4]
used the theory of unitary equivalence systems for designing generic classes of signal analysis
and processing systems based on alternate coordinate systems. Applying the principle of
unitary equivalence systems, the filtering procedure is to (1) preprocess the data, (2) apply
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(e) Output from low-pass filter, cutoff = .06

Figure 1: (a) Realization from signal in (1.2), (b) true low-frequency component, (c) true high-frequency
component, (d) output from low-pass filter with fc = .15, and (e) output from low-pass filter with fc = .06.

a traditional time-invariant filtering method, and (3) convert the results to the original time
scale. To solve the filtering problem for G-stationary processes, in this paper we define the
G-filter and illustrate its application on signals that originated from G-stationary processes.

The paper is organized as follows. In Section 2 we discuss G-stationary models with
focus on strategies for fitting G(λ)-stationary models of Jiang, et al. [3]. In Section 3 we
present results concerning G-filters designed for filtering data from G-stationary models, and
in Section 4 we introduce a straight-forward implementation of the G-filter for extracting
components such as those shown in Figures 1(b) and 1(c).

2. Time Deformation Method and the G-Stationary Process

A stationary process is a stochastic process in which the distribution does not change with
time. A large volume of statistical theory and methods have been developed for stationary
time series. However, many processes are nonstationary where the distribution changes with
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time. Several techniques have been proposed for analyzing these nonstationary processes
using time deformation. For example, Girardin and Senoussi [5] presented a framework
based on harmonic analysis for semigroups, where they defined a semi-group stationary
process including a local stationary process and a time-warped process. Clerc and Mallat
[6] derived an estimator of the deformation by showing that the deformed autocovariance
satisfies a transport equation at small scales. Among the different types of nonstationary
processes, special attention has been given to warped nonstationary processes that are
obtained by deforming the index set of stationary processes. For example, self-similar
processes are obtained by applying the Lamperti operator on the time scale of a stationary
process [7]. Hlawatsch and Tauböck [8] and Hlawatsch et al. [9] discuss the use of time
frequency displacement operators to displace signals in the time-frequency plane. See also
Sampson and Guttorp [10] and Perrin and Senoussi [11].

Gray and Zhang [12] base time deformation on a log transformation of the time axis.
They refer to processes that are stationary on the log scale asM-stationary processes and show
that the resulting spectral representation is based on the Mellin transform. Flandrin et al. [7]
point out that the log transformation of Gray and Zhang [12] is a special case of the Lamperti
transform. Gray et al. [13] extend theM-stationary model to analyze data collected at discrete
time points. Jiang et al. [3] defined amore general family of nonstationary processes called G-
stationary processes whose frequencies monotonically change with time. See also Woodward
et al. [14, Chapter 13]. In this paper, we investigate the use of time deformation based on
G-stationary models to filter TVF data. We refer to the resulting filters as G-filters.

2.1. G-Stationary Processes

Definition 2.1. Let {X(t) : t ∈ S} be a stochastic process defined on S ⊂ R, let u = g(t) be a
mapping onto a setRg ⊂ R, and let g−1 denote an inverse. ThenX(t) is said to be aG-stationary
process if

(i) E[X(t)] = μ,

(ii) VarX(t) = σ2 <∞,

(iii) E[(X(t) − μ)(X(g−1(g(t) + g(τ))) − μ)] = RX(τ).

Although not immediately obvious, this definition basically says the following. Let g
be a transformation of the time axis and let g(t) = u and t = g−1(u). Consequently, X(t) =
X(g−1(u)) = Y (u), where Y = Xg−1. Letting ξ = g(τ), then

X
(
g−1(g(t) + g(τ)

))
= Y

(
g(t) + g(τ)

)
= Y (u + ξ). (2.1)

So, it follows that

RX(τ) = E
[(
X(t) − μ)

(
X
(
g−1(g(t) + g(τ)

)) − μ
)]

= E
[(
Y (u) − μ)(Y (u + ξ) − μ)],

(2.2)

that is, Definition 2.1 gives the conditions on X(t) and g(t) that are necessary and sufficient
in order for the dual process, Y (u), to be weakly stationary. The implication is that, whereas
X(t) may not be stationary on the original index set (on t), it can be mapped onto a new
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(deformed) time scale on which it is stationary. We will refer to Y (u) as the stationary dual
of X(t), and we let CY (ξ) = E[(Y (u) − μ)(Y (u + ξ) − μ)] denote the autocovariance of the
dual process. RX(τ) is called the G-stationary autocovariance, and clearly CY (ξ) = RX(τ).
The G-spectrum is defined in Definition 2.2.

Definition 2.2. Let {X(t), t ∈ (a, b)} be a G-stationary process and let {Y (u), u ∈ (−∞,∞)} be
the corresponding dual with respect to the time-deformation function, g(t). The G-spectrum
of the G-stationary process, X(t), is defined as the spectrum of the dual process, that is,

GX

(
f ; g

)
=
∫∞

−∞
e−2πifξ RY (ξ)dξ. (2.3)

If the mapping, g(t), from the original space t ∈ (a, b) to the dual space u ∈ (−∞,∞) is onto,
then

GX

(
f ; g

)
=
∫∞

−∞
e−2πifξ RY (ξ)dξ

=
∫∞

−∞
e−2πifξ CX

(
g−1(ξ); g

)
dξ

=
∫b

a

e−2πifg(τ)CX

(
τ ; g

)
g ′(τ)d(τ).

(2.4)

When g(t) = at + b, t ∈ (−∞,∞), the G-stationary process, X(t), is simply the
traditional weakly stationary process, and when g(t) = ln(t), t ∈ (0,∞), X(t) is called an
M-stationary process [13]. When g(t) is the Box-Cox transformation,

g(t) =
tλ − 1
λ

(2.5)

t ∈ (0,∞), then X(t) is called a G(λ)-stationary process [3]. When g(t) = at2 + bt, t ∈
(0,∞) with a > 0 and b ≥ 0, then X(t) is called a linear chirp stationary process. See Liu
[15], and Robertson et al. [16].

2.2. General Strategy for Analyzing G-Stationary Processes

We give the following outline for analyzing G-stationary processes.

(1) Transform the time axis to obtain a stationary dual realization, (we will discuss this
below).

(2) Analyze the transformed (dual) realization using methods for stationary time
series. For example, sometimes this is done by fitting an AR(p) or an ARMA(p, q)
model to the dual data and then computing forecasts, spectral estimates, and so
forth as desired for the problem at hand (in the current setting we will be filtering
the dual data).

(3) Transform back to original time scale as needed.
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Step 1 (transform the time axis to obtain a stationary dual realization). Finding a time
transformation, u = g(t), is equivalent to determining a sampling scheme such that X(tk) =
X(g−1(uk)) = Yk, where Yk is stationary. That is, for a G-stationary process, the stationary dual
process is obtained theoretically by sampling X(t) at the points t = tk = g−1(uk). In general,
however, the observed data will have been obtained at equally spaced points, and are not
available at the points tk. Interpolation has primarily been used to deal with this problem.
See Gray et al. [13], Jiang et al. [3], and Woodward et al. [14]. For an approach based on
Kalman filtering, see Wang et al. [17].

In the following discussion we will discuss techniques for fitting a G(λ)-stationary
model to observed TVF data. The G(λ)model is sufficiently general to include TVF data with
either increasing or decreasing frequency behavior. The values, tk, needed for obtaining the
stationary dual based on the discrete Box-Cox time transformation, k = (tλk − 1)/(Δnλ) − ξ,
are tk = ((k + ξ)Δnλ + 1)1/λ, where (ξΔnλ + 1)1/λ is called the realization offset and Δn is the
sampling increment. Jiang et al. [3] employ a search routine to determine the values of λ and
offset that produce the “most stationary” dual. For each set of λ and offset values considered
in the search, the data,X(tk), k = 1, 2, . . ., are approximated at the tk’s using interpolation. By
then indexing on k, the dual realization associated with the given λ and offset is obtained,
and for each combination of λ and offset, the resulting dual realization is checked for
stationarity. Jiang, et al. [3] suggest measuring stationarity by examining the characteristics
(e.g., sample autocorrelations) of the first and second halves of the transformed data. They
employ a Q-statistic for measuring the difference between the sample autocorrelations of
the two halves. This measure is based on the fact that the correlation structure under
stationarity stays constant across the realization. The software, GWS, written in S+, can be
used to perform this search procedure, and it is available from the authors at the website
http://www.texasoft.com/atsa. This software can be used to fit a G(λ)model to a set of data,
and it provides methods for spectral analysis, forecasting, and so forth. In the examples here
involving analysis of TVF data, we use the GWS software package.

Example 2.3 (G(λ)-analysis of the TVF data in Example 1.1). In this example we perform G(λ)
analysis on the time series discussed in Example 1.1. We also use Wigner-Ville plots, which
display the time-frequency behavior in the data by computing inverse Fourier transforms of
windowed versions of the autocovariance function (see [14, 18, 19]). As previously noted,
X(t) in (1.2) is an M-stationary process. Figure 2(a) shows the data previously shown in
Figure 1(a), and in Figure 2(c) we show the associated Parzen spectral density. Figure 2(c)
is a so-called “spread spectrum” showing a wide range of frequency behavior between about
f = .06 to f = .22 which is caused by the frequency changes in the data that were noted in
Example 1.1. The frequency change can be visualized in the Wigner-Ville plot in Figure 2(e).
In the plot, darker shading corresponds to locations of stronger frequency behavior.For
example, Figure 2(a) shows a very pronounced lower TVF component which is illustrated
with the lower “strip” that is at about f = .1 at the beginning of the data whereas by t = 300
the period length associated with the lower TVF component is about 20 (f = .05) which is
visually consistent with the component shown in Figure 1(b). The higher TVF component,
represented by a lighter strip, indicates frequency at about f = .22 (periods of about 5) early
in the data which decreases to about f = .1 (periods of about 10) by about t = 300. Again, this
is consistent with Figure 1(c). The checkered pattern between these two strips is interference
and is not indicative of strong frequency behavior. The Wigner-Ville plot visually illustrates
the fact mentioned in Example 1.1, that the lower frequency behavior (the bottom strip) has



Journal of Probability and Statistics 7

100 200 300 4000
Time

1.5

1

0.5

0

−0.5

−1

−1.5

(a) Data

Transformed time
100 200 300 4000

1.5

1

0.5

0

−0.5

−1

−1.5

(b) Dual data

10
5
0

−5
−10
−15
−20
−25

0 0.1 0.2 0.3 0.4 0.5
Frequency

(c) Parzen spectral density for (a)

10

0

−10

−20

0 0.1 0.2 0.3 0.4 0.5
Dual frequency

(d) Parzen spectral density for (b)

0.5

0.4

0.3

0.2

0.1

0
0 100 200 300 400

Time

Fr
eq

ue
nc

y

(e) Wigner-Ville plot for (a)

100 200 300 4000
Time

Fr
eq

ue
nc

y

0.5

0.4

0.3

0.2

0.1

0

(f) Wigner-Ville plot for (b)

Figure 2: (a) Realization from signal in (1.2), (b) dual data based on λ = 0 and offset 200, (c) Parzen spectral
density for data in (a), (d) Parzen spectral density for dual data in (b), (e)Wigner-Ville plot for data in (a),
and (f)Wigner-Ville plot for data in (b).

higher frequency at the beginning of the data than does the higher frequency component
(upper strip) at the end of the data set. That is, a horizontal line cannot be drawn that stays
entirely within the two strips. Using the GWS software, it is seen that a G(λ) transformation
with λ = 0 (M-stationary) and offset 175 is a reasonable choice for producing a stationary
dual. The dual data based on this transformation is given in Figure 2(b). The high-frequency
and low-frequency behavior is similar to that seen in Figure 2(a) except that neither frequency
displays time-varying behavior. The corresponding spectral density in Figure 2(d) shows
two distinct peaks (one near .07 and the other near .13). That is, the spectral density of the
transformed data (i.e., the G-spectral density) clearly shows that there are two dominant
“frequency” components in the data. The Wigner Ville plot in Figure 2(f) shows two parallel
lines, one at about f = .07 and another at about f = .13. This plot conveys the fact that the
frequency behavior is not changing with time, which is consistent with stationary data.
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3. The G-Filter

In this section we define the G-filter for filtering G-stationary data. The G-filter can be viewed
as a specific example of a unitary equivalent system for filtering G-stationary signals (see
[4]).

Definition 3.1. Given a stochastic process {X(t), t ∈ (a, b)} and an impulse response function,
h(t), t ∈ (a, b), the G-filter or G-convolution, denoted X ⊗ h(t), is defined as

Y (t) = X ⊗ h(t) ≡ Xd ∗ hd
(
g(t)

)
, (3.1)

where Xd(u) = X(g−1(u)) and hd(u) = h(g−1(u)), u ∈ (−∞,∞) are the duals of X(t) and
h(t) with respect to the time-deformation function g(t), andXd∗hd(t)is the usual convolution,
Xd ∗ hd(t) =

∫
Xd(τ)hd(t − τ)dτ .

Theorem 3.2. If the mapping g(t) from the original space t ∈ (a, b) to the dual space u ∈ (−∞,∞) is
onto, then

Y (t) = X ⊗ h(t) =
∫b

a

X(v)h
(
g−1(g(t) − g(v))

)
g ′(v)dv. (3.2)

Proof. Consider the following:

Y (t) = X ⊗ h(t)

=
∫∞

−∞
Xd(u)hd

(
g(t) − u)du

=
∫b

a

Xd(u)hd
(
g(t) − g(v))dg(v)

=
∫b

a

X(v)h
(
g−1(g(t) − g(v))

)
dg(v)

=
∫b

a

X(v)h
(
g−1(g(t) − g(v))

)
g ′(v)dv.

(3.3)

Corollary 3.3. SinceXd ∗hd(u) = hd ∗Xd(u), where u = g(t), it follows immediately thatX⊗h(t) =
h ⊗X(t).

Theorem 3.4. Let {X(t), t ∈ (a, b)} be a G-stationary input process with the time-deformation
function g(t), then

(a) the output process, Y (t) = X⊗h(t), t ∈ (a, b), where h(t) is the impulse response function,
is also G-stationary,
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(b) the G-spectra of X(t) and Y (t) satisfy

GY

(
f ; g

)
=
∣
∣Wh

(
f ; g

)∣∣2GX

(
f ; g

)
, (3.4)

where Wh(f ; g) = Ahd(f) =
∫∞
−∞ e−2πifu hd(u)du is the frequency response function of

hd(u).

Proof. (a) Let {Xd(u), u ∈ (−∞,∞)} be the stationary dual process of X(t) and {hd(u), u ∈
(−∞,∞)} be the dual of h(t). Since Xd(u) is stationary, then Yd(u) = Xd ∗ hd(u) is stationary.
Thus

Y (t) = X ⊗ h(t) = Xd ∗ hd
(
g(t)

)
= Yd

(
g(t)

)
, t ∈ (a, b) (3.5)

is G-stationary.
(b) Let PXd(f) and PYd(f) be the spectra of the stationary dual of the processes

Xd(u) and Yd(u), that is, the G-spectra of X(t) and Y (t). Since Ahd(f) is the frequency
response function of hd(u), then based on the fundamental linear filtering theorem, it follows
that

PYd
(
f
)
=
∣∣Ahd

(
f
)∣∣2PXd

(
f
)
, that is, GY

(
f ; g

)
=
∣∣Wh

(
f ; g

)∣∣2GX

(
f ; g

)
. (3.6)

If the mapping g(t) from the original space t ∈ (a, b) to the dual space u ∈ (−∞,∞) is onto,
thenWh(f ; g) = Ahd(f) =

∫∞
−∞ e−2πifu hd(u)du =

∫b
a e

−2πifg(v) h(v)g ′(v)dv.

3.1. The M-Filter

Gray and Zhang [12] introduced the M-convolution or M-filter for filtering the M-stationary
process. When g(t) = ln(t), t ∈ (0,∞), then it follows that

Y (t) =
∫∞

0
X(v)h

(
g−1(g(t) − g(v))

)
dg(v) =

∫∞

0
X(v)h

(
t

v

)
d ln(v) = X #h(t), (3.7)

which is the M-convolution defined by Gray and Zhang (1988).

4. Filtering Data Using the G-Filter

Definition 3.1 shows that the G-filter is not a linear filter if viewed from the original space,
but it is a linear filter if viewed from the dual space. Consequently, based on the definitions
and results concerning G-filters in Section 3, we use the strategy proposed by Baraniuk and
Jones [4]:

(1) Make an appropriate time deformation, u = g(t), on the original time space to
obtain a stationary dual process.

(2) Apply a traditional linear filter on the dual space to extract components.

(3) Transform the filtered dual components back to the original time space.
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Figure 3: (a, b) Outputs from low-pass and high-pass filters with fc = .1 applied to the dual data in
Figure 2(b); (c, d) are the filtered dual components after transforming back to the original time scale.

In the following examples we illustrate the implementation of the G-filter using the steps
outlined above.

Example 4.1 (Examples 1.1 and 2.3 revisited). In this example we revisit the TVF data set
shown in Figure 1(a) that was discussed in Examples 1.1 and 2.3. We will G-filter the data
(based on a G(λ)model fit to the data) following the steps outlined above.

(1) The first step was done in Example 2.3 yielding the dual data in Figure 2(b).

(2) Based on the discussion in Example 2.3 and the Wigner-Ville plot in Figure 2(f)
it seems that the low and high frequency components in the dual data could be
separated using a cutoff frequency of about fc = .1. Figures 3(a) and 3(b) show the
results of a low pass and high pass Butterworth filter, respectively, applied to the
dual data in Figure 2(b). It can be seen that these filters do a good job of separating
the low and high frequency components in the dual data.

(3) Figures 3(c) and 3(d) show the data in 3(a) and 3(b), respectively, plotted on the
original time scale (using linear interpolation). Comparing Figures 3(c) and 3(d)
with Figures 1(b) and 1(c), respectively, shows that the procedure did a good job of
separating the two TVF frequencies that we were previously unable to separate in
Example 1.1 using standard methods. The somewhat jagged behavior of the peak
heights is due to the interpolation. Alternatives to linear interpolation are under
current investigation.
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Example 4.2 (filtering example). In this example we consider the G(λ) stationary model

(
1 − 1.62B + 0.995B2

)(
1 − 1.96B + 0.99B2

)
X

(
(t + 30)3 − 1

3h

)

= a

(
(t + 30)3 − 1

3h

)

.

(4.1)

[X(t) is referred to by Jiang et al. [3] as a G(4; 3) processes.] Clearly, after the time transfor-
mation g(t) = ((t + 30)3 − 1)/(3h) = u, the dual model for Y (u) = X(g(t)) is the stationary
AR(4) model

(
1 − 1.62B + 0.995B2

)(
1 − 1.96B + 0.99B2

)
Yt = at, (4.2)

which has a characteristic equation (1−1.62z+ .995z2)(1−1.96z+ .99z2) = 0 that has two pairs
of complex conjugate roots quite close to the unit circle. Associated with each component is a
system frequency. Realizations from this model will be characterized by frequency behavior
in the neighborhoods of the two system frequencies, and consequently spectral estimates will
have peaks close to these two frequency values. (See [14, 17]). Figure 4(a) shows a realization
of length n = 200 from the model in (4.1), and it is seen that there is a dramatic increase in
frequency with time (i.e., period lengths decrease). There is also an indication of two TVFs.
Using the GWS code, a time transformation with λ = 2.9 and offset 14 was selected. Based on
this time transformation, the dual data are obtained as in Figure 4(b) where the data appear
stationary, again with two underlying frequencies. The extreme increase in frequencies in the
original data set is illustrated in the Wigner-Ville plot in Figure 4(c). The lower strip going
from near zero frequency for small values of t to about f = .1 at t = 200. The upper (less
visible) strip is associated with a higher-frequency TVF component that also begins at near
zero frequency and increases to about f = .25 toward t = 200. The Wigner-Ville plot for the
dual data indicates that the two frequencies have been stabilized and further support the
stationary nature of the dual. The dual model is dominated by two frequencies, a lower one
at about f = .03 and an upper (again less visible) frequency of about f = .1. The results of
applying 3rd order low-pass and high-pass Butterworth filters with a cutoff frequency fc =
.065 are shown in Figures 4(e) and 4(f), respectively. Figures 4(g) and 4(h) show the filtered
data sets plotted on the original time axis.

The behavior of the two filtered components is consistent with that in the original data
as is shown in Figures 5(a) and 5(b). Also, the TVF components are close to those in the
original data as seen by comparing Figures 5(c) and 5(d) with Figure 4(c).

Example 4.3 (bat echolocation data). In this example, we consider echolocation data from a
large brown bat. The data were obtained courtesy of Al Feng of the Beckman Institute at the
University of Illinois. The data shown in Figure 6(a) consist of 381 data points taken at 7-
microsecond intervals with a total duration of .00266 seconds. This signal is quite complex
and appears to be made up of possibly two different signals. The Wigner-Ville plot in
Figure 6(c) suggests that the data contain two TVF components with a suggestion of possibly
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Figure 4: (a) the Signal, (b) Dual data, (c) Wigner-Ville plot for (a), (d) Wigner-Ville Plot for (b), (e) and
(f) Results of low-pass and high-pass filters on dual data (g, h) Filtered components in (e, f) plotted on
original time scale.
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(d) Wigner-Ville plot for high TVF component

Figure 5: (a, b) Two filtered components (solid lines)with the original signal (dashed lines), (c, d)Wigner-
Ville plot for the two extracted components.

another TVF associated with higher frequencies than the two main components. Gray et al.
[13] analyzed this data set as an M-stationary model with offset 203. Their analysis suggests
that there are three dominant TVF components and that the highest component is sufficiently
high frequency at the beginning of the time series that it is too rapid for the sampling rate to
detect until about t = 100. In our analysis here we will use the time transformation suggested
by Gray, et al. [13] to compute the dual data. Using this time transformation produces the
dual data in Figure 6(b). TheWigner-Ville plot in Figure 6(c) shows overlap between the TVF
strips, for example, the frequency associated with the lower TVF strip near t = 0 is similar to
that of the upper strip at around t = 250. The Wigner-Ville plot of the dual data is given in
Figure 6(d)where it can be seen that the two dominant frequencies have been stabilized, and
that the two dominant dual frequencies are well separated and fall at about f = .18 and f = .3.
Figures 6(e) and 6(f) show the low-pass and high-pass filter results, respectively, plotted on
the original time axis.

5. Concluding Remarks

In this paper, we show that the classical linear filtering methods cannot be directly applied to
TVF data where the TVF components overlap over time. We discussed a family of models, G-
stationarymodels, which have proven to be a useful extension of the usual stationarymodels,
and which can be used to model a certain range of nonstationary time series with TVF. Then
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Figure 6: (a) Brown bat echolocation data, (b) dual of data in (a), (c)Wigner-Ville plot for (a), (d)Wigner-
Ville plot for (b), (e) low pass filtered data, and (f) high pass filtered data.

we introduce an easy and straightforward method for filtering the data from G-stationary
models. This G-filtering method extends the standard linear filter, and provides techniques
for filtering data with time varying frequencies that overlap in time. Simulation examples
and a real data example are given to show that the effectiveness of G-filter in filtering data
which are from, or can be approximated by, G-stationary models.
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