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1. INTRODUCTION

The problem of necessary conditions for infinite dimensional control systems has been
considered by several authors starting with the influential paper of Friedman [2] and the
book of Lions [8], who concentrated on linear systems. Later Lions [9] considered systems
with an initial condition which is not determined by an a priori given function, but instead
is assumed to belong to a specified set (Lions calls these systems “systems with
insufficient data”). The work of Lions was extended by Papageorgiou [10] to a class of
nonlinear systems using the Dubovitskii-Milyutin formalism. His results were carried
further by Ledzewicz [5], [6] who considered systems with terminal data (see [5]) as well
as abnormal problems and problems with equality constraints (see [6]). Ledzewicz’s
approach was also based on the Dubovitskii-Milyutin formalism.

This paper continues in the same direction, improves some of the results of the above
mentioned papers and establishes optimality conditions for a fairly broad class of
nonlinear systems with state and control constraints. Our approach uses both the
Dubovitskii-Milyutin theory for constrained optimization problems [1]. A very
comprehensive presentation of the Dubovitskii-Milyutin theory can be found in the
monograph of Girsanov [3], which also presents applications to finite dimensional control
systems. Also extensions of the Dubovitskii-Milyutin method can be found in Ledzewicz
[S], [6] and in the references quoted therein.

*To whom correspondence should be addressed.
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28 N. PAPAGEORGIOU
2. PRELIMINARIES

Our mathematical setting is the following. Let 7= [0, b] and H a separable Hilbert space.
Also let X ¢ H be a subspace carrying the structure of a separable reflexive Banach space
which embeds continuously and densely into H. Identifying H with its dual (pivot space)
we have X ¢ H ¢ X~ with all the embeddings being continuous and dense. Such a triple
(X, H, X") is usually called an “evolution triple” of spaces (the name “Gelfand triple” can
also be found in the literature). By || - || (resp. | - I, ]| - ||l«) we will denote the norm of X (resp.
of H. X"). Also by (-, -) we will denote the inner product of H and by (-,-) the duality
brackets for the dual pair (X, X"). The two are compatible in the sense that (-,
HxX=(,). Let W(T) = {x € L%X): x € L*(X")} (here the derivative is understood in
the sense of vector valued distributions). Equipped with the norm || x || w7, = (Il x || %}(X)
+ || x|l 22x.,)""> W(T') becomes a Banach space (a Hilbert space if X is a Hilbert space).
We know that W(T) embeds continuously in C(7, H). So every element in W(T') has a
representative which is continuous as a function from T into H. Moreover if X embeds into
H compactly (which is often the case in applications), then W(T' ) embeds into L*(H)
compactly. For details we refer to Zeidler [12]. Finally let Y be a separable Banach space
modelling the control space.

3. OPTIMALITY CONDITIONS

We start this section by examining the following optimal control problem:

b
J(x,u)=f0L(t,x, ®),u())dt - inf

st X(O+A @ x @), ut))=0 aeon T @
x©0),xb))e C,u®)eU(@®) a.e., u(.) is measurable.

The hypotheses on the data of (1) are the following:

H(A): A: TxXxY —X isan operator such that

(a) t —>A(t x, u) is measurable,

(b) (A(t,xu)-A(t,x,u) 20| x —x|?foreveryte T, x € X, u € U (t) and with 6
> 0,

(c) (x, u) 2A(t x, u) is continuously Frechet differentiable,

(d) At x, u)ll« < a,(t)+cixla.e. for every u € U (1) witha, € L2, ¢;> 0,

(e) (At x, u)x) > cy| x| for every u € U (1) with ¢, > 0.

H(L): L:TxHXxY — R is an integrand such that
(a) t — L(t, x, u) is measurable,
(b) (x, u) >L(t, x, u) is continuously Frechet differentiable,
(c) for every x € C(T, H) and every u(-) € L2(Y) J(x, u) is finite.

H(U): U : T — 2"\ {0} is a multifunction with closed and convex values such that GrU =
{(tu) e TXY :ue Ut)} € L x B(Y) with L being the Lebesgue G -field of T and B(Y)
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the Borel o-field of Y, there is €, > 0 for which for almost all t € T we can find u € U(t)
such that B, (u)={ve Y:|u=V|Yo} c U(t)andt = U(t)l = sup{|lully: u € U (1)}
e L7.

H(C): C c H x H is nonempty closed convex and has nonempty interior.

In what follows by A (t,x(t),u(t)), A, (tx(t),u(t)), L(tx(t),u(t)) and L,(t,x(t),u(t)), we will
denote the Frechet derivatives of A(t,-,u), A(t,x,-), L(t,-,u) and L(t,x,-), respectively at the
point (2,x(2),u(t)). Also by S;, we will denote the set of measurable selections of U (-); i.e.,
Sy= {u: T — Y measurable such that u(t) € U (¢) a.e.}. Evidently S;, < L™(Y) (check
hypothesis H(U)).

We start with an auxiliary result that guarantees the solvability of the adjoint equation
in the system of necessary and sufficient conditions that we will establish (compare with
proposition 2.1 in [10]).

ProrosiTion 3.1 If hypotheses H(A), H(L), H(U), H(C), hold, for some admissible
state-control pair (x, u) of (1) t = L.(t, x(t), u(t)) belongs in L*(H) and z(-) € L*(H), then
there exists p e W (T) such that— p(t) + A(t, x(1), u(t))* p(t) + L (t, x(t), u(®)) = z(t) a.e.
p(b) € H.

Proof From hypothesis H(A)(b) we know that (A (z, X', u(¢)) — A(t, x(t), u(?))) = 0|| x' — x
(@) IP, hence (A,(t, x(2), u(®) (x' = x(t)) + O(|x = x(t) |, x' = x(8)) 2 0 || x' - x(?)|*. Let x'
- x(f) = €p. Then we see that (A, (1, x(?), u(t))ep + o(ep), ep) = 0€?| p|| . Divide by €>
and let € | 0 to get that ( A (¢, x(r), u(f))p, p) = 0 || p |*. Finally, apply theorem 30.A of
Zeidler [12] to establish the existence of a solution p(-) € W(T) for the adjoint equation.

Q.ED.

Now we are adequately equipped to establish necessary and sufficient conditions for an
admissible pair (x, ) of problem (1) to be optimal.

THeoreM 3.2 If hypotheses H(A), H(L), H(U), H(C) hold and for the admissible
state-control pair (x,u) € W (T) x Sy we have that |A(t, x(t), u))l, xx) < N1
| A, (8, x(0), u(®) | (vx?) € Ma» t = L(t, X(2), u(t)) belongs in L*(H) and t — L (t, x(t), u(?))
belongs in L'(Y"), then (x,u) is solution of (1) if and only if there exists p € W(T) solving
the “adjoint” equation — p(t) + A'(t, x(?), u(®) ' p(t) + L (tx(?), u(t)) = 0 a.e. on T and
for which the following two “minimum principles” hold.

(L, (1, x, (1), u(t)) —A, (t, x(t), u (t))* p(t),v—u(t) y y20a.e. forallveU(t) (2)
(p (b),c; — x(b)) = (p (0),c; — x(0)) 20 for all (c,c;) € C 3)
Proof As we already mentioned we will implement the Dubovitskii-Milyutin formalism.

We start by analyzing the cost criterion. Since J(:,-) is convex, via the monotone
convergence theorem, we get (with D denoting the gradient of L(¢, x, u) in both (x, u)):

J'(x, u)(h, v) = fob D L (¢, x(8), u(t)) (h(®), v(t)) dt,he W(T), v € L™ (Y).
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Recall that DL(t, x(t), u(t))(h(t),v()) = L(t, x(t), u(t))h(t) + L, (¢, x(t), u(®))v(t). Apply-
ing theorem 7.4 of Girsanov [3] we get that the cone of directions of decrease of the cost
criterion J(-,-) at (x, u) is given by

K,={(hy)e W (T)xL=(Y): J(x, u)(h, v) < 0}.

For the moment, assume that K, # 0 (eventually we will remove this assumption). Then
dual cone of K, is given by K;= {- A J'(x, u) : A > 0}.

Next we pass to the analysis of the equality constraint determined by the evolution
equation. Define P : W(T') x L=(Y) » L*X") x H

P(x, X)) = (X' () +A (1, X (D), u'(®)), x'(0)).

Because of hypothesis H(A) the map A : W(T') x L=(Y ) — L*(X") defined by A(x',u")(-)
= A(:, X'(*), u'()) is continuously Frechet differentiable at (x(0), x(b), x, u). So P is
continuously Frechet differentiable at the same point and we have

P'(x, u) (b, v)(®) = (h (1) + A, (2, x(0), u(®)) h(D) + A, (2, x(0), u(D)) v (2), h(0)).

We will show that P'(x,u)(-,-) is surjective. To this end, let (g,v,h,) € L*(X") x L™(Y) X
H be arbitrary and consider the Cauchy problem

h(t) + A, (1, x(®), u(?)) h(t) + A, (¢, x(), u(®)) v(t) = z() a. e.
h(0) = h,

Apply theorem 30.A of Zeidler [12] to deduce that this problem has a unique solution
h € W(T). Hence P'(x,u) is surjective as claimed. Therefore Lyusternik’s theorem (see
Girsanov [3], theorem 9.1) tells us that if O, = {(x,u') € W(T) x L™(Y) : P(x',u’) = 0} (the
equality constraint set), the tangent cone to Q, at (x,u) is given by

T(Q)={hy)e W(T) x L™ (Y): P'(x,u) (h,v)= 0} = ker P'(x, u).

Thus T(Q,)" = {w" € W(D)" x (L=(Y))" : w'(h,v) =0 for all (h,v) € T(Q))}.

Finally we analyze the inequality constraints. So set Q, = C x S;,. We claim that intS,
#0in L™(Y). Indeed let L(r)= {u e UQ): B, (u) < U(n)}. By hypothesis H(U), L(r) *
0 for almost all t € T and GrL = {(t,u) : d(u,bdU(1)) = €,}. But (t,u) = d(u,bdB(?)) is a
Caratheodory function (cf. hypothesis H(U) and theorem 4.6 (iii) of Himmelberg [4]) and
so is jointly measurable. Hence GrL € / x B(Y) and so via Aumann’s selection theorem
(see [4], theorem 5.2) we get u : T — Y measurable such that u(f) € L(f) a.e. on T.
Evidently u € intS;, (the interior considered in L™(Y)). So C x S, is convex with
nonempty interior in H X H x L™(Y). By theorem 10.5 of [3], the dual of the cone of
feasible directions of Q, at the pomt (x(0,x(b),u) is ngen by Kf(Qz) = (Cx SU)

x S v~ Hence " u) e K, (Q)" ¢ Hx Hx L(Y)" if and only 1f the functional —¢” =
(- cl,-cz) € H X H supports the set C at the point (x(0), x(b)) and u” € L™(Y)" supports S,
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at u (although we will eventually show that " € L'(Y,-)= {z" : T = Y which are
w"-measurable, that is, for every x € X t = (z'(t),x)y"y is measurable and || Z°(-) | €
L'(T)}, this can be assumed from the beginning without any loss of generality as we
illustrate in remark (3) at the end of this section).

Now that we have a concrete description of all the relevant dual cones, we can apply the
Dubovitskii-Milyutin theorem [1] (see also [3], theorem 6.1) and obtain the Euler

equation. So we can find y* eK,werT (Q,)* and (¢", u") € K, (Qz)* not all of them
simultaneously zero such that

0" + Ow) + (c"u) = 0.
This means that for every (hy,h,;,h,v) € H X H x W(T) x L™(Y) we have
Y () + w'(hy) + (¢ (hgohy)) + u'(v) = 0.

Recall from the analysis of the equality constraint that if (h,v) € T(Q,), then w"(h,v)=
0. This means that if for a given v € L™(Y) we choose & € W(T) so that it solves

h(t) + A, (t, x(t), u(t)) h(t) + A, (t, x(t), u(t)) v(t)=0a. e. 4

(we have already established the existence of such an 7 € W (7)), then w'(h,v)= 0 and
thus the Euler equation becomes

Y (hyv) + (¢ hg ) + u' () =0

hence

= NJ(Gu) (hy) + (¢, (hgohy)) + u'(v) = 0. )

If A = 0, then since (hy, h,;, v) € H x H x L™(Y) was arbitrary, we get that ¢’ =0, u" =0,
and so w" = 0, a contradiction. Therefore A # 0 and without any loss of generality, we can
have A= 1.

Consider the following adjoint evolution equation

~;j(z) + A (¢, x(1), u(t))* p(t) = — L(t, x(2), u(t)) a. e.
p(b) € H.

From Proposition 3.1 we know that this problem has a solution (in fact, unique) p €
W(T). Making use of this adjoint state we have

I @ xo.uor mon = [ (50 = A x0,u0) o, b)) a

= [" (0. by ar = [* (A x0), uv)” ), ho), d
0 ’ o T ’ ’
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But from the integration by parts formula for functions in W(T) (see Zeidler [12],
proposition 23.23, p. 422), we have

b . b .
7 =50, b0 = o), 1) - 0O, 1) - [ (o0, ) a.

Also we have [§ (A (1, x(t), u(®))" p(t), h(@®))dt = [§ {p(®), At x(©), u(®)h(® ) dt. So
finally we can write

! @, ue, nopa
= [p0), = hw) = A3, w1+ (plB), hBY = (PO, hy)

= f : (p®), A,(tx(0), uOW(D)) dt + (p(b),h(B)) = (p(0),hy) (cf.(4)).

Using this fact, into (5) we get

(¢ \(hp,hp) +u (v) = fo (p(®, A (tx(B)u®)Wv(D))dt + f o Llbx(D), u®), v(D)y y

+ (p(b), k(b)) — (p(0).h)

for every (h,h;,hv) e HXHXW(T)XL™(Y).

Evidently (*C*,(ho, p(b))) = ( p(b), h(b)) — (p(0), h(0)) and u"(v) = [§ (L (¢, x(t)u(t)) -
A (Lx(0),u(®) p(),v(D)y y.

Recall that - = (—¢",,—¢",) supports C at (x(0),x(b)), while —u" supports S, at u. So we
get

(p(b),c, — x(b)) — (p(0),c; — x(0)) = 0 for all (c,,c,) € C

and [b (L (t,x(0), u(t)) — A, (t.x(t), u(®)” p(t), v(t) — u(t))y y 2 0 for all v € S,
Suppose that for some D ¢ T with A (D) > 0 we have

inf [(L,(t.x(2), u(t)) — A (t.x(2), u(t)) " p (£),v — u(t))yy : ve U(t)] <O forteD.

Set T'(#) = {u € U (£) : (L (,x(2),u(D)) — A, (t,x(£),u(t)) p(t),v — u(t))y y < 0}. Then T'(r) # 0
for t € D and clearly GrT" € / X B(Y). So we can apply once again Aumann’s selection
theorem and get ¥ : T — Y measurable such that ¥(¢) € I'(f) a.e. Then let v = xpu + xpV.
Note that v € S, and

f:(L,,(t, x(2), u(t)) — A, (t,x(1), u(t))*p(t), V() —u®))y ydt < 0
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a contradiction. So we have established the two minimum principles (2) and (3).

It remains to remove the hypothesis that K, # @ made earlier in the proof. If K, = @, then
J 6 (L, x(@), u(®), h®)dt + [ § (L(t.x(0), u@®), v(D))ydt = 0 for every (hy) €W
(T) X L*(Y). First let v =0 to get

f (L, (1, x(0), u(1), (@) dt = O for every h € W(T).

Set h(1) = ¢(f) z ¢ C(0.b), z € X. Then

J P00, 50, e, 2 dt = 0.
Because ¢ € C ;; (0,b) was arbitrary we deduce that

(L (1, x(1), u(2)), z) = 0 a.e.

for every z € X and the exceptional Lebesgue null set is independent of z € X since the
latter is separable. Recalling the X embeds densely into H we get that L, (t,x(t),u(t)) = 0
a.e. Next let h = 0 to get

) (L0, (0), u (), WD)y di = O for every v L(Y).

Then automatically we have the L, (t,x(¢)) = 0 a.e. So by letting p(b) = 0, we get that p
= 0 and then the minimum principles become trivial. This proves the necessity part.

For the sufficiency part we will apply theorem 15.2 of Girsanov [3]. Note that J(,-) is
a convex functional which is lower semicontinuous (this can be easily verified using
Fatou’s lemma) and finite everywhere (¢f. hypothesis H(L)(c)); Then J(:,-) is continuous
(in fact, locally Lipschitz). Because intQ, = int(C x S,) # @ we can apply theorem 15.2 of
[3] and get the sufficiency part.

Q.E.D.
A careful reading of the proof reveals that if instead of (1) we consider

J(x, u) = f: L (t, x(®), u(t)) dt — inf
st % (f) + A, x(0), u(®)) = 0 ae. on T ©)
(x(0), x(b)) ECu € V C L*(Y).
with the hypothesis.

H(V): V < L* (Y) is a nonempty, closed and convex set with a nonempty interior, then the
minimum principle (2) takes an integral form. More precisely we have:

TueoreM 3.3 If hypotheses H(A), H(L), H(V), H(C) hold and for the admissible
state-control pair (x,u) € W (T) x V we have that ||A(tx(t), u(D), xx) < My
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AL tx(@), u) o (vxr) S Mos t = Li(t,x(0),u(t)) belongs in L*(H) and t — L,(t.x(?), u(t))
belongs in L'(Y"), then (x,u) is a solution of (6) if and only if there exists p € W (T) solving
the “adjoint” equation — p(t) + A (t.x(1), u(t))*p(t) + L (tx(), u(t)) = 0 a.e. on T and for
which the following two “minimum principles” hold

f (f L,(t, x(t), u()) — A, (t.x(1), u(t))*p(t), V() —u(®)y ydt 2 0 for all v e V

(p®), c; — x(b)) — (p(0), ¢; — x(0)) = 0 for all(c,,c,) € C.

Moreover, using the techniques of Ledzewicz [5], [6] (appropriately modified to take into
account the full nonlinearity of the system), we get a slight extension of her work (she has

the control variable appearing linearly in the dynamics). More specifically consider the
problem

b
J(x,u) = fo L (t.x(f), u(t)) dt — inf

st X(1)+ A (tx(), u(®)) =0 ae. em on T ™
x(0) =xg, x(b) =x;,u(t) € U (1) ae.

For this problem we have the following result

THEOREM 3.4 If hypotheses H(A), H(L), H(U) hold and for the admissible state-control
pair (x, u) € W (T) x Sy, we have || A (txu)| , xx) < Mo |1 Ay (0% @), w4 () <
N, t = L (t.x(t), u(t)) belongs in LZ(H) and t — L, (t.x(t), u(t)) belong in L'¢Y"), then (x,u)
is a solution of (7) if and only if there exists p € W (T) solving the “adjoint”
equation — p(t) + A (tx(1), u()) p(H) + L (tx(t), u(t)= 0 a.e. on T and for which the
Sfollowing minimum principle holds

inf [ (L, (¢, x(8), u(®)) — A, (t, x(2), u(t))” p@®),v —u(®)yy:v € V()] = 0 ae.

(1) If in theorem 3.3 V= L*(Y), then the minimum principle becomes

L, (t, x(0), u(t)) = A, x(t) u(t))'p (t) a.e.

(2) If from hypothesis H(L), we drop H(L)(c), then the sufficiency part is no longer true
but the necessity part remains in tact.

(3) As we mentioned in the course of the proof of Theorem 3.2, without any loss of
generality we can take the functional ™ in the Euler equation to be in L*(Y,.-). Let us show
why this is so. Using Levin’s decomposition [7], we can write u” = u, + u, with u, being
the “absolutely continuous” part of u” (i.e., u", € L'(Y.~)) and u; the “singular” part of u"
(i.e., there exists a decreasing sequence {C,,},,»; of Lebesgue measurable subsets of T
such that A(C,,) 4 0 as m — oo and u,(v) = uy(x v+ x. ue SU.Evidently v,, 25 v (i.e.,
convergence in measure) and so from Papageorgiou [11], we have v,, & v (ie,
convergence in the Mackey topology m(L™(Y), L'(Y,.-)). Then 0 < u"(v,, — u) = u,(v,, —

u)+ u(v,— u)= u,(v,,— u) >u,(v— u). So from the beginning we can consider u,

L'(Y,»).
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4. AN EXAMPLE

In this section we work out an example of a distributed parameter optimal control problem
to illustrate the applicability of the results in section 3.

The problem under consideration is the following Lagrange optimal control problem
monitored by a nonlinear parabolic equation. Let 7= [0,b], Z < R" a bounded domain
with smooth boundary T and let D = grad = (9/d.;)"

i=1
J(x,u) = f:fl 1 (t, z, x(2, 2), u(t, 7)) dzdt = inf

ax 3)
s.t. Frie diva (t, z, Dx(t, 2), u(t, 7)) = 0 a.e. onT X Z
xlp=0,x0,) € C|,x(h,;) € C,, u(t,) € UQ¥) ae. on T.
We make the following hypothesis on the data of (8).

H(a): a :T x Zx RY x R — R" is a function such that

(a) (t.2) = a(t,z,y,u) is measurable,

(b)  (at.zyu)— at.zyu),y— y)rv20|y— y'||*forallte T, (z, u) € GrU with 6
>0,

(©) (O,u) = a(t,zy,u) is continuously differentiable,

@ la(t, zyu@) || £ a,t,2) + ¢,y a.e. on T X Z for every u € U(t) and with ay(-,-)
€ LT X 2), ¢,(-) € LX2Z) and || a,(t,2,y.u)) ||, || a,(t.z,y.u@)|| S ay(t2) + c5(2) | y || a.e. on
T x Z for every u € U(t) and with a,(-,-) € L™(T, L*(2)) and ¢*() € LX(2),

) (alt,zy.u(@)Yrv = 32| y | ? a.e. on Z for all (t,y) € T x RN and u € U(t) and with
¢3(-) € L™(Z), O< &5 < ¢4(2) for every z € Z.

H():/: TxZx R x R — R is an integrand such that

(a) (t,2) =1 (t,z,x,u) is measurable,

(b) (x,u) > (t,z,x,u) is continuously differentiable and convex

(¢)  J(x,u) is finite for every x € C(T, L*(Z)) and every u € L™(T x Z) and I (t,z.x,u(z))!,
12 (t.zx,u(2)I<S Y(t,2) + c(?)Ix| a.e. on T X Z for every u € U(r) with y(-,-) € L2(T X Z) and
() e L'(D).

HU), : U((t)= {ue L") : |ull, < r(t)} with r(-) € L™(T), r(t) 2 B > O for every t € T.

H(C),: C,= {xe L*2) : || x||,<r}and C,= {xe€ LX2): | x|, < ry} with ro, r,> 0.

In this case, X = H(l) (2), H= L2(Z), X'= HY 2 and Y= LY2). By the Sobolev
embedding theorem (X, H, X*) is an evolution triple. Let A : T x X — X" be defined by
(A@tx),y)= [, (a(t,z,.Dx(2)), Dy(z))RY dz for every y € X= H} (Z). Alsolet L : T x H x
Y — R be defined by L(t,x,u) = [,/ (t,2,x(z))dz. Then we can rewrite (8) in its equivalent
abstract formulation (1). Also it is routine to check that by virtue of hypotheses H(a),
H( ), H(U),, and H(C),, hypotheses H(A), H(L), H(U), H(C) hold and || A (t.x(#),u(5)) || ,
xx) <My, |AEx0, u®)) ||, (vx?) € Mo t = L (¢, x(2), u(t)) belongs in L*(H) and t —
L, (¢,x(#),u(r)) belongs in LY(Y") for every admissible pair (x,u). So we can apply Theorem
3.2 and get:
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TueoreMm 4.1 An admissible state-control pair (x, u) € [ WX(T, H'(2)) NLX(T, Hy (2))]
x L™(T, L'(Z)) is optimal if and only if there exists p € W"*(T, H'(Z)) NLX(T, H'((2))
such that

3
S—IZ + diva, (t, z, Dx(t, 2), u(t, 2)) Dp(t, 2) — L,(t, 2, x(t, 2), u(t,2)) = 0 a.e. on T X Z

fz (0, z, x(t, 2), u(t, z)) — diva,(t, z, Dx(t, 2), u( t, 2)) Dp(t, 2))(v(z) — u(t, 2))dz = 0

for every v in U(¢),

f z p(b, 2)(cy(2) — x(b, 7)) dz — fz p(0, 2)(ci(z) — x(0,2))dz = 0

for every ¢, € Cyand c, € C,.
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