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The problem of adaptively rejecting a disturbance consisting of a linear combination of sinusoids with unknown
and/or time varying frequencies for SISO LTI discrete-time systems is considered. The rejection of the
disturbance input is achieved by constructing the set of stabilizing controllers using the Youla parametrization
and adjusting the Youla parameter to achieve asymptotic disturbance rejection. The first main result in this paper
concerns off-line controller design where a controller that achieves regulation is numerically designed off-line
based on the assumption that only the sequence of discrete disturbance input values (as opposed to a model of
the disturbance) is available. A least squares based optimization algorithm is used in the controller design. As
expected, it is shown, under some mild assumptions, that if the off-line designed controller achieves regulation,
then it must include a model of the disturbance input. The second main result concerns on-line controller design
where recursive versions of the off-line algorithm used above for controller design are presented and their
convergence properties analyzed. Conditions under which the on-line algorithms yield an asymptotic controller
that achieves regulation are presented. Conditions both for the case where the disturbance input properties are
constant but unknown and for the case where they are unknown and time-varying are given. The on-line
controller construction amounts to an adaptive implementation of the Internal Model Principle. The performance
robustness of the off-line designed controller in the face of plant model uncertainties is investigated. It is shown,
under some mild assumptions, that performance robustness is realized provided internal stability is maintained.
The performance of the adaptation algorithms is illustrated through a simulation example.
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1. INTRODUCTION AND MOTIVATION

Consider a single-input single-output (SISO) linear time-invariant (LTI) system subject to
a band-limited discrete disturbance input of the form:

wk) = 2k c,(Rcos(@, bk + ,(K) M

with unknown and possibly time-varying frequencies ®,(k), amplitudes c,, (k), and phases
0, (k), 0 < n < k,. For the plant and class of disturbance inputs considered above, it is
desired to design a controller that yields internal stability and asymptotic disturbance
rejection which is robust in the face of variations in the disturbance amplitudes,
frequencies, and phases. Henceforth, asymptotic disturbance rejection is also referred to
as regulation.

The primary motivation for considering the class of disturbance inputs given in (1)
comes from repetitive control problems ([1], [2], [3], [4]) with applications to machine
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tools, robotics, and so on. In such problems, the plant is subject to periodic continuous-
time disturbance inputs. A digital controller is required for the asymptotic rejection of the
periodic disturbance input. Since the digital control system includes an anti-aliasing filter,
the effects of only the first few harmonics of the disturbance input are fed-back to the
controller. This makes it practical to consider disturbance models which include only the
first few harmonics of the periodic disturbance signal. A discrete model for such
disturbance would be as in (1) where w,, 0 < n < k, are integer multiples of the discrete
disturbance frequency. It turns out that in some situations, such as flutter attenuation
problems in aircrafts [5], the disturbance period is not known a priori and may be
time-varying, which prompted the consideration of disturbance representations with
time-varying frequencies. Finally, in order to make the disturbance rejection problem even
more general, arbitrary (i.e., not rationally related) frequencies are considered in (1). It
should be noted that, in the context of repetitive control, periodic disturbance models
similar to (1) have been considered in [6] and [7]. The disturbance model in (1) is
considered to represent almost periodic signals.

When the disturbance model is completely known, two approaches can be used to
achieve asymptotic disturbance rejection. The first approach is based on the Internal
Model Principle which can be traced back to the paper [8]. Roughly speaking, the Internal
Model Principle states that asymptotic disturbance rejection can be achieved only if a
model of the exosystem generating the disturbance is included in the stable closed-loop
system. This approach has been extensively used in many engineering applications such
as repetitive control problems. The second approach consists of casting the regulation
requirement in the form of a set of interpolation conditions as discussed in [9] and [10, p.
187]. The controller can then be designed by minimizing the /, norm of the disturbance
response, subject to some interpolation constraints, as briefly mentioned in [9].

It is not always the case that the disturbance model is completely known or that the
disturbance properties are constant over time. Johnson, 1982 [11] presented a disturbance
accommodating control approach based on estimating the states of the disturbance model
and using them in the design of a disturbance rejection controller. Adaptive techniques can
also be used to achieve regulation. Depending on the type of unknowns or time varying
parameters in the disturbance model, we can distinguish three different approaches
discussed in the literature to solve the adaptive disturbance rejection problem. The first
approach concerns repetitive control problems where the period of the disturbance is
either unknown or slowly time varying. The approach consists of explicitly estimating the
period of the disturbance input and using the period estimate in a repetitive controller.
Different methods have been suggested to estimate the disturbance period. Hu, 1992 [12]
used a set of identifiers based on Kalman filtering and working in parallel to estimate the
period of the disturbance. Each of the identifiers estimates the single parameter in the
disturbance model of the form (d(k) = ad(k - N)). In the nominal disturbance model, the
parameter a is 1 which corresponds to a periodic signal of period N. The value of N is
different in each identifier. During on-line period identification, the period of the
disturbance is taken to be that used in the identifier whose parameter estimate is closest
to 1. Tsao and Nemani, 1992 [13] presented a period identification algorithm based on
convex optimization and which relies on the periodic nature of the signal. The
identification algorithm may converge to an integer multiple of the true disturbance
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period. The disturbance period estimates are used either directly in the repetitive controller
discussed in [14] or to adjust the sampling period so that the estimated signal period is as
close as possible to an integer multiple of the adjusted sampling period. Tsao and Qian,
1993 [15] improved the algorithm in [13] to allow the estimation of the period of a
periodic signal with a resolution better than the sampling period. The modified algorithm
has better performance than that of the algorithm with fixed sampling period in [13].
Hillerstrom et al., 1994 [6] considered the case of band-limited periodic discrete-time
disturbance inputs with unknown period. A gradient descent algorithm is used to minimize
a cost function and update the period estimates on-line.

The second approach to adaptive regulation consists of either totally or partially
estimating the disturbance model on-line and using the estimated model in the controller
design. We can distinguish two main methods. The first method consists of implementing
an adaptive version of the Internal Model Principle. Feng et al., 1992 [16] and
Palaniswami, 1993 [17] used an indirect discrete-time adaptive pole placement approach
to asymptotically reject unknown disturbance inputs with known model structure. The
disturbance model is explicitly included in the controller in the feedback system. A
modified plant model is used to identify the disturbance model parameters using variants
of the least squares algorithm. The disturbance model identification does not require
knowledge of the disturbance values. Convergence of the adaptive algorithm given in [17]
relies on a persistent excitation assumption whereas no such assumption has been made in
showing the stability and global convergence of the adaptive algorithm in [16]. Errors in
the adaptive algorithm that result from the use of the certainty equivalence principle in
[16] have been treated as unmodeled dynamics with known bounds. An improved
algorithm that does not require knowledge of these bounds is given in [18]. The second
method, discussed in Yang and Tomizuka, 1994 [19], consists of implementing and
adaptive version of the External Model Principle. The External Model Principle consists
of using the disturbance model outside the loop to provide values of the disturbance input.
The latter are used in a feedforward disturbance cancellation algorithm. In [19], both
partially known non-minimum phase plant and partially known disturbance input model
have been considered. It is assumed that only the orders of the numerator and denominator
polynomials and delay in the plant model are known. The modes of the disturbance are
assumed known but the coefficients of the disturbance model numerator polynomial are
unknown. A two-stage identification algorithm is used to identify the unknown plant and
disturbance model parameters.

The third and last approach, presented in Wang et al., 1991 [20] is based on augmenting
a stabilizing controller with an adaptation mechanism to improve the overall system
tracking and disturbance rejection performance. Although not explicitly stated, the
adaptation is based on writing a parametrization of stabilizing controllers in terms of a
stable transfer function and adjusting the parameters of the latter. The gradient descent
algorithm is used in the parameter adjustment to minimize a performance index
represented by the mean square tracking error. An averaging analysis is used to derive
qualitative properties of the adaptation algorithm. It was shown that in the absence of
unmodeled plant dynamics the performance index to be minimized gets close to its
absolute minimum. Although the asymptotic performance of the adaptive control system
can be better than that of the nonadaptive system, there is no guarantee that the disturbance
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is completely rejected. This is due to the fact that no specifications on the output
disturbance were given. The main result of the paper concerns the boundedness of the
different signals and estimated parameters in the adaptive control system.

In this paper we consider the specific problem of adaptively rejecting band-limited
discrete disturbance inputs in (1) with unknown and time-varying frequencies w, (k),
amplitudes c, (k), and phases ¢, (k), 0 < n < k,. More precisely, it is assumed that the
frequencies, amplitudes, and phases are piece-wise constant functions of time. For a given
nominal plant model, we present the following original results:

o Off-line controller design: where a controller that achieves regulation is numerically
designed off-line based on the assumption that only the sequence of discrete disturbance
input values (as opposed to a model of the disturbance) is available. A least squares
based optimization algorithm is used in the controller design. It is shown that if the
off-line designed controller achieves regulation, then it must include a model of the
disturbance input.

o On-line controller design: Recursive versions of the off-line algorithm used above for
controller design are presented and their convergence properties analyzed. Conditions
under which the on-line algorithms yield an asymptotic controller that achieves
regulation are presented. Conditions both for the case where the disturbance input
properties are constant but unknown and for the case where they are unknown and time
varying are given. The on-line controller construction amounts to an adaptive
implementation of the internal model principle.

The class of disturbance inputs under consideration is more general than the class of
band-limited periodic signals treated in [6]. The regulation problem is solved within the
set of stabilizing controllers constructed using the Youla parametrization [21], [22]. The
purpose of the adaptation is to tune the Youla parameter in the stabilizing controller in
order to asymptotically satisfy a set of interpolation conditions that are equivalent to
disturbance rejection. Hence, the adaptation algorithm does not have to deal, in the case
of periodic signals, with the explicit estimation of the period of the disturbance as is done
in [6], [13], [15]. The adaptation approach is the same as that used in [20], [23]. The
purpose of the adaptation in [23] is to improve the performance of a nominal optimal
disturbance rejection controller in the face of plant model uncertainties by adjusting the
Youla parameter. In this work, the primary objective of the adaptation is to construct,
on-line and for a given nominal plant, an asymptotic controller capable of performing
asymptotic disturbance rejection. In fact, the asymptotic controller represents an adaptive
implementation of the internal model principle. Such result is lacking in [20] since no
assumptions were made on the disturbance input. The adaptation approach under
consideration requires knowledge of the disturbance input—plant output transfer function
which is different from the cases treated in [6], [13], [15], [20] where output disturbances
have been considered.

The parameter adaptation is performed using two variants of the recursive least squares
(RLS) algorithm. The first RLS algorithm uses a dead zone with exponentially decreasing
width. The algorithm is used in the case where the disturbance properties are unknown but
constant. It is shown that asymptotic disturbance rejection can be achieved under the
assumption of boundedness of the regression vector. The algorithm requires knowledge of
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a bound on the disturbance response of the optimal control system. In order to deal with
disturbance inputs with time varying frequencies, a RLS algorithm with time-varying
weighting is considered. In this case, the persistent excitation assumption is invoked to
show asymptotic rejection of disturbance inputs with time varying properties.

The rest of the paper is organized as follows. Section 2 summarizes standard results on
stabilization and construction of the set of stabilizing controllers using the Youla
parametrization. Section 3 presents the formulation of regulation requirement as a set of
interpolation conditions. The off-line design of a controller that achieves regulation is
discussed in section 4. Recursive versions of the off-line design algorithm, to be used in
adaptation, are presented and their properties analyzed in section 5. The performance
robustness of the off-line designed controller in the face of plant model uncertainties is
discussed in section 6. The performance of the adaptation algorithms is illustrated through
an example in section 7.

2. PRELIMINARIES

In the following, standard results regarding the use of coprime fraction representation in
the stability analysis of feedback systems are summarized. Detailed discussions of the
coprime fraction representations can be found in [24], [25], [26].

2.1. Parametrization of the Set of All Stabilizing Controllers

Let R, denote the set of proper real rational transfer matrices and RH,, the subset of
asymptotically stable real rational transfer matrices. Let G, € R, denote the SISO plant
transfer function. Consider a coprime factorization of G, given by:

Gy = Ny M;" )

where N, and M, are in RH,_.. Let U and V in RH., be such that the following Bezout
identity is satisfied:

M,V — UN, =1 (3)
A stabilizing controller K, for the plant G is then given by:
K,=UV"! @)

A block diagram of the closed loop system is shown in Fig. 1. Using the base controller
K, the set of all stabilizing controllers can be constructed using the Youla parametrization
[21], [22]. In fact, for any Q € RH._,, the controller K given by:

K= (U+M,Q)V+N,0)" ®)
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Figure 1 The closed loop system.

is a stabilizing controller for the plant G,. Moreover, every rational stabilizing controller
K has the form (5) for some Q € RH...

2.2. The Closed Loop System

Given a stabilizing controller as in (5), then the closed loop system can be reconfigured
as shown in Fig. 2 where J is given by:

_ Ky, v!

Let w denote the disturbance input to the plant and e an error signal. Let P be the transfer

matrix of the augmented plant with inputs [ VI: ] and outputs [ ; ] We have:

P, Py, ]
P= ™)
l: P21 P22

where P,, = G, (Fig. 3). The two blocks P and J can be lumped together in a single block

Go

Figure 2 Block diagram of the closed loop system with a parametrized controller.
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w €
u P v
J
T Q 3

Figure 3 Block diagram of the closed loop system with augmented plant.

(Fig. 4) with transfer matrix T given by:
T, T
T = [ u 1 ]
T, O

Ty, = Py +P,UMyPy,

where

Ty = P;;M,
Ty, = MyPy,

The stability properties of the closed loop system are given as follows:

145
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®
(10)
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Lemma 1 [25] Assume G, is strictly proper and has no hidden unstable modes. Then a
controller K € R, stabilizes P if and only if K stabilizes G. Moreover, the resulting

closed-loop system transfer functions T,;, T,, and T,, are all in RH...

In the following, we assume the error signal {e(e)} represents the disturbance response.
Let W (z) and E(z) denote the 3 transforms of the disturbance input {w(e)} and the

Q

Figure 4 Block diagram of the closed loop system with lumped P-J blocks.
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disturbance response {e(e)} respectively. We have:
E(z) = Fro(2)W(2) (12)

where
Fro(@ = [T11(2) + T1x(2)Q(2)T5,(2)] (13)

Based on Lemma 1 and the fact that Q € RH.., we have F 10 € RH..

3. CONDITIONS FOR REGULATION

In this section, the disturbance input {w(e)} in (1) is assumed to be known with time
invariant properties. In other words k, and {w, (k), c,(k), ¢,(k)}, n = O,..., k,, are
assumed known with {w(k), c,(k), o,(k)}, n = 0,..., k,, being constant over time. In order
to accommodate any DC offset in the disturbance input, one of the frequencies, chosen to
be wy, is zero. The remaining frequencies satisfy w, #0, n = 1,..., k,. Also, the amplitudes
are such that ¢, #0, n = 0,..., k.

Conditions for regulation (asymptotic disturbance rejection) are given in the form of
interpolation conditions. The main reason for casting the regulation requirement in the
form of interpolation conditions is that such formulation lends it self, in a straight forward
manner, to optimization.

3.1. Interpolation Conditions for Regulation

Letp;i=1,..., ny; denote the poles of the W (z). According to (1), all the poles of W (z)
are simple and located on the unit circle.

Lemma 2 Consider the closed loop system transfer function Fr, (13) and define the
following interpolation conditions:

[7T11() + TR0 ()|, = i =0, =1, n,

(14)
Then regulation (asymptotic disturbance rejection) is achieved if and only if the
interpolation conditions (14) are satisfied.

Proof See Appendix A.
The above conditions imply that the poles of W (z) are also zeros of Fr,,(2).

Remark 1 The expression of the regulation requirement in the form of interpolation
conditions can be extended to the case where the disturbance model does not have only
simple poles. Let n,, denote the number of distinct poles of W (z) and n, the multiplicity
of a pole p;, 1 <i <ng,, The poles of W (z) are assumed located either on or outside the
unit circle. The interpolation conditions for regulation can then be given as follows:
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d
“IT1@ + Ta@Q@Tn @ i = 05 i =1,y f =0, = 1

Since the space RH_, is infinite dimensional, it is impractical to search over the whole
space for functions Q that satisfy the interpolation conditions (14). Rather, a special form
of the Youla parameter is considered which restricts the domain of search. More precisely,
we will use a Ritz-type parametrization in the form [10]:

nq
0@ = 2 qvy2) (15)

i=1

where y(z) = z'". As n, —>o, the representation (15) can be used to represent any function
in RH_,.

Define the following parameter vector:
0= [ql,"-,qnq]T (16)

There are two main reasons for considering the above representation for Q, the first being
that Q € RH_, for any Q € R". Such property is important especially in adaptation
discussed in section 5. In fact, during adaptation, the parameter vector © is to be adjusted
on line to minimize a given performance index. Since Q € RH._, for any © € R™, then,
at any time instant, the frozen time closed loop system transfer function Fr,, is stable.
Therefore, if adaptation is slow enough, the closed loop system can be guaranteed to be
stable during the adaptation process [27, p. 125]. The second reason for considering the
representation (15) for Q is related to the fact that the closed loop system transfer
functions satisfying the interpolation conditions (14) form a convex set. With the
particular representation of Q given in (15), the convexity of the set of closed loop system
transfer functions satisfying (14) translates into convex conditions on the parameter vector
© as given by the following Lemma:

Lemma 3 The interpolation conditions (14) are equivalent to the following linear-affine
constraint on the parameter vector ©:

A®O+ B=0 a7)

where A and B are real matrices given by (94) and (95) and A is n,, X n,,.

Proof See Appendix B.

The above constraint (17) can be used in Boyd’s formalism for the design of linear
controllers based on convex optimization [10]. In fact, many controller design specifica-
tions are closed-loop convex (i.e., the set of closed-loop system transfer functions that
satisfy the given specifications is convex). Numerical optimization algorithms can be used
to search within the convex set for the optimal closed-loop system transfer function (or
controller). The interpolation condition (17) being convex can be added to the design
objectives and the optimization problem becomes that of convex optimization subject to
a convex constraint.
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The condition for existence of a solution to (17) can be given as follows:
Al The vector B is in the column space of A.
Assuming Al is satisfied, we can have two types of solutions:

® Case I Unique solution, which happens when rank of A is n,.

e Case 2 Infinitely many solutions, which results from the situation where the rank of
A<n

-
The adaptation process is based on adjusting the parameter vector © on-line to minimize
a time domain performance index. Since the regulation requirement is expressed in the

frequency domain using interpolation conditions (14), it is necessary to relate the latter to
the minimization of a time domain criterion. The following lemma provides such result:

Lemma 4 Assume the signal {w(.)} is quasi-stationary, the matrix A in (17) has rank n,,
and Al is satisfied. Then solving the minimization problem

1 N
min lim — >, &*(k, ®) (18)

® N-o» i=1

is equivalent to satisfying the interpolation conditions in (17).

Proof See Appendix C.

Under the assumptions of Lemma 4, minimizing the mean square error is equivalent to
satisfying the interpolation conditions only when the number of parameters in (15) is
greater than or equal to the number of interpolation conditions (14).

4. OFF-LINE CONTROLLER DESIGN

The purpose of this section is to discuss the numerical off-line design of a controller
capable of achieving regulation. The off-line design is based on the assumption that a
sequence of discrete values of the disturbance input is available a priori. The controller is
numerically designed based only on the existing discrete disturbance values and not on a
model of the disturbance input. The off-line controller design algorithm represents a
starting point for the derivation of on-line recursive controller design algorithms to be
used in adaptation. The conditions under which the off-line design algorithm yields a
controller that achieves regulation are given and the structure of the controller is analyzed.

In order to present a simple controller design procedure, we assume in (15) the
following:

v =2"" =1, .n, (19)

The Youla parameter Q(z) in (15) is a Finite Impulse Response (FIR) filter with transfer
function g, + ¢, +...+ q,,qz_"q“. Define the following signals:

(v} = Z ' (T1,(W)
O} =2 T@u@Ty@WE) =1, .1, (20)
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The disturbance response (12) can then be expressed as:

e(k, ©) = vo(k) — 0(k)'® @y

where

o)) = [~vy(k), ... ,—vy(k —n, + D] (22)

Since the sequence of discrete disturbance input values is available a priori, then the
sequence {v,(.)} can be easily computed and used to determine the sequence of vectors

{¢ (.)}. The latter can then be used in a least squares based controller design algorithm as
described in the following lemma:

Lemma 5 Assume the matrix A in (17) is square (n, = n,) and invertible and that {v,(-)}
is persistently exciting of order n,. Then there exists a unique minimizer, ©,,,,, for the
mean square error and we have:

1 X 1 X
0, = [lim — 3 ¢ () ¢ (k) "17'[ lim ¥ > 0k) "oyl (23)

Noo IV N— 2V gy

Moreover, ©,,,, satisfies the interpolation conditions.

Proof. See Appendix D.

If the numerator of T,,(2)¥,(z)T,,(z) and the denominator of W(z) are coprime, then the
condition that {v,(.)} be persistently exciting of order n, is equivalent to that of {w(-)}
being persistently exciting of order n,.

In the following, it is desired to study the structure of the controller that results from the
use of the parameter vector (23) in (15) and (5). More precisely, since such controller
achieves regulation, it is desired to see if this numerically designed controller contains a
model of the disturbance input. Consider the coprime fraction representations:

W(z) = N,(2)M,,'(2) (24)

T, (W) = N(M; ' 2) (25)

where M (z) contains only unstable poles. Hence the poles of M (z) are also poles of
W(z). The assumption from Lemma 5 that the matrix A is nonsingular implies that the
pairs (T,,, M,,) and (T,, M) are coprime.

Remark 2: The simplest interpretation of the above coprimeness results can be given in
the case where e =y (i.e., P;; = P,; = P and P\, = P,, = P,) and P, = 1 (i.e., case of output
disturbance). In that case, the pair (T5,, M,) being coprime implies that the plant does not
contain any of the disturbance modes and the pair (T',, M) being coprime implies that no
disturbance modes are zeros of the plant.
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The following lemma is an extension of Theorem 4.1 in [28]:

LemMMmA 6  Assume the conditions in Lemma 5 are satisfied and e = y. Then the controller
obtained by using ©,,,, from (23) in (15) and (5) contains a model of the disturbance input,
that is, the poles of W(z) are also poles of K(z) in (5).

Proof See Appendix D.

5. ADAPTIVE REGULATION

In this section, recursive versions of a variant of the least squares algorithm used in the
off-line controller design are presented. The recursive algorithms are to be used in
adaptive regulation where it is desired to construct, on-line, an asymptotic controller that
rejects disturbance inputs of the form (1) with unknown and/or time varying properties.
The weighted least squares algorithm, of which the standard least squares algorithm used
in section 4 is a particular case, is used in the derivation of the recursive algorithms. Two
types of recursive algorithms are considered. The first algorithm represents a recursive
least squares (RLS) algorithm with dead zone where the width of the dead zone is
exponentially decaying. This algorithm is to be used in the case where the disturbance
input properties are unknown but constant. In the case where the disturbance input
properties are unknown and time varying, an RLS algorithm with a time varying forgetting
factor is considered. Although the second algorithm is considered for use in the case of
time varying disturbance input properties, it can also deal with the case of constant and
unknown disturbance input properties. The reason why the first algorithm is considered is
that its convergence properties can be given under milder assumptions than those required
for the convergence of the second algorithm. In fact, the RLS algorithm with dead zone
requires only boundedness of the regression vector (22) to show asymptotic regulation
whereas the RLS algorithm with time varying forgetting factor requires a persistent
excitation assumption.

The regression vector (22) used in (21) requires knowledge of {v,(.)} which was
computed based on the known disturbance input values. During on-line controller design,
the disturbance input is assumed to be unmeasurable. Therefore, it is desired to determine
values of the sequence {v,(.)} without knowing the disturbance input values. Using (9),
(10), and (11), the disturbance response in (12) is given by:

E(z) = [T,(2) + T1x2(2)Q@) T (2)]W(2)
= P 1(@W(2) + [P15(U(2)My(2)P,1(2) + P1(2)My(2)Q(2)M(2)P,1(2)]W(2)
= P (QW(2) + [P)(2)U(2) + P,(2)M(2) OQ(2)IM(2) P, (2) W(2) (26)

From (2) and (7), we also have:

Y(@) = Py (2)W(2) + Py(2)u(z)
= P (2)W(2) + Gy(2)u(z)

= Py ()W) + M~ ((DINy(2)u(2) 27)
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Let r(z) = My(2)P,,(2)W(z). From (27) we get:
1(2) = M(2)y(z) — No(2)u(z) (28)
The disturbance response can then be given as follows:
E(z) = [P,(2)W(2) + P12(2)U()r(2)] + [P(2)M(2) Q(2)r(z)] (29)

Assuming Q is given as in (15), then:

E(2)=Vy2) + iqivi(z) 30)
i=1
where
V(@) = P (2)W(2)+P 1, () U(2)r(2) @31)
Vi(2) = P1(My()Y(2)r(z) i=1,--, n, (32)

If Q is given as in (15) and (19), then we have:

E@ = Vo2 + 2 qz' V(2 (33)
i=1

Hence, we have

e(k) = vy(k) — 0(k)'® (34)

where {v,()} =Z ! (Vi(2)), i =0, 1, and where ¢(.) and O are given by (22) and (16),
respectively. It can be seen from the derivations given above that the regression vector
does not require knowledge of the disturbance input values. In fact, according to (28) it
is only necessary to know u(.) and y(.) in order to compute v,(.) which is the only variable
present in the regression vector. In the following, the two RLS algorithms are presented
and their convergence properties discussed.

5.1. Case of Unknown but Time-Invariant Disturbance Properties

In this case, the disturbance input is of the form:

w(k) = 3%_ ¢, cos(w,k + 0,) (35)

where the amplitudes c,, frequencies ®,, and phases ¢ ,, n = 0,---, k, are unknown. The
regulation problem is equivalent in this case to the estimation of the parameters of a
system subject to a bounded disturbance input. In such situations, a RLS algorithm with
dead zone can be used to estimate the unknown parameters. In the following, we introduce
a bound on the optimal disturbance response which will be used in the adaptation
algorithm. First consider the following assumption:
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A3 The matrix A in (17) is square and nonsingular.

Assuming A3 is satisfied, then there exists a unique parameter vector ©,,,, that satisfies
the interpolation conditions. Let {e,,;,(.)} denote the exponentially decaying disturbance
response that results from the use of ©,,,, in (21). The disturbance response rate of decay,
denoted B,,,;,, can be determined by examining the poles of T}, + T,,0T,,, regardless of
the disturbance input. The disturbance response maximum magnitude, denoted o is

‘max?

assumed known based on the physical laws governing the plant dynamics. Therefore, we
have

le,inR)| = 0, Pk (36)

The following assumption is invoked since it will be used in subsequent proofs.
A4 The constants d,,,, and B,,, in (36) are assumed known a priori.
The adaptation algorithm is given as follows:

P(k) gk + 1)

O+ 1) = O(k) + Nk + 1) 7 Nk + 1) otk + D'P() ok + 1) ¢

k+1) @7

P(k)o(k + Dok + 1TP(k)

Pk + 1) = P(k) — ANk + 1 38
( ) =Pl = M )1 + Nk + Dok + DTP(k)ok + 1) (38)
with © (0) = @0 and P(0) = P, > 0 and where:
) (k) 2 ok
NK) = | P T e P Dot~ ¢ (39)
0 otherwise,

The convergence properties of the algorithm are given in the following Theorem:

THEOREM 1 Assume A3 and A4 are satisfied. Then the algorithm given by (37), (38), and
(39) yields:

(@)
I ) = 40)
o 1+ () PGk — Do) (
()
lim |6k —-OGk-1)|] = 0 VI>0 41)
k—
Moreover, if the sequence {¢(.)} in (22) is bounded, then we have:
(©
lim e(k) =0 (42)

k—>

Proof See Appendix E.
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Remark 3 The estimated parameter vector converges to a fixed parameter vector. Since
regulation is achieved, and since there is a unique parameter vector that achieves
regulation, we have lim,_,_, O(k) = ©

min®

Remark 4. The adaptation algorithm works well only in the case where the nominal
parameter vector ©,,;, is constant. When 0,,,,, changes with time, the performance of the

adaptation algorithm deteriorates due to the fact that the adaptation gain, given by
Ptk — 1) ¢ (k) . . .
TN Pk - D@ P (37), becomes very small a few time steps after the algorithm

is started. Therefore, the estimation algorithm is not capable of tracking any changes in the
nominal parameter vector. A second adaptation algorithm, capable of tracking piece-wise
constant parameter vector ©,,;, is given in the next section.

5.2. Case of Unknown and Time-Varying Disturbance Properties

In this section, it is assumed that the coefficients c,, frequencies ®,, and phases ¢ ,; n =
0,-+, ko; in (1) are unknown and possibly time-varying. In order to be able to reject such
disturbance inputs, it is necessary to use an adaptation algorithm capable of tracking time
varying parameters. The recursive least squares algorithm with time varying forgetting
factor is considered for this purpose. Some of the properties of such algorithm are
discussed in [29], [30] and the references therein. The algorithm is given as follows:

Ok + 1) = O (k) + Nk + DP(k + Dok + De(k + 1) (43)
Plk+ 1) =Nk+ D[P (k) + 0K+ Do’k + 1)) (44)

with © (0) = ©,, P(0) = P, > 0, and where A(k) is the time varying forgetting factor
satisfying 0 < A,,,;,, < Mk) < A,,,,,<1. Using the Matrix Inversion Lemma [31], the above
equations can be rewritten as follows:

P(k)p (k + 1)

Ok D= OO T G D PR G+ D

k+1) (45)

T
P+ 1) = —(py - P2 &+ Dok + DPK)
Nk + 1) 1+¢k+ 1T P (k+ 1)

] (46)

where @(0) = @0 and P(0) > 0. In the following, it is assumed that the disturbance
parameters in (1) are piecewise constant and that changes in the parameters are sufficiently
spaced in time to allow parameter convergence. Let ©,,,,(k) denote the parameter vector
satisfying the interpolation conditions corresponding to the disturbance input properties at
time k. We can then define the parameter error at time k:

© (k) = 0,,;,(k) — Ok) “7)
and the change A®,,;,(k) in the parameter vector satisfying the interpolation conditions:

AO,. (k) =0, (k) — 0, (k—1) (48)
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and the following disturbance response signals:
e(k + 1) = vy(k + 1) — ¢"(k + 1)O(k) (49)

eink + 1) = vk + 1) — 0" (k + 1)®,,,,(k) (50)

Using eq. (43), we have,

0,k + 1) — 0k + 1) =[0,,(k+ 1) — 0,, K] + [0,k — OK)]
=Mk + Pk + Dok + Dletk + 1) — e,k + 1)
+ ek + 1)] (51)

which can be rewritten as

Ok + 1) = [I = Nk + DP(k + Dok + 1)o"(k + D]OK) + A8, (k)

— Nk + DP(k + Dok + De,,;(k + 1) (52)

min

From eq. (44), we have

[l = Mk + DPk + Dok + Do’k + 1)] = Mk + DP(k + DP "'(k) (53)

Therefore, we have

Ok + 1) = [Nk + DP(k + 1)P "' (k)1OKk) + A, (k) — (54)
Mk + DPGk + Dotk + De,,. (k + 1)

Using the approach in [29] for the convergence analysis of the adaptation algorithm, the

effects of the initial conditions, changes in the parameter vector ©,,,, and the signal

{€mn(-)} on the parameter estimation error ©® (k) can be studied separately using the
following equations:

0,(k + 1) = [Mk + DP(k + DP™'(k)10,(k), ©,(0) = 6(0) (55)

O,k + 1) = [Mk + DP(k + DP™'()]O,(k) + A®,,,(k), ©,0)=0  (56)

O,k + 1) = [AMk + DPKk + )P (k)10;(k) —
Ak + DPk + Dok + De,,(k + 1), ©;(0) =0 (57)

In order to show convergence of the algorithm, the following persistent excitation
assumption is invoked [32]:
AS The signal {v,(.)} in the regression vector ¢(.) is such that

li N
Ninook minl 2 0(D)97 ()] = o0 55

i=1
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THEOREM 2 Assume A3 and AS are satisfied. Then the algorithm given by (45), (46) yields:

(@)

k“_r)nooél(k) =0 (59)
)

k“_‘,‘;@(k) =0 (60)
for a single change in the parameter vector ©,,,,.
(c)

kh_r,“w@xk) =0 1)

Proof See Appendix F.

6. ROBUSTNESS OF THE OFF-LINE DESIGNED CONTROLLER

The purpose of this section is to study the performance robustness of the off-line designed
controller in the face of uncertainties in the plant model coprime factor representation. The
off-line controller is assumed to contain a model of the disturbance input. It is shown that,
if the stability of the closed loop system involving the true plant is realized, then under
some mild assumptions, the disturbance rejection performance is preserved. Different
approaches to the study of robustness and which led to similar conclusions are given in
[33] and [28].

Consider a nominal plant model G, with coprime factors satisfying (3) and a stabilizing
controller K, as in (4). Let G denote the actual plant model with a coprime factorization
G= NM™" where:

M = (M, + AM)E RH, (62)

N = (N, + AN)E RH,, (63)

The type of model uncertainties considered above is very general. The coprime factor
uncertainties AM and AN are both in RH._..

A6 The controller K|, stabilizes both G, and G.

The above assumption is not very restrictive since, in most engineering applications, a
stabilizing controller is always designed based on a nominal plant model and then used
with the actual plant whose model is always different from the nominal model.

Lemma 7 Assume A6 is satisfied. There exists R € RH,, such that G is given by:

G = (N, + RV)(M, + RU)"! (64)



156 BEN-AMARA ET AL.

Proof The result in the Lemma is the dual of the parametrization of the set of all

stabilizing controllers and can be obtained by interchanging the role of the plant and
controller.

Based on the above representation of the plant, the plant factor uncertainties are given
by AM = RU and AN = RV. Moreover, it can be easily verified that the following Bezout
identity holds in this case:

MV —-UN=1 (65)

Consider a parametrized stabilizing controller K= (U + QOMy)(V+ QN,)"" for the plant
G,. The stability of the closed loop system involving K and G is given by the following
lemma [23]:

LemMma 8  The closed-loop system is stable if and only if Q stabilizes R, that is (1 — QR) ™!
€ RH_,.

Assume the closed-loop system is stable. Let the controller K be used with the true plant

P. The resulting closed loop system transfer matrix relating [V;] and outputs [i] is
given by:

r- 7]

where
T,=P,+P,UMP, 67)
T,=P, M (68)
T, =M P, (69)
T,, =R (70)

We have

E(2) = Fry(2)W(2) 1)

where
Fro@) = [T),(2) + T,(2) %Tzl(zﬂ (72)

It is desired to study the performance robustness of the off-line designed disturbance
rejection controller in the face of the plant model uncertainties. Consider the coprime
fraction representations:



ADAPTIVE DISTURBANCE REJECTION 157

W) = N, @M.'(2) (73)

Ty @QW() = NM ' (2) (74)

where M 7/ (z) contains only unstable poles. Hence, assuming T,, € RH.., the poles of
M} (2) are also poles of W(z).

Lemma 9 Assume the closed-loop system involving the controller K designed as in
Lemma 6 and the true plant given by (64) is stable (i.e. (I — QR € RH_)). Moreover,
assume, P,; € RH,, and e = y. Then the closed loop system disturbance rejection
performance is robust in the face of the uncertainties A M = RU and A N = RV in the plant
coprime factor representation.

Proof See Appendix H.

Remark 5 1If in addition, the pair (T,;, M,,) is coprime, then the interpolation conditions
obtained with the true plant are equivalent to the interpolation conditions obtained with the
nominal plant.

7. EXAMPLES

Consider the SISO plant given by the following state space representations:

x(k+1) = 8x(k) +uk) + .5w (k)
y (k) = x(k)
x©0) =0

The disturbance input {w(.)} is a sine wave given by:
w(k) = sin (w; kT,) + sin (0, kT,) (75)

where ®,; and ®, are the frequencies of the continuous time sinusoids and 7, = 1 sec the
sampling period.

In the example given above, the matrix P in (7) is such that P;; = P,, and P\, = P,,.
Hence the disturbance response e is the same as the plant output y. The following
stabilizing controller is considered:

.06
Ko@) = — —— (76)
z—.1

In order to construct a set of stabilizing controllers, the Youla parameter Q in (5) is chosen
to be of the form:

0 =g, + g7 + g2 +q,2° (77
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Notice that the number of parameters n, is the same as the number of poles n, of W(z).
The resulting parametrized controller transfer function (5) is:

¢,2 + (= .06 + g, — .8¢)7 + (q5 — -8¢)7" + (¢4 — -845)z — 8¢,

K(z) =
dHg - DD+l gt g,

(78)

and the transfer function Fr,(z) relating the disturbance input w to the disturbance
response e is given by:

E(2)
Fro(2) = )
@ - D+ gl gzt a
23(22 -9z +.14)

(79
For the disturbance input considered in (75), the disturbance response is given by:
B = H (g - D+t rqztaq, sin(®,T,)z sin(@,T, )z
o= (- .97+ .14) 22— 2cos(0,T)z + 1 z° —2cos(@,T)z + 1
(80)
In order to have E(z) € RH_, we must have:
q,=0.1 - 2(cos(»,T;) + cos(w,T)) (81)
g, =2(1 + 2cos(®,T)cos(w,T5)) (82)
g3 = — 2(cos(,T,) + cos(®,T,)) (83)
qs=1 84)

It is important to notice that if, for a given ®,; and ®,, the values of ¢, ¢,, g3, and g, given
by (81), (82), (83), and (84), respectively, are used in the controller K in (78), the
controller would contain a model of the disturbance input (75) (the poles of W(z) are also
poles of K(z)). Hence, if during adaptation, the adjusted Q parameters converge to the
nominal parameters given in (81), (82), (83), and (84), then the controller design would
represent an adaptive implementation of the Internal Model Principle.

The frequencies of the disturbance are ,(k) = .5 rad/sec and w,(k) = 2 rad/sec for 0
< k<400 and then change to ®,(k) = 1.5 rad/sec and w,(k)= 3 rad/sec for 400 < k.
Therefore, the parameter vector © = [q;, ¢5, g3, 41" that should be used to achieve
regulation is as follows: for 0 < k<400, © = [-.8227, .539, — .923, 177 and for 400 < k, © =
[1.94, 1.72, 1.84, l]T. The performance of the two adaptation algorithms is discussed
below.
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Figure 5 Response of the adaptive control sysem using the RLS algorithm with dead zone. Top: Disturbance
input w(k). Middle: Response of the adaptive control system to the disturbance input w(k). Bottom: Parameters
of the controller parametrizing mapping Q.

7.1. The RLS Algorithm with Dead Zone

In order to use the RLS algorithm with dead zone, it is necessary to determine B,,;,, and
0., in (36). A conservative value for B,,;, can be given by examining the poles of F,(2)

'max min

in (79) which are located at z= 0, .2, and .7. The time constant corresponding to the

slower pole at z= .7 is 2.8 sec. Therefore, we can take f8,,,= .3 < 2—18 The value of o.,,,,,
is set equal to 1. The performance of the adaptation algorithm is illustrated in Fig. 5. The
initial conditions are ©(0) = [0, 0, 0, 0]” and P(0) = 1000/ where [ is 4 < 4 identity matrix.
For 0 < k<400, the closed-loop system was able to slowly reject the disturbance input. The
estimated parameters converged to the nominal parameters.

7.2. The RLS Algorithm with a Forgetting Factor

The forgetting factor in this algorithm is a constant A = .9. The initial conditions of the
algorithm are 6(0)= [0, 0, 0, 01" and P(0) = 10I where [ is 4 x 4 identity matrix. The
performance of the closed loop control system is shown in Fig. 6. It can be seen that the
adaptive control system was capable of rejecting the disturbance input even when the
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Figure 6 Response of the adaptive control system using the RIS algorithm with forgetting factor. Top:
Disturbance input w(k) with time varying frequencies. Middle: Response of the adaptive control system to the
disturbance input w(k). Bottom: Parameters of the controller parametrizing mapping Q.

frequency of the disturbance input changes. The estimated parameters converged to the
nominal parameters. Hence, for both values of the disturbance frequency, the adaptive
control algorithm was able to construct an internal model of the disturbance input in the
controller.

8. SUMMARY AND CONCLUSIONS

The problem of adaptively rejecting band-limited disturbance inputs with unknown and/or
time varying characteristics was considered. The adaptation approach is based on
searching, on-line, within a parametrized set of stabilizing controllers, for the controller
that achieves asymptotic disturbance rejection. An adaptive disturbance rejection
algorithm which is robust to changes in the disturbance input modes is presented and its
properties analyzed. Under some mild assumptions, the adaptation results in an on-line
implementation of the Internal Model Principle. The off-line designed controller was
shown to yield a disturbance rejection performance which is robust in the face of
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uncertainties in the coprime factor representation of the plant. The case of Adaptive
disturbance rejection for plants with uncertainties in the model description is under
investigation.

APPENDIX A. PROOF OF LEMMA 2
Necessity (=): The Z transform of the disturbance response {e(.)} is given by:

E(z) = Fro()W(2) (85)

According to (1), the poles of W(z) are all simple and located on the unit circle. Using
partial fraction expansion, the disturbance response can be expressed as follows:

Rw,i
<P

e(k) =Z7'1D( )1 o(P)] + eg(k) (86)

where R, ; denotes the residue of W(z) at the pole p; of W(z) and ey (k) the sum of responses
corresponding to partial fractions with Fr4(z) poles and the response to non-zero initial
conditions. Since the controller K is stabilizing, then the response to nonzero initial
conditions is asymptotically zero. Also, since Fr,(z) € RH., then the responses
corresponding to partial fractions with Fr, poles asymptotically converge to zero.

Therefore, the asymptotic properties of the disturbance response are determined by the
first term in the RHS of (86).

Assume lim,_,., e(k) = 0. The response corresponding {05, — is not asymptotically

L= p;

zero since the poles p;, i= 1,..., n, are all on the unit circle. Therefore, we must have:

Fro(p) =0, i=1n, 87)
which means that the interpolation conditions (14) must be satisfied.

Sufficiency (¢): Satisfying the interpolation conditions (87) implies that e(k) in (86)
asymptotically decays to zero.

APPENDIX B. PROOF OF LEMMA 3

Necessity (=): Using the expression for the Youla parameter Q given in (15), the
interpolation conditions (14) can be rewritten as follows:

n

[T,(2) + ‘ZlqiTlZ(Z)Wi(Z)Tﬂ(Z)]lz =pi 0, i=1,n (88)

Define the following functions:
Vo(z) = T1,(2) (89)

Vi) = T\,(y()T5(2), i=1,"n (90)
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Then (88) can be written as:

K

[Vo@) + X, qVi@).— i =0 1)

i=1

Without loss of generality, assume the frequency ®, in (1) is zero. Then W(z) has one pole
at z= 1 and k, pairs of complex conjugate poles on the unit circle. Since we have that
Vi(2) = V(2),i= 0,...,n,, where Z is the complex conjugate of z, then it suffices to consider
only ko + 1 of the n,= 2k, + 1 interpolation conditions (91). The k, + 1 interpolation
conditions can be obtained by evaluating F,(z) at the pole at z = 1 and at only one pole
from each pair of complex conjugate poles. For example, the interpolation conditions can
be evaluated at the k, + 1 poles with positive imaginary parts.

For any complex number z, let V,,(z) and V;;,(z) denote respectively the real and
imaginary parts of the functions Vi(z), i= 0,..., n,. The interpolation condition (91)
evaluated at a pole p on the unit circle and different from 1 can be written in the form:

Ny

WVoreP) + 2, aiVire P + jIVoim(P) + 2 qVism(P)] = 0 (92)

i=1 i=1
Hence each such pole yields two linear equations of the form:

nq

VoreP) + 2 4:Vi(p) = 0

i=1

Vo.m@) + ZQiVi,im( p)=0

i=1

Therefore, considering the k, + 1 poles selected as mentioned above yields n, = 2k, + 1
linear equations in the n, unknowns g;, i = 1,...,nq. The set of linear equations can be
written in the form:

A® +B=0 (93)
where © is given by (16), A is the n, X n, matrix given by:

Vi) ... an(l)
Vl’re(ejml) an»re(eiu“)
Vi@ o V(e

R ¥ (94)
V],re(eimk") an,re(eimk”)
L Vi (@) .. an‘im(eiwk‘,) a

and B is the vector given by:

VO.re(l) 7

VO,re(e]wl)
jol

B= Vi@ 95)

VO,re(eifj)k")
VO,im(elwk“)
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Sufficiency (<): For a given Fy.,, and according to the expressions given above for A and
B, satisfying (17) implies that (14) is satisfied.

APPENDIX C. PROOF OF LEMMA 4

Necessity (=): Since {e(., ©)} is the response of an asymptotically stable system with
transfer function F7,,(z) to a quasi-stationary input {w(.)}, then it is quasi-stationary [34].
Let @, (-) and ®,(., ©) denote the power spectra of the disturbance signal {w(.)} and the
disturbance response {e(., ©)} respectively. Then we have:

®,(0,0) = IF;o(j0)’ P, () (96)

Since the power spectrum of {e(., ©)} represents the Fourier Transform of the
auto-correlation function of {e(., ©)}, then by definition of the Inverse Fourier Transform
we have [34]:

li liz(k(a)—if”q) 0)d 97
im 1e O=-"J [, ®

N—» k=

The above equality implies:

1 X 5 1 =
arg min lim — Z e“(k, ®) = arg min - f 0,(w,0)dw
1y -
S}

0 No=lV,_

® — ], w

The power spectrum of the disturbance signal (1) computed as mentioned above is given
by:

ky | =

D, () = z la,l> Y, 2m8(w — w, — 2ml) (99)

n=—k = -

where a, # 0, — k, < n < k,, are complex coefficients in the expression of w(k) when the
latter is written as a sum of complex exponentials. The integral on the RHS of (98) can
be evaluated as follows:

) . . k, I=o
f 7| Fro(@)P®, (w)do = f T Fpo(@F Y, 1a,)” Y, 218w — w, — 27)de

n=—ky l
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k,
[T 1F@f 3 2mia,f5 - w)do
n=—ky
k,

S 2ml a,Fp (@) (100)

n=—k,

Il

The RHS of the above equation can be written in the following quadratic form:

kO
2 2mla,PIF;(e°n) = (A® + B)'M(A® + B) (101)

n=—k,

where O is as in (16), the matrices A and B are as in (17) and M is a positive definite
diagonal matrix given by:

a2 0 0 0 0 O
0 o0 0 0 0 0
B 0 0 of 0 0 O
M=l o 0 0 - 0 0 (102)
00 0 0 o O
| 0 0 0 0 0 o
and where
2mlay!? if n=0
2 — 0
% {41'rlan|2 if n=1,"k (103)

Taking the derivative of the RHS of (101) with respect to ® and setting it equal to zero,
we get:

A™(A® + B) =0 (104)
Since A has rank n, and M is positive definite, we recover the interpolation condition (17):

A® +B=0 (105)

Moreover, under assumption Al, the above system of equations admits at least one

solution. Hence, minimizing the LHS of (97) implies solving the interpolation conditions
7).

Sufficiency (<): If the parameter vector ® satisfies the interpolation conditions (17), the
RHS of (101) is zero which means that the LHS of (97) is at its global minimum.
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APPENDIX D. PROOF OF LEMMA 5

Since {v,(.)} is persistently exciting of order n, then the matrix [limy_,.

%Ekz l;z)(k);z&(k)T] is nonsingular. Therefore, there exists a unique vector @, such that:

1 N
®,,., = arg m'bn lim — X &k, ©)

N—x i=1

1 X 1Y
(lim N > oo 7! (lim — X (k) ve(k)) (106)

N—x k=1 N—x k=1

Since A is nonsingular, there exists a unique vector ®° such that the interpolation
conditions are satisfied. Therefore, we have:

lim e(k,0°% = 0 (107)

k—x

Assuming zero initial conditions, then {e(., ®°)} represents the impulse response of an
exponentially stable linear system. Therefore, there exists oo > 0 and § > O such that:

| e(k,0%) < ae P* (108)

Therefore, the infinite sum lim y_..5,Y &4 09 exists. In fact, let r = eP<1. We have:

N N
lim D e(k,0%% < lim Y, o’e” 2%
No= g = No% =
N
< o’lim X, r*
No® g =
r(l — rN)
- 2 iy ————
= o lim 1—r
N—>x
, T
=« (109)
1—r
Therefore,
.1 il 042
lim — X, ek, ®°)* =0 (110)
No* T =1

Since ©,,,, is the unique minimizer of lim,_,.. 5 2, e, (k,®), then we have:

1 X 1
0<lim— X k0,,)=limy,, v NPk, 0% =0 (111)

i=1
N i=1
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which implies:

lim 1 X
NowN 2 e k ©,,) =0 (112)

However, since 0,,,, is the unique minimizer and since the infinite sum corresponding to
0,,,, has the same value as that corresponding to ®°, then we must have @,,,, = ©° that
is, ®,,,, satisfies the interpolation conditions.

APPENDIX E. PROOF OF LEMMA 6

[ﬂ - [gﬁ 1;2] m (113)

that is, ¢ = y. Then we have:

Assume the plant is such that:

T, T
T —_|fu 12]
£
_ | P+ P, UMy P, P, M,
= [ M, P, 0 (114)
Using the Bezout identity (3), we get:
P, + P,UM,P, = VM, P,
= VT, (115)
The transfer function Fr, is then given as follows:
Fro =T, + T,,0T5
= VT, + NoQT,
= (V+ NoO)T, (116)

Using the factorization in (25), we get:
E(z) = (T, + T1,0T,)W(2)
= (V+ NoO)T,,W(2)
= (V+ N@QM ' N,

Under the assumption of Lemma 5, the controller obtained by using 0,,;, in (15) achieves
regulation. Therefore, we have:

E@z) = (V+ NyQWM ;'N, ERH.. = (V + Ny QM ;' [N, M,JERH., (117)
= (V+ N,Q)M ' €RH,, (118)
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where the last implication results from the fact that (25) is a coprime factorization (i.e.,
3 [X Y] € RH,, such that [N, M][X Y]1" = 1). Since the poles of M ;,1 (z) are the poles of
W(z) (all simple and on the unit circle), then we must have:

(V + NoQ)l,, = 0 (119)

where p; is a pole of W(z). The last equality can be shown using arguments similar to those
used in the proof of Lemma 2. Since we have K = (U + M,0)(V + N,0) ~! then the
controller K must contain all the poles of W(z) (a model of the disturbance input).

APPENDIX F. PROOF OF THEOREM 1

(a) At any given time k, we have:

e(k) = vo(k) — 9(k)"® (k — 1) (120)
Emin(k) = vo(k) — 0(k)'O,,,, 121)

Adding and subtracting e,,;,(k) in (120), we get:

e(k) = g()"O (k — 1) + e,,;,(k) (122)

where

Ok) =0,,, — 0 (k (123)

We also have:
Ok + 1) = Ok) — Nk + DPk + D)ok + De(k + 1) (124)
Pk + 1)7' = P(k)™! + Nk + Dk + Dotk + 1)7 (125)

Consider the following Lyapunov function candidate:
V(k) = Ok)"P(k)" Ok) (126)

Substitute (124) for Gk + 1) to get:

Vik+ 1) = Ok Pk + 1) T1O%) — 2Mk + 1) ¢ (k + DTOK)e(k + 1)
+ N2k + Dok + DTP(k + Dok + D’k + 1) 127)
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Using the expression (125) for P(k + 1)~! we get:

Vik + 1) = OK)[P(K) ™" + Nk + Dok + Dok + 1)T10K)”
— 2\ k + Dok + DTO®K)ek + 1)
+ Nk + Dok + 1)'Pk + Dok + 1)e(k + 1)
= 0Pk 'OK)" + Nk + 1)OKR) 9k + Dok + 1)"OKk) —
2Nk + Dk + 1)TOk)e(k + 1)

+ Nk + Dotk + DIP(k + Dok + De*k + 1) (128)
Using the identity:

Ak + Dotk + DIP(K)o(k + 1)

Mk + Dok + D'Pk + Dk + 1) = 1+ Nk + Dok + D)'Pk)o(k + 1)

(129)

and the expression for e(k + 1) in (122), we get:

Wik + )= ViR + 2k + D] e+ 1) = Sk + 1)
( )= V(k) ( )Lemin( ) 1 + Nk + Dok + DTP(k)p(k + 1)
[ 2
= 2 2Bk + D_ ek+1)
=V(k) + Nk + 1)_amaxe 1+ Nk + Dok + DTP(k)o(k + 1)

(130)

If A(k) is chosen as indicated in (39), then the function V(-) is positive nonincreasing. Let
Sy denote the set of integers such that A(k) = 1 for k € S, and k = N. We have:

(k) 2
T T O
1 + Nk)g(k) P(k — 1)p(k)

N
> K(k)[
k=1

ez(k) y
- min’ S — 131
- k%N[l + ¢(k)TP(k - Dgp(k) Qinax € V(0) — V(N) (131)
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Two cases can arise:

CASE 1: \k) = 1 infinitely many times. Then:

2
e’(k) 2 -2 k]
= e Tl = V(0) — V(o) =
ki [1 + o(k)'P(k — 1)o(k) O~V
which implies the following:
2
k
lim ; (k) — afmeﬂﬁ""’"k =0
e |1+ 0Pl = Do(k)
) -
k
= lim ) = lim ol e 2Pk
ke |1+ 0(k) Pk — Dok) | ke
. (k) 1
= lim T =0
ke |1+ 0(0) Pk = 1)p(k) |
CASE 2 N\(k) = 1 only a finite number of times. Then:
2
e’(k) 2 2B,k
. — 'min < O
m | T+ 0 Pk = Doty 7
k) <l 2 2Bk
; =lim _ = 2B
= m | T o0 Pk — Dotk | 1 e
k—> = k—x
li il ] =0
= lim T _ =
tye L1 1 0(0) Pk — 1)o(k)
Therefore, in either case we have:
k) o
m | T+ o0"Ptk = Dot
k—>
(b) We have:
N 2
k
lim > )\(k)[l +>\ ¢ ; ) ol ek ] —
Nov= g -y (Kyp(k) P(k — Dg(k)
N 62(k) N
= lim Ex(k)[ —lim > \ (k) [ o e 2Pk
Y 1+ NPtk = Dok) |y '

169

(132)

(133)

(134)

(135)

] <o
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N _
= lim X, \Mk)

No® | =1

N
= lim X, \Mk)

No® =1

N
= lim 2 MY
Nox k=1

N
lim 2 M&)

Now k=1

Using the fact that lim y_,.. 27— ; A (k) [;

we get:

N
lim 2 M)

Nowk=1

From (37), we have:

which yields:

210k — Ok — 1)||?

k=1

Therefore:

BEN-AMARA ET AL.

]

[ (1 + MRp(K)Pk = Dp(k))e*(k)

(k)
| 1+ MKk Pk — 1)p(k)

=< oo

]Sw

| {1+ MR Pk — 1)pk))>

(k) i .
| {1+ MR P(k — Dok} |
[ MRk Pk — Dok’ | _
| {1+ MR Pk — Do(k)}* |~

k)
T me P hean <« from part (a) of the proof,

oR) P — Doe’k) | _ 136)
{1 + MR Pk — D)} | —
o(k)"P(k — 1)’p(k)e*(k) ]
Ok) — Ok — 1)|| 2 = Ak
| Ok) — Ok — 1) (k) [{1 OBk — Do)
-2 o) Plk — Do(k)e*(k)
=~ [{1 T A0 P* — Do) | MO
(137)
_ < o(k)"P(k — 1)p(k)e’(k) —
B Elx (k)[{l T ARPRTPk — D) | PO=
(138)
lim1® ® — Ok —1)[=0 (139)

k—x
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Using the Schwarz inequality, we get:

iml®® —Ok—-D[=0 VI<0 (140)

k—x

(c) Assume {g (.)} is bounded, that is, there exists M > 0 such that || ¢(.) |* = M. Hence
We have:

| 20 ot [ (k) ]20
i | T35 0@ ™PU— Do) | o L1+ AP = D) 08 |12

k—x

. [ e’ (k) ]
=lim| —— | =0
koo | 1+ NP0 M
= lim e(k) = 0 (141)

k—

APPENDIX G. PROOF OF THEOREM 2

(a) Convergence analysis of ©,(k):
Let V,(k) = OT (k)P~'(k)®,(k). From (44) we have:

P k) = ﬁp‘l(k + 1) — ¢k + Dk + )T (142)
Using (55) with (142) we get:

Pk + 1)O,(k + 1) = Nk + 1)P~'(k)0, (k)

=P 'k + 1)O,(k) —\(k + Dok + Dk + 1)70,(k) (143)

Hence:
Vit + 1) = ®1T(k + )P Yk + DOk + 1)
1
= [Nk + DOTK)P™ ' (K)P(k + 1)]

[P~ Yk + 1)O,(k) — Nk + Dok + Dok + 1)70, (k)]
= [\ + 1)O,(0)P~ ' (k)O, (k)] —

IN(k + DO, ()P~ (k)P(k + Dotk + Dok + 1)'O,(k)] (144)
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From (46) we have:

Pk + Dk + 1) = [ P(k)‘”(f *+ 1) ] (145)
ANk+1) |1+ gk+ 1)yPkok+1)
Substituting in (144):
bk =t o - o SEELOMEI < 0]
= Nk + D)V, (k) — Nk + 1)[1 :Z:}iﬁ}gi);;?{i 1)]
=Nk + D)V, (k)
= L]]i[()X(i + D]V,(0)
= N 1V1(0)
= [\e. 167(0) P 1(0)8,(0) (146)
which yields:
DoinP DI Ok + D[P = [N 1N POD] || ©,(0) |2 (147)
Taking the limit of both sides as k — oc:
fim [P~ ‘NNek+1f*=0
lim \,,;,,(P ™ (k) lim || @ ,(k + 1) [|>= 0 (148)

k—x k—

To show convergence of @,(k + 1), it is enough to have lim, .\, (P~ /(k)) bounded away
from zero. Such condition is satisfied under assumption A6. Therefore, we have
lim, ..0,k) = 0.

(b) Convergence analysis of 0,(k):

We have:

0,k + 1) = [Ak + Pk + 1)P ~'(k)]O,(k) + A®,,,;,(k)

Assume the time interval between any two successive changes in ©,,,.(k) is long enough
to allow the parameter estimates to converge. If at time k,, A®,,,(k,) takes a value
different from zero, then ®,(k, + 1) is taken as an initial condition and the analysis of the
convergence of @,(k) would be the same as that for ®,(k) except that the initial time is
ko + 1 instead of 0.

(c) Convergence analysis of ©;(k):
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We have:
O,k + 1) = [Nk + DP(k + )P~ (k)]O5(k)-
Nk + DP(k + )bk + e, (k+ 1), 050 =0 (149)

Define the following Lyapunov function candidate V5(k) = @g(k)P‘l(k)®3(k). Equation
(57) yields:

Pk + 1DOsk + 1) = [Nk + 1P "' (k)]O(k) —
N (k + Dok + De,,;, (k + 1) (150)

Using the expression of P ~!(k) from (142) in the above equation, we get:

O,k + 1) = O5k) — Mk + 1Pk + D)k + Dk + 1)70O,(k) —
Nk + DP(k + 1)k + 1)e, i, (k + 1) 151)

Hence we have:
Vitk + 1) = O Itk + DP7'(k + D@5k + 1)
= Nk + DV3k) + Nk + D{-Ol(k)a(k + 1) +
Nk + DOI(K)o(k + Dok + 1Pk + Dok + 1) —
Nk + Dk + Pk + DP™ ' (k)O;(k) }e,in(k + 1) —
Nk + DOI(k)ok + Dok + TPk + HP ™ (k)O;(k) +

N+ Dok + D'PU+ Dok + Dy k+1) (15

The following identities can be easily derived:

®3T(k)¢(k+ 1)

T _ T = —
®3(k)¢(k + D[—1 + Nk+1)gk+1) Pk + D)g(k + 1)] 1+ ot D) PR D)

O’ (kyg(k + 1)
“\k + Dotk + DTP(k + )P "' ()O,(k) = 2

T 1+ ok + DVIPRk + 1)

(OI(k(k + 1))
O (k)pk + DINK + Dok + 1)"P(k + 1)P ' (k)]0O5(k) =

1+ ok + DTP(k)ok + 1)

o'k + DP(k)g(k + 1)

Mk + Dotk + PR+ Dotk + 1) = == i m =
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Using the above identities in the expression for V(k + 1), we get:

Vatk + 1) = ANk + DV,(k) —

Ak + 1)
1+¢ (k+1)TP(k)g(k+1)

[(G):(kw(k-l- D)*+20(k + 1)70;(k)e,,,;,(k + 1] +

ok + D'PRyok + 1)
Nk + D Sk DT PORE+ 1) e (k+1) (153)

Completing the square in the above equation we get:

Viylk + 1) = Nk + 1)V5(k) —

Ak + 1)
ok + DTP(k + Dok + 1)

[(OI(k)otk + 1) + epulk + 1))]

Nk + 1) ,

' ok + )Pk + Dok + 1) €k + 1) +

otk + D'P(k + Dotk + 1)
Nk D T Pk + Dotk + & D 154

The square term involves the parameter error @,(k). To facilitate the study of the
convergence properties of the algorithm, it is convenient to eliminate the terms with @5(k)
since the latter is an unknown. This can be done by eliminating the negative term from the
above equation. We get:

Vak + 1) = Nk + DVa(k) + Nk + De?. (k + 1) (155)

min

Using the above equation iteratively and knowing that ®5(0) = 0 yields:

k k+1 k+1
Vit + D = [IT NG+ DIV50) + 2 {[TIN)IE, ()}

i=0 i=1 j=i
k

= 2N €
i=1
k

=3 2,0
i=1

2= (156)

1—r
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where the RHS of the last inequality is taken from the results in the proof of Lemma 5.
A new inequality can be written as follows:

_ (1 —r"
NuinP )| Ok + 1) [|? = o == (157)
Taking the limit on both sides:
lim [P LR || Osk + D)2 = o ——
ko 1—r
lim [P~ ‘G )lim || Otk + 1) % = o® — (158)
k—% k—oe 1—r
Using assumption AS, we get:
1imB, (k) = 0 (159)

k—

APPENDIX H. PROOF OF LEMMA 9

Assume the plant is such that:
el [P, P ][w
[)’]_[Pl Pz]_”] (160

Tll T12 |
T =
|:T21 T22 _

that is: e = y. Then we have:

_ [P, + P,UMP, PZM] (161)

MP, R
Using the double Bezout identity (3), we get:

P, +P,UMP,=VMP, (162)

The transfer function Fr, is then given as follows:

Fro=Ty + Ty

T.
1 - RO 21
Q
=Vl,,+ N——T

21 1-RrQ ™

=(V+ Ny + RV) 1—_QI‘€§)T21

= (V + N,0) Lo (163)
"1 -RO
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Using the coprime factorization of 7, W, we get:
E(z) = (T, + Ty, 2 I, )W (2)
1 —-RQ

1
=V + N T-RO T,,W(2)

1
=(V+N,Q—— M'N,
( °Q)1—RQ N

Under the assumptions of Lemma 6, (V + NyQ) is such that:
(V+ NO)I,, =0 (164)

at any pole p, of W(z). Hence, since the poles of M ;' are by assumption poles of W(z), then
(V+ NoQM ™), € RH,, which yields:

1
E@) = (V+ NoQ) T=pg M;'Na€ RH.. (165)

The above result is due to the fact that (1 — RQ) ~! € RH... Therefore, the disturbance
rejection performance of the controller designed off-line based on the nominal plant model
is robust to plant model uncertainties as long as the closed loop system is stable.
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