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We consider the design of fixed-order (or low-order) linear controllers which meet certain performance and/or
robustness specifications. The following three problems are considered; covariance control as a nominal
performance problem, 2-stabilization as a robust stabilization problem, and robust L., control problem as a robust
performance problem. All three control problems are converted to a single linear algebra problem of solving a
linear matrix inequality (LMI) of the type BGC + (BGC)” + Q < 0 for the unknown matrix G. Thus this paper
addresses the fixed-order controller design problem in a unified way. Necessary and sufficient conditions for the
existence of a fixed-order controller which satisfies the design specifications for each problem are derived, and
an explicit controller formula is given. In any case, the resulting problem is shown to be a search for a
(structured) positive definite matrix X such that X € €, and X ™' € @, where €, and @, are convex sets defined
by LMIs. Computational aspects of the nonconvex LMI problem are discussed.

keyworps: Control theory, robust control, linear systems

1. INTRODUCTION

Fixed-order control design is a very important open problem which takes controller
complexity into account. Several analytical solutions' to the fixed-order controller design
problem are available in the literature ([15], [16], [25], [28], [29]). However, the main
difficulty in these results is that it is not easy to develop a computational algorithm which
guarantees to solve coupled nonlinear matrix equations describing the analytical solutions
(see [26], [27], [36] for some computational approaches).

Linear matrix inequalities (LMIs) have gained much attention in recent years ([5], [10],
[11], [20], [31], [45]) as a computational tool which plays a crucial role for solving certain
control problems. If an analytical solution for a control problem is obtained in terms of
coupled matrix equations, it is not easy to solve them. On the other hand, coupled LMIs
can be solved efficiently by convex programming ([2], [4], [13]) if the coupling constraint
is convex. For instance, an analytical solution to the mixed #,/#,, control problem is first

*To whom correspondence should be addressed.

! By analytical solutions, we mean some mathematical characterizations of controllers which satisfy design
specifications. It should be noted that computational issues are not necessarily addressed by analytical solutions.
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obtained in terms of coupled Riccati equations [3] which are nontrivial to solve. The
computational difficulty has been overcome ([20], [23]) by a convex programming
approach using LMIs where the controller order is not fixed a priori or is equal to the plant
order. For the fixed-order controller case, however, convexity of the problem is destroyed
by a nonconvex coupling constraint [20].

In this paper, we shall present analytical solutions to a variety of fixed order controller
design problems in terms of coupled LMIs. The following control problems are
considered; disturbance attenuation, robust stabilization, and robust performance
problems. As a measure for the disturbance attenuation level in the first problem, we
consider the covariance of the error signal subject to the white noise excitation. Such a
matrix-valued performance measure can naturally handle multiple objective control
problems, and has been studied extensively in the covariance control literature ([15], [41],
[42], [47]). The problem we consider is to design a fixed-order stabilizing controller which
yields the error covariance bounded above by a specified matrix. Such an upper bound
approach results in a convex problem if the controller order is not fixed a priori, which
is much easier than the problem of solving the exact assignability conditions for the state
covariance [43] given by nonlinear coupled matrix equations. For the robust stabilization
problem, we consider the design of controllers which robustly stabilize a linear
time-invariant system with norm-bounded time-varying structured uncertainty. The notion
of stability is Q-stability [10]. The concept of Q-stability is developed as a conservative,
but computationally tractable upper bound on the structured singular value ({7], [9]). It is
defined by a scaled -#,, norm condition, and is closely related to quadratic stability ([24],
[1], [34], [40]). Finally, as a robust performance problem, we shall consider a design of
Q-stabilizing controllers for the given uncertain plant, which guaranteé¢ a bound on the
peak value of the error signal subject to unit energy disturbances for all admissible
structured perturbations. Such a performance measure, known as the ./, to ./, gain, has
been studied as an operator norm [46] or as a part of the covariance analysis [6]. These
analysis results for the “nominal system” have been extended for systems with a
norm-bounded time-varying structured uncertainty [17]. Control synthesis techniques for
the ./, to /., gain specification are available in [49], [37] for the case where there is no
uncertainty in the plant and the controller order is equal to the plant order. We shall address
the fixed-order controller design for systems with structured uncertainty based on the
analysis result given in [17].

In our approach, all three control problems are formulated as the problem of solving an
LMI for the controller parameter. Thus we provide a unifying method for obtaining
analytical solutions for the fixed-order controller design problems with different specifica-
tions. Other control objectives such as the linear quadratic (LQ) cost and guaranteed LQ
cost for uncertain systems ([17], [35], [44]) can also be treated with equal ease. Our main
result states that there exists a fixed-order controller which meets certain specifications
(described above) if and only if there exist (structured) symmetric matrices X and Y such
that X=Y"'>0and X e C, and Y € C, where C, and C, are convex sets defined by LMIs.
Unfortunately, this problem is not convex, since each of the two sets is convex but the
coupling constraint is not. However, we believe that our analytical solutions in terms of
LMIs provide a new insight into the problem of fixed-order controller design, and
hopefully efficient computational algorithms will be developed utilizing the convexity of
C, and C,. We shall discuss a heuristic approach to address the nonconvex LMI problem.
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We shall use the following notation. An n x m matrix with real elements is denoted by
A e R™". AT denotes the transpose of A. A* is the Moore-Penrose inverse of A. N(A) and
R(A) denote the nullspace and the range space of A, respectively. A* denotes a left
annihilator of A; N(A1) = R(A) and A+ A*” > 0. Note that A" exists if and only if A has
linearly dependent rows. Also note that, for a given A, A* is not unique, but throughout
the paper, any choice is acceptable. The norm of a matrix [|A|| is the largest singular value
of A. For a symmetric matrix A, A,,,,(A) denotes the largest eigenvalue. For a symmetric
nonnegative definite matrix A, A"’? denotes the unique nonnegative definite square root of
A. The notation A > 0 for a positive definite matrix implies that A is symmetric. For a
stable transfer matrix 7(s), |T ||, and ||T ||, denote the H_, and H, norms, respectively. £ [-]
is the expectation operator for stochastic processes.

2. CONTROL PROBLEMS

2.1. Framework for Control Design

Consider the feedback system depicted in Figure 1 where P is the generalized plant, C is
the controller, and A is the uncertainty. We shall consider the following control problems;

e Disturbance Attenuation: Design a controller C for the nominal plant P (A = 0) such
that the error signal e is sufficiently “small” in some sense in response to a certain class
of disturbance signals d.

® Robust Stabilization: Design a controller C such that the closed loop system is
internally stable for all perturbations A belonging to a known class of uncertainty set
BA.

® Robust Performance: Design a controller C such that the closed loop system is
internally stable and the error signal e is sufficiently attenuated in response to a certain
class of disturbance signals d, for all perturbations A in the uncertainty set BA.

The above “conceptual” control problems will be made specific in the sequel. To this
end, consider the following linear time-invariant continuous-time system with norm-
bounded time-varying structured uncertainty;

o A
z w
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y u
c

Figure 1 Control system configuration.
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x(2) A B, B, 32 x(P)
Z(t) _ Co DOO DO] D02 W(t) B

e | | ¢ Dy Dy, Dy dp |PvO =200
)’(t) C2 D20 DZ] D22 u(t)

where x € R is the state, d € R"™ is the disturbance, u € R™ is the control input, e €
R" is the error signal, y € R™ is the measured output, and z € R™ and w € R are the
exogenous signals to describe the uncertainty A. We shall assume n,, = n, for simplicity.
The uncertainty A is known to belong to the following set;

BA = {A:R >R JA@I <1, AP e A, (1)
where
A := {block diag(3,1;, ... 8, A, ...A):8,eR,  AeRE+ >k}
For the static output feedback controller

u(t) = Gy(1),

the closed loop system can be described by

x(1) A B, B, || x
20 | = | CoDooDor | | wt 2
e(t) ¢ Dy D | | do
where the closed loop matrices are defined by
A B, B, A B, B, B,
CoDyoDoi | :=| Co Dog Doy | +| Doz | G[C, Dy Dyy] 3
¢, Dy Dy C, Dy, Dy, D,

where D,, =0 is assumed to guarantee well-posedness of the feedback connection. For the
dynamic controller of the form

x| [A B |[x®
u®) || C.D. || ¥y

where x. € R"™ is the controller state, the closed loop system has exactly the same
structure as eq. (2) for the static output feedback case, but the plant matrices and the
controller parameter must be replaced with the following augmented matrices;
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[ A 0 B, B, B, 0 |
A B, B, B, 000 0 01,
Co Doy Dy Dy, - Co 0 Dy Doy Dy, 0
C, Dy Dy, Dy, C, 0 Dy D}y Dy, 0
C, Dy, Dy, G’ C, 0 Dy Dy, DCT BZ

| 017, 0 0 C] Al_

where the closed loop state is [x” x]”. Hence, a fixed-order dynamic controller design
problem is a special case of the static output feedback problem. For this reason, we shall
mainly discuss the static output feedback problem in the sequel. Note, however, that
standard assumptions such as D1,D,, > 0 are restrictive in this case since the augmented
matrix [D,, 0] for the dynamic controller will never be of full column rank. Therefore, we
shall not impose any such assumptions. For simplicity, we assume that there is no
redundant actuator (B3 B,>0) or sensor (C,C% > 0). These assumptions can be removed
(see [20]).

2.2. Problem Formulation

As a disturbance attenuation problem, we shall focus on the covariance control problem.
Consider the following plant

x(@) A B, B, x(?)
ey |=1C 0 0 d(1) 4
() G, Dy 0 u()

with a static output feedback controller u(t) = Gy(t), where d is a zero-mean white noise
input with covariance /. Let a matrix E denote the covariance of the error signal e;

E := lim Zle(t)e” (1))

t—00

The problem can be stated as follows.

Covariance CoNTROL PROBLEM  Let a positive definite matrix E > 0 be given. Determine
if there exists a static output feedback gain G such that E < E. Provide a formula for such
a controller.

The matrix-valued performance measure E defined in the stochastic setting can be used to

define certain deterministic performance measures. For example, as is well-known, the
H, norm of the transfer matrix 7,,(s) from d to e is given by

I Toll3 = tr(E).
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Another example is the ./, to ./, gain ([6], [46]);
sub (e 1?:x@ = 0, [~ "o = 1,12 0) = | E]|

The /, to ./, gain is the peak value (in the Euclidean norm sense) of the error signal e
subject to the worst case disturbance d with unit energy. Thus, the covariance control
problem can be slightly modified to address these different problems. The following
lemma is useful to solve the covariance control problem.

Lemma 1 Let a matrix E > 0 and a controller G be given. The following statements are
equivalent.

(i) The controller G is stabilizing and yields E < E.
(i) There exists a matrix P > 0 such that

AP+ PAT + B,BT <0, (5)

C,PCT<E.

Proof The result is well-known (e.g., [37]), and hence the proof is omitted.
For the robust stabilization problem, consider the following uncertain system

W01 [A BB [ x0
x(#) | =1 Co Dy Dy, W@ |, w(t) = A ()z(1), (6)
y(t) C2 D20 O u(t)

with a static output feedback controller u(f) = Gy(t), where the uncertainty A belongs to
the set BA defined in eq. (1).

To pose a robust stabilization problem, let us introduce the notion of Q -stability, or the
state space upper bound p-test [10], which is defined by a scaled # _, norm condition on
the transfer matrix 7, from w to z as follows.

w
Derinrion The uncertain linear system, eq. (6) is said to be Q-stable with respect to the

uncertainty set BA if T, is stable and there exists a matrix S € § such that
[ST.,. S 7'|l.. < 1, where the scaling set S corresponding to 2A is defined by

§:= {block diag(S,...Ss\Is + 1---SAis + ):S,E R N5, ER, S, > 0,5, > 0}.

In general, Q-stability implies quadratic stability ([1], [22], [24], [33]) or, equivalently, the
existence of a single quadratic Lyapunov function which can be used to prove stability of
the whole family of the uncertain systems. See [30], [38] for detailed discussion on the
relation between the two notions. Q-stability is known to be conservative, but its
computational tractability motivates us to consider the following problem.
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Q-StABILIZATION PROBLEM Determine if there exists a static output feedback gain G which
Q-stabilizes the uncertain system (6). Give a formula for such a controller.

Note that the Q-stabilization problem can also be interpreted as a robust disturbance
attenuation problem if one of the uncertainty blocks represents the ./, to ./, performance
block ([7], [8]).

The following lemma characterizes the Q-stability.

LemMA 2 Let a controller G be given and consider the uncertain system (6). The following
statements are equivalent.

(i) The closed loop system is Q-stable for A € BA.

(ii) There exist matrices P> 0 and S € S such that
[PA +A"P+B,SB] PC§+1§OS[)(§O] 0 o
N N R K <0.
C()P+DO0SB(§ Doongo_S

Proof The result simply follows from the strict bounded real lemma [48] and the
definition of Q-stability and the Schur complement formula.

Finally, we shall state a robust performance problem. Consider the following uncertain
system

x(t) A B, B, B, (1)

) | _| G Doy Doy Doy w(t) _

ey |l c, 0 0 o0 dn |0 "O=20z0), 8)
Y(t) C2 D20 DZl 0 u(t)

with a static output feedback controller u(f) = Gy(), where A € £A is the uncertainty. Let
an ./, (peak value) performance of the error signal e be defined by

G, A, d):=lel (= suple” (De)),

t20

where e is the error signal of the closed loop system with the controller G in response to
a disturbance input d with a zero-initial state x(0) = O in the presence of the perturbation
A. We define the worst case /., performance J as follows;

JG) := sup {J(G, Ad): f “dT (d(t)dt < 1, A € BA).
Ad 0

Now the problem can be stated as follows.

Rosust .2, ConTROL PROBLEM  Let a positive scalar Y > 0 be given. Find a Q-stabilizing
static output feedback gain G such that J(G) < ¥.
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A practical significance of this problem is that the peak value of the error signal e is
guaranteed to be less thany/y for any disturbance d with a unit energy and for any
norm-bounded structured perturbation A € BA.

The following lemma will be useful to solve the problem.

LemMA 3 Let a controller G be given and consider the uncertain system (8). The following
statements are equivalent.

(i) The closed loop system is Q-stable for A € BA.

(ii) There exist matrices P > 0 and S € § such that

[PA+ATP+BOS B"+B B p(’}g+1§osz§§0+1§lﬁ§,]<0 ©)
N AT A a7 . T )
CoP + DyyS Bj + Dy, B, Dy, S DXy — S + Dy, DY,

In this case, we have
JG) < J(G)
where

J(G):=inf { |G, PCT|: P> 0andS e S satisfy (9)}.

Proof See [17].

The robust / . control problem may be considered as a combination of the covariance
control and the Q-stabilization problems, where the robustness is guaranteed by the scaled
A .. norm bound and the performance is measured by the maximum singular value of the
“error covariance”. It can be shown that C,PC T is an upper bound for the error covariance
E for the nominal system (A = 0). A significance of this matrix here is that its maximum
singular value defines a bound on the worst case / ., performance for the time-varying
uncertain closed loop system. Thus, the robust./ ., performance bound J(G) < ¥ can be
achieved by imposing the constraint J(G) < Y. Since the performance bound J(G) in
Lemma 3 is, in general, not tight, due to the conservativeness of Q-stability, the constraint
J(G) < 'y does not imply J(G) < v. In this paper, however, we shall consider the design of
Q-stabilizing controllers such that J(G) < v. If we let the bound 7y approach infinity, then
the problem becomes the Q-stabilization problem and the LMI (9) reduces to (7) by letting
the performance matrices (the ones with subscript 1) be zero. On the other hand, if there
is no uncertainty A or, equivalently, all the uncertainty matrices (the ones with subscript
0) are zero, then the LMI (9) reduces to the Lyapunov inequality (5), and the matrix C,PC7
becomes the “tight” upper bound on the (nominal) error covariance E.

3. A UNIFIED LMI APPROACH

In this section, we shall show that all the three control problems stated in the previous
section reduce to the same mathematical (linear algebra) problem, and can be solved in a
unified way based on a linear matrix inequality.
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TueoreM 1 Consider a linear matrix inequality with an unknown matrix G

BGC + (BGO)T+ D< 0. (10)

(a) A controller G solves the covariance control problem if and only if there exists P >
0 such that C,PC7 < E and (10) holds where

B,
0

PCY

BC'D]:= 11
(B C" D] [ DI (11

AP+ PAT B,
BT —1Y

(b) A controller G solves the Q-stabilization problem if and only if there exist P > 0
and S € S such that (10) holds where

B, |PC]|AP +PAT PCT B,
[BC"D):=| Dy| O C,P =S Dy |. (12)
olp}l BI D -5

(c) A controller G solves the robust / _, control problem if there exist P>0and S € §
such that || C,PCT\|| <y and (10) holds where

B, |PCh AP +PAT PCY B, B,
Dy| 0 CoP =S Dy Dy,
o |D%| B} DY s o
0 D), B! Dy, 0 -

[BC"D]:= (13)

Proof We shall prove (c) only. Statements (a) and (b) follow in a similar manner.
Completing the square in (9), we have

AP+PA PCT] [ B, B, 1[so][ 5, 871
+| A A A <0.
CP =S Dyy Dy, |01 || Dy Do,
Using the Schur complement formula, the above inequality is equivalent to

AP+PA PCT B, B,
COP -S Doo Dm
B! D}y ST 0
: Dy, 0 -

<0.

It is straightforward to verify the equivalence between the above inequality and the LMI
(10) with (13) using the definitions for the closed-loop matrices (3).

Theorem 1 shows that all the three control problems stated in the previous section can
be reduced to the single problem of solving the LMI (10) for the controller G. In general,
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solvability conditions will be given in terms of P and S. In this way, we can decouple the
parameter search for (P,S,G) into those for G and (P,S), where the search for (P,S) does
not involve the controller parameter G, and in fact, the search for G is not necessary since
an explicit formula for G will be given in terms of (P,S). The following lemma provides
a complete solution to this linear algebra problem.

Lemma 4 Let matrices Be R™™, C e R " and D = D" € R ™" be given. Suppose rank
(C) = k < n. Then there exists a matrix G € R "™ satisfying

BGC+ (BGCO)T+D <0

if and only if the matrices B, C and D satisfy

B* DB <0, c™* DC™*T <0.

In this case, one such matrix G is given by
G=-pB'oCc"(coCy’ (14)
where p > 0 is a (sufficiently large) scalar such that ® > 0 where

®:= (pBB -D)\.

Proof See [20].

In the context of control problems, the full rank condition on the matrix C in Lemma
4 is satisfied by the assumption that there are no redundant sensors. If B B’> 0 and/or C*
C > 0 in Lemma 4, then B* and/or C™ do(es) not exist, in which case, the LMI problem
becomes much easier [20]. Clearly, the matrix G corresponds to the controller. Although

Lemma 4 only provides one controller, an explicit formula for all controllers are available
in [20].

4. STATIC OUTPUT FEEDBACK CONTROLLERS

This section presents solutions to the control problems described in section 2.2 in terms
of LMIs. The results are obtained by directly applying Lemma 4 to Theorem 1. Since the
unified LMI approach described in section 3 allows us to specialize the result for the
robust ./, control problem to those for the Q-stabilization problem and the covariance
control problem, we shall state the solution to the robust /., control problem first, then
obtain the results for the other two problems as special cases. To state the result, we need
the following definitions;

By :=[By B)], Dy :=[Doo D], Dyg:=[Dsg D],

S'_SO R'_RO
Mo 170 1)
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THEOREM 2 Let a scalar Y > 0 be given. The following statements are equivalent.

(i) There exists a static output feedback controller G which Q-stabilizes the uncertain
plant (8) and yields the robust L., performance bound J(G) < .
(ii) There exist matrices P, Q, R and S such that P= Q' >0and R=5" € $ and

C,PC" <1, (15)
1

B, |+ /[ AP+PAT PCT B o B, |47

[ 2] ([ O+ | 0| 5[BEDL] 2| <o, (6)
DOZ COP _S DOO DOZ

cr 1+ A + AT B cr } o
| ([0 2]+ | | recoma) [ 1 ] <0
Dzo BoQ —R Doo Dzo

a7

In this case, one such controller is given by (14) where the matrices B, C and D are given
by (13) using any matrices P, S satisfying the above inequalities with some Q and R.

Proof The result follows directly by applying Lemma 4 to statement (c) of Theorem 1,
where we used the following choices of the left annihilators;

B, |* B, 10 PC] ciTo P00
Dy, | =] |Po 0 = Dy, 001
0 0 I D}, 0 I 0170

The dimensions of the inequalities describing the existence conditions have been reduced
by the use of the Schur complement formula.

The computational problem of finding matrices P, Q, R, and S satisfying the conditions
in statement (ii) of Theorem 2 is not convex due to the coupling constraints P = Q"' and
R = S™'. Thus it is nontrivial to develop an algorithm which can find such matrices
whenever they exist. The computational issue will be discussed in section 5. Here, let us
specialize the result to the state feedback case. The following corollary shows that the state
feedback problem can be made convex even with the nonzero D, term (although many of
the currently available state feedback or full information results in the literature (e.g., [32])
assume that Dy, = 0).

CoroLLARY 1 Let a scalar ¥ < 0 be given. Suppose the state can be measured without
noise;

C,=1, Dy, =0, Dy, = 0.

Then the following statements are equivalent.

(i) There exists a static state feedback controller G which Q-stablizes the uncertain
plant (8) and yields the robust /., performance bound J (G) < ¥.
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(it) There exist matrices P > O and S € $ such that

C,PC{<~l, $>DySD}, (18)

B, |*([ AP+ PA" PC] By |crar At B, |*7
[Dm] ([ P =5 |7 Dy PP Pwl) || <

Proof Using a choice of left annihilator

TL

the LMI (17) reduces to, with R = §~!

$7'0]  [Dfy] -
[ 0 1] - [D%?:!S 1[D00D0]]>0' (19)

Then it is straightforward to verify the equivalence between the second inequality in (18)
and (19) using the Schur complement formula.

Clearly, the set of matrices P and S satisfying the conditions in statement (ii) is convex,
and hence we can find a feasible controller for a given performance bound y via convex
programming, or determine that none exists. Note that the conditions also define a convex
set with respect to P, S and *y. Thus the bound y can be minimized by convex programming
and an optimal controller can be computed by using the formula given in Lemma 4.

The following theorem provides a solution to the Q-stablization problem.

THeOREM 3 The following statements are equivalent.

(i) There exists a static output feedback controller G which Q-stabilizes the uncertain
plant (6).

(ii) There exist matrices P. Q, R and S such that P=Q' >0, R=S"" € S and

Bz]l<[AP+PA’ ch] [BO] ToT )[32]”
+ S[ByD <0,
[Doz cP =S | T | Dy SBoPwl)|p,

o) ([ %50 %)+ [h Jremw) [ ]
[D€2 B0 -R + BT, R[Cy Dl DL, <0.

In this case, one such controller is given by (14) where the matrices B, C and D are given
by (12) using any matrices P, S satisfying the above inequalities with some Q and R.

Proof Letting the matrices B,, C,, Dy, and D, be zero in Theorem 2, the /., performance
bound can be removed and the Q-stability remains as the only control design specification.
Thus, we have the result as a special case of Theorem 2.
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Recall that Q-stability is equivalent to the 4., norm bound ||T,,||.. < 1 if the uncertainty
is unstructured. Hence the above result can be specialized (by letting S = I) to the result
of [20] which solves the general -#,_, control problem.

If we assume that there is no uncertainty in the plant, then Theorem 2 reduces to the
nominal ./, control problem. In this case, the matrix P becomes a tight upper bound for
the closed-loop state covariance and hence, Theorem 2 can be specialized to the solution

for the covariance control problem with a slight modification of the £, performance
constraint as follows.

THEOREM 4 Let a matrix E > 0 be given. The following statements are equivalent.

(i) There exists a static output feedback controller G which stabilizes the plant (4) and
yields the error covariance E < E.

(ii) There exist matrices P and Q such that P = Q"'> 0 and

C,PC, <E, B;*(AP+PA” + B,B")B,*T <0,

[ o H QA +ATQ QBl] N [CQ]”<O
phl |l Ble -1 ]7[pl '

In this case, one such controller is given by (14) where the matrices B, C and D are given
by (11) using P satisfying the above inequalities with some Q.

Proof Letting matrices By, Cy, Dyy, Doy, Dy, and D,y in Theorem 2 be zero, the
robustness specification of the robust /., control problem is removed. Then the result
follows from appropriate choices of left annihilators and the use of the Schur complement
formula.

For the Q-stabilization and the covariance control problems, the resulting computational
problem is nontrivial due to the coupling condition P = Q' as for the robust £ control
problem. Clearly, the state feedback case reduces to a tractable convex problem in either
control problem (see Corollary 1). If we consider the dynamic controller with unspecified
order, it can be shown using the technique similar to [20] that, for all the control problems
considered above, the coupling constraint P = Q~' > 0 is replaced by a convex coupling
constraint P > Q™' > 0, or equivalently,

PI>0
I Q|

Thus the covariance control problem with unspecified order becomes convex. Note,
however, that the other two control problems are still nonconvex due to the coupling
condition on the scaling, that is, S= R € &.
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5. COMPUTATIONAL ASPECTS

For all the control problems, the resulting computational problems are of the same type,
and can be stated in a general form as follows; Find structured symmetric matrices X and
Ysuchthat X=Y"'>0and X € ¢, and Y € @,, where €, and C, are convex subsets of
positive definite matrices defined by LMIs. For the robust 4, control problem, for
instance, the structured positive definite matrices X and Y are

X'*POPOSSY—Q0 0,Re &
_OS’>’€’_OR’Q>’G’

and the set €, is defined by (15) and (16), while the set €, is defined by (17) in Theorem
2. Clearly, this problem is not convex due to the coupling constraint X = Y™'. This type of
problem first appeared in the context of the /. control with constant scalings for
discrete-time systems [32], and has recently been derived as necessary and sufficient
conditions for stabilizability via static output feedback for both continuous- and
discrete-time systems ([19], [20]). Thus, the problem exhibits a typical difficulty in the
design of fixed-order controllers. On the other hand, our claim is that, if we can develop
a computational algorithm to solve this type of problem, then many of the fixed order
controller design problems with different specifications can be solved.

In the rest of this section, we shall discuss a simple heuristic approach to attack this
difficult problem. Consider the following minimization problem;

. 1 112 172
o* ;=min { a:—<Y"“XY'"“<0ol,X e C,, Ye G,}.
o

If the sets ¢, and &, are nonempty, then the above optimization problem is well-posed, that
is, it has a nonempty feasible domain. Clearly, the original problem of finding X € €, and
Y € @, such that X = Y ™! has a solution if and only if the optimal value of the above
problem is o* = 1. Unfortunately, the minimization problem is still nonconvex and it is
difficult to compute o*. Nevertheless, one can compute a local solution &* which is an
upper bound of o* with a reasonable amount of computation. One way to compute &* is
to solve the above minimization problem over one variable while fixing the other
alternately;

(&, X)) :=argmin { 0.: Y;' <oX,X<aY;', Xe &},
(0sp Ypyp) i=arg min { o0 : X} <Y, Y<oX,', Y e &)

Note that each problem is a version of the generalized eigenvalue minimization problem
[4], which is quasiconvex. With this approach, the value of o is nonincreasing, that is,

e, zq=z0 = .=,

and hence (local) convergence is guaranteed. This type of algorithm was first proposed for
fixed order output feedback stabilization problem [12], and its extensions have been
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investigated ([21], [18], [39]) utilizing the notion of the analytic center. From our
numerical experiences, it often happens that the local solution &* turns out to be global
with 0* = 1. Thus we believe that it is worth trying these heuristic algorithms to solve the
fixed order control problems considered in this paper for practical applications, although
there is no guarantee for global convergence.

6. CONCLUSIONS

A unified approach based on linear matrix inequalities for fixed-order controller design is
proposed. The covariance control problem, the Q-stabilization problem and the robust
/.. control problem are all reduced to a single problem of solving an LMI

BGC + (BGC ) +D <0,

for the controller G, where matrices C and D are functions of positive definite matrices
P> 0and S € S (Theorem 1). Necessary and sufficient conditions for the existence of a
feasible controller are given in terms of matrix inequalities involving (P,S ), and an
explicit controller formula is given using the matrix pair (P, S ).

The problem of finding a matrix pair (P, S) is shown to be of the same type for all the
control problems considered in this paper, and is given by: Find a matrix pair (X, Y) such
that

Xx=vY'>0, X€¢, Yegq

where ¢, and €, are finite dimensional convex set defined by LMIs. Such a nonconvex
LMI problem has arisen in the literature ([32], [20], [19]), and our results show that many
other fixed-order control problems can be reduced to the nonconvex LMI problem in a
unified way. In fact, the approach described in this paper may be used to derive analytical
solutions to most of the control problems with design specifications given in terms of
Riccati and/or Lyapunov-type inequalities, such as the LQ suboptimal control, the robust
H#, control ([17], {44]), the mixed #4,/A#,, control ([3], [23]), and the positive real control
[14]. Although the nonconvex LMI problem is a difficult problem to solve, it is possible
to develop heuristic algorithms which are of practical value. One such approach is
discussed.
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