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An appropriate sample size is crucial for the success of many studies that involve a large number
of comparisons. Sample size formulas for testing multiple hypotheses are provided in this paper.
They can be used to determine the sample sizes required to provide adequate power while
controlling familywise error rate or false discovery rate, to derive the growth rate of sample size
with respect to an increasing number of comparisons or decrease in effect size, and to assess relia-
bility of study designs. It is demonstrated that practical sample sizes can often be achieved even
when adjustments for a large number of comparisons are made as in many genomewide studies.

1. Introduction

With the recent advancement in high-throughput technologies, simultaneous testing of a
large number of hypotheses has become a common practice for many types of genomewide
studies. Examples include genetic association studies and DNA microarray studies. In a
genomewide association analysis, a large number of genetic markers are tested for association
with the disease [1]. In DNA microarray studies, the interest is typically to identify differen-
tially expressed genes between patient groups among a large number of candidate genes [2].

The challenges for designing such large-scale studies include the selection of features
of scientific importance to be investigated, selection of appropriate sample size to provide
adequate power, and choices of methods appropriate for the adjustment of multiple testing
[3-7]. There exist recent methodological breakthroughs on multiple comparisons, such as
in the frontier of controlling the false discovery rate (FDR) [8, 9], which is particularly
useful for the study of DNA microarray and protein arrays. It is also increasingly used in
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genomewide association studies [10]. On the other hand, the Bonferroni type adjustment is
still surprisingly useful. For example, Klein et al. [1] successfully identified two SNPs which
are associated with the age-related macular degeneration disease (AMD) using a Bonferroni
adjustment. Witte et al. [11] provided an interesting observation that the relative sample size,
based on Bonferroni adjustment, is approximately in a linear relationship to the logarithm of
the number of comparisons.

An appropriate sample size is crucial for the success of studies involving a large
number of comparisons. However, optimal and reliable sample size is extremely challenging
to identify, as it typically depends on other design parameters that often have to be estimated
based on preliminary data. Preliminary data are often limited at the design stage of studies,
which lead to unreliable estimates of design parameters and create extra uncertainty in
sample size estimation. Thus, it is of great practical interest to examine the relationship
between sample size and other design parameters, such as the number of comparisons to be
made. In this paper, we analyze this problem beyond witte et al.’s [11] observation by provid-
ing explicit sample size formulas, examining various genomic analyses, and deriving sample
size formula for FDR control. The explicit sample size formulas are desirable because they
elucidates how the change in other design parameters would affect sample size. This is of
fundamental importance for understanding the reliability of study designs.

2. Sample Size Formulas

For testing a single hypothesis, the sample size problem is typically formulated as finding the
number of subjects needed to ensure desired power 1 — f for detecting an effect size A at a
prespecified significance level a. Consider an one-sided test for equality of two normal means
assuming known variances o7 and o3, respectively. The sample size per group (n) is as
follows [12]:

2
_— @, 2.1)

where A = | —po|/\/07 + 03, C =1, D(z;) = 1-t, and D(z) is the distribution function (CDF)
of the standard normal distribution.

Many of the most widely used statistical tests have similar sample size formulas as in
(2.1). For example, the commonly used Mann-Whitney test for comparing two continuous
distributions without normality assumption has the same form of sample size formula as in
(2.1). Similarly, for testing equality of two binomial proportions, using independent samples
or using correlated samples as in McNemar’s test, the sample size formulas are also of form
(2.1) as discussed in Rosner [12].

For testing a single hypothesis, the influences of &, , and A on the sample size n can be
inferred easily from the above sample size formula (2.1), and are well known. When testing
multiple hypotheses, one must guard against an abundance of false-positive results. The
traditional criterion for error control in such situations is the familywise error rate (FWER),
which is the probability of rejecting one or more true null hypotheses. The simplest and most
commonly used method for controlling FWER is the Bonferroni correction, which is discussed
in the next subsection.
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2.1. FWER Control

In this section, we present sample size formulas for multiple comparisons in the context of
controlling the familywise error rate (FWER). Suppose we make multiple comparisons with
A being the same. If we wish to retain a familywise error rate a, and power (1 - f3), then with
the Bonferroni adjustment, apon = a/M, the sample size corresponding to (2.1) becomes

2
= Gam+Czp) (2.2)
AZ

To see how njy; changes as M increases, we can use the following well-known fact: when
a <05, ¢(za)(1/za = 1/23) <1 - D(24) < ¢(z4)/ 24 Since a/M = 1 — ®(za/m), We can
approximate z,/m by z, ,,,, where

z*i/M = 210g<%> - log(27r) log log<%>. (2.3)

The explicit approximation of z2 /v In (2.3) works extremely well for M ranging from 10 to
100, Putting (2.3) into (2.2) yields the following approximation of the required sample size
np:

i 2
. <Za/M + CZﬂ) (2.4)
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Then, for fixed (a, §, A), from (2.3) and (2.4), we have

2 M
Ny = Ny = e log - M — +co. (2.5)

A few facts are self-evident from the above approximation. First, np is an approximately
linear function of log M (base 10) with slope 2/ A2. Second, the impact of f on nys (or nj,) is
negligible when M is large. Third, a decrease in a is equivalent to an increase in M on nps (or
n},). The impact of A on ny; (or n},) is demonstrated in Figure 1 with a = 0.05, 1 - = 0.90,
and A = 0.5,1, and 2, respectively. It shows that n,s (open circles) can indeed be approxi-
mated well by a linear function of log M. The lines are calculated based on approximate nor-
mal quantiles (2.4) for n},. Moreover, when A is large (e.g., A = 2), the slope is very small.

The simple Bonferroni correction is very useful, when the number of true alternatives
is small. This often occurs, for example, in candidate gene association studies. The Bonferroni
approach is easy to apply, for example, it is convenient when the hypotheses involve many
covariates and nuisance parameters, whereas the permutation approaches may not be
applicable, because they require some symmetry or exchangeability on the null hypotheses
[13, 14]. Next, we give two practical examples to illustrate the growth rate of sample size rela-
tive to the number of tests M to be performed.
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Table 1: An SNP from Klein et al. [1].

Attribute rs1329428 (C/T)
Risk allele C
OR (dominant) 4.7
Freq in HapMAP CEU 82%
OR (recessive) 6.2
Freq in HapMAP CEU 41%
600
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£
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log M

Figure 1: Sample size versus log M (base 10) to detect effect sizes A = 0.5,1 or 2 with 1 - # = 90% power at
the familywise significance level & = 5%, when Bonferroni adjustment is used. The open circles represent
the sample sizes calculated based on exact normal quantiles (2.2).

The AMD Example

Age-related macular degeneration (AMD) is a major cause of blindness in the elderly. Klein
et al. [1] reported a genomewide screen of 96 cases and 50 controls for polymorphisms
associated with AMD. They examined 116,204 single-nucleotide polymorphisms (SNPs).
Two of the SNPs are found to be strongly associated with the disease phenotype. This is
an example to test equality of two binomial proportions of two independent groups (cases
and controls). The required sample size for each marker is given in (2.2) or (2.4) with

A = 2(p1 - pz)zﬁﬁ, C = \/(pl q1 +p2q2)/(2pq), and p = (p1 + p2)/2. lllustration for
sample size growth with the Bonferroni correction is plotted in Figure 2 against log M using
the SNP rs1329428 (Table 1) identified in Klein et al. [1]. Using Bonferroni adjustment, the
sample sizes are calculated to provide 90% power to detect the association at the familywise
significance level &« = 5%. The open circles and plus signs are sample sizes np; using (2.2)
according to the dominant and recessive odds ratios, respectively. The corresponding lines
are sample sizes n}, based on (2.4).
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Figure 2: Sample sizes to detect the association at rs1329428 versus numbers of SNPS in genome wide
screen of the AMD study.

The TDT Example

To test for linkage or association in family-based studies, the transmission/disequilibrium
test (TDT) of Spielman et al. [15] examines the transmission of an allele from heterozygous
parents to their affected offspring. If an allele is associated with the disease risk, its transmis-
sion may occur more than 50% of the times. Risch and Merikangas [16] studied the required
sample size for TDT in affected sib pairs. TDT is equivalent to McNemar’s test for two
correlated proportions with the hypothesis Hy : p = 0.5 versus H; : p > 0.5, for the
specified alternative p = pa, where p4 is the probability that an A/B parent transmits allele
A to an affected offspring. The sample size (matched pairs) needed is given in (2.1) with
C =2v/pa(1-pa), A2 = 2(pa—0.5)*pp, and pp is the projected proportion of discordant pairs
among all matched pairs. If we assume that each family used in the analysis has only one
marker heterozygous parent, then n is the number of families required. Demonstration of
sample sizes for TDT is plotted in Figure 3 using the setup given in Risch and Merikangas
[16]. Using Bonferroni adjustment, the sample sizes are calculated to provide 1 — f = 90%
power to identify a disease gene at the familywise significance level a = 5%. The plus signs
and open triangles are the sample size ny; calculated based on (2.2) corresponding to disease
frequencies equal to 0.1 and 0.5, respectively. The corresponding lines are for n}, based on
(2.4).

2.2. FDR Control

For the test of multiple hypotheses, such as the analysis of many genes using microarray, the
outcomes can be described in Table 2.

It is likely that many genes are differentially expressed in a microarray study [7]. A
natural way to control the overall false positives is to control the expected proportion of false
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Table 2: Possible outcome for testing M hypotheses.

Test decision

Truth
Reject Hy Accept Hj Total
Ho \% moy — \4 my
H] u nmy — u ny
Total R M-R M
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100 —
80 —
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o
g
&
40 —
20 —
O —

log M

Figure 3: Number of families needed versus log M (base 10). Sample size for the TDT in the example of
Risch and Merikangas [16], with disease frequencies of 0.1 (plus signs) and 0.5 (open triangles).

positives. Benjamini and Hochberg [8] defined the false discovery rate (FDR), using Table 2,
as

FDR=P(R>O)E[%|R>O, FDR =0 for R = 0. (2.6)

Storey [9] defines positive FDR (pFDR) as pFDR = FDR/P(R > 0). When M is large as
assumed next, P(R > 0) = 1, unless the power 1 — f3 is too small, then FDR = pFDR.

The required sample size for multiple testing depends on «, (1 - ), M, and A of each
individual gene. For easy exposition, we assume an equal effect size A for all differentially
expressed genes, say m; genes; thus, the power (1 — p) of detecting any individual differen-
tially expressed gene is the same for all of the m; genes between samples of two conditions
of sizes n; and n,. The expected outcomes in multiple testing can be expressed as functions
of a, B, my, and m; and are summarized in Table 3.

By law of large numbers, from Table 3, FDR = E(V/R) = moa/(moa + my(1 — p)).
Denote the desired FDR level by f. Then from the above equation, we have

trge = %[(1—%>_1—1] (1-p). 2.7)
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Table 3: Expected outcome for testing M hypotheses.

Test decision

Truth Reject Hy Reject H, Total
H, amy 1 - a)ymy my
H, (1-p)ym pmy my
Total amg + (1 - p)ym (1-a)ymg + pmy M

To account for the dependence among tests, we follow Shao and Tseng [17]. Let T; be the test
statistic of an one-sided two sample z-test for the ith alternative hypothesis, let p; be its P
value, and let u; = I(p; < a) be the rejection status at the level a; u; = 1 if the ith test result
is a rejection and 0 otherwise. Furthermore, if we denote the pairwise correlation coefficient
between two tests by pﬁ = Corr(T;, Tj), then it can be shown that the correlation between u;

and u;, GZ = Corr(u;, u;) can be derived from the correlations of test statistics as follows:

= =0\ 1 a2
o}l = F(Ewzopy) - (1-F) , 2.8)
p(1-p)
where F is the CDF of the standard bivariate normal distribution, and Z, = -z, + A/

\/n;! +n," [18]. Under local dependence assumptions, the total number of true discoveries,
u = Z:fl u;, has an approximately normal distribution: U ~ N (m;(1 - ﬂ),oé), where afl =
mp(1-p)[1 +0y(my - 1)], and 0y = (my(my -1))7" Zi# GZ is the average correlation among
true discoveries. The local dependence assumption can be viewed in a simplified formulation
of the central limit theorem under the “strong mixing” given in Theorem 27.4 of Billingsely
[19]. “Mixing” means, roughly, that random variables temporally far apart from one another
are nearly independent. We think that the local dependence assumption is reasonable in many
genetic studies. For example, linkage disequilibrium can result in local dependence of genetic
markers. In biomarkers study, biomarkers of the same pathway are often correlated and result
in local dependence.

It is often desirable to find sample size to ensure a familywise power ¥ of identifying
at least a given fraction r € (0,1) out of m; true discoveries: ¥ = P(U > [m;r]). The above
normal approximation of U allows a closed form solution for the comparison-wise p:

1-2r+4/dmir(1-r)+1 (29)

2m +2 !

Ptar =1-1—

where m] = my/{[1+ éu(ml - 1)]2%_,{,}. When m; is large, to have a family-wise power ¥ in
detecting at least 100r% out of m; true alternatives, and with an FDR f, the sample size
needed for a one-sided z-test is given by (2.1), with & and p determined by (2.7) and (2.9)
iteratively.

A Microarray Example.

We now consider a well-known dataset from a study of leukemia in Gloub et al. [2] to demon-
strate the relationship between sample size and number of multiple comparisons when
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Figure 4: Sample size versus log M (base 10) for controlling FDR f = 5% with ¥ = 90%. The open circles
represent the sample sizes needed when the number of true alternatives m; stays as constant (m; = 40),
the plus signs give the sample sizes when m; = 2log M, and the triangles are the sample sizes when the
proportion of true alternatives is constant (m; = M/10).

controlling FDR. The original purpose of the experiment described in Gloub et al. [2] is to
identify the susceptible genes related to clinical heterogeneity in two subclass of leukemia:
acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML). The dataset con-
tains 7129 attributes from 47 patients with ALL and 25 patients with AML. We can apply
(2.1), (2.7), and (2.9) iteratively to obtain the required sample size when controlling FDR.
Figure 4 provides 3 different settings for controlling FDR f = 5% with ¥ = 90%. Based
on the top 100 most differentially expressed genes in Gloub et al. [2], ;; = 0.07 (see (2.9)).
The open circles represent the sample sizes ny; needed when the number of true alternatives
my stays constant (m; = 40). In this case, we observe that the sample size is a linear function
of log M as M increases. The “plus” signs denote the sample sizes np; when the number of
true alternatives increases in a slower pace than M (m; = 2log M); the sample size is also
approximately a linear function of log M. The triangles denote the sample sizes n); when
the proportion of true alternatives is constant (m;/M = 10%), and the sample sizes roughly
remain constant as the number of tests increases which is expected from (2.7). The lines in
Figure 4 represent sample sizes n}, based on (2.4).

3. Discussion

In this short paper, we have shown that a large increase in the number of comparisons often
only requires a small increase in the sample size. We further demonstrated that when con-
trolling FDR, the sample size may even sometimes stay constant as the number of compar-
isons increases (Figure 4). The sample size required for testing M hypotheses is generally
not growing faster than a linear function of log M, even when a simple Bonferroni adjustment
is used, and the slope of the linear growth rate (in log M) is small when detecting a large effect
size. These results have important implications in practice due to the wide use of multiple
comparisons.
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In this paper, we discuss the sample size formulas based on fixed effect size in alterna-
tive hypotheses. In reality, the effect sizes may follow a distribution, and simulation method
may be useful in determining the sample size. We used z-test to derive the sample size
formula, because large sample size is usually required for studies with multiple comparisons.
If the effect size is large and sample size is small, {-test may be more appropriate. However,
we expect the relationship between sample size and the logarithm of number of comparisons
made is still linear.

In practice, if feasible, using a conservative sample size can reduce the chance of
obtaining false-positive results and ensure reproducibility [6]. The simple sample size for-
mulas provided in this paper might be used to select a suitable sample size by varying other
design parameters and by taking into consideration the reliability of the proposed designs.
While FDR is very useful and is increasingly used in multiple comparisons, our experience
in helping biomedical investigators and the analysis in this paper indicate that the simple
Bonferroni approach can often provide conservative but useful sample sizes in many
situations.
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