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In this paper we consider optimal control problem for infinite dimensional uncertain systems. Necessary
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1. INTRODUCTION

Many physical systems, such as thermodynamics, electrodynamics, and population
biology are governed by differential equations, integro differential equations, or more
generally functional differential inclusions on Banach spaces. The abstract mathematical
model for such systems can be described as follows:

X (1) € Ax(¢) + F(t, x(¢)) )
x(0) = x° M

where A is typically a linear unbounded operator in a suitable Banach space and F a
multi-valued map. An associated control system may be described as

¢ €A + G(t, )
{x x(t) + G(t, x(t), u(t)) 2)

x(0) = x°

where G is a multi-valued map and u is a suitable function representing the control actions.
Many engineering systems with incomplete mathematical model can be formulated as
differential inclusions rather than differential equations. This is because of either
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uncertainty in the measurement of system parameters or their random fluctuation.
Evolution inequalities rather than equations also can be formulated as differential
inclusions.

In general we consider the mild solutions of (2). For each admissible control «, let X (u)
denote the set of solutions of (2) corresponding to u. A natural problem is to find uy €
U,, (admissible controls) so that

Jo(up) = inf Jy(u) 3)

u€U,y

where

Jow) = sup f I(t, x(2), u(t))dt.
xEX(u) !

Clearly, this is a minimax problem.

Recently, optimal control of systems governed by evolution inclusions on infinite
dimensional spaces have been studied [3, 6, 7]. we studied the question of existence of
optimal controls for infinite-dimensional uncertain systems (see [4]). To the knowledge of
the authors, very little seems to be known about the necessary conditions of optimality for
infinite dimensional uncertain systems.

In this paper we will present some necessary conditions of optimality for a special class
of system (2) where the multi-valued map G is given by

G(t, x,u) = {f2 g(t, x, u, o)u(do) pE M)}

with M (Z) being the space of probability measures. Here A is assumed to be the
infinitesimal generator of a strongly continuous semigroup. This is a broad class of
systems representing physical processes with parametric uncertainty, incompleteness of
the mathematical model, and systems with randomly fluctuating parameters, and so on.
The problem for the system designer is to find a control policy that minimizes the
maximum risk or maximizes the minimum revenue.

2. NOTATIONS AND ASSUMPTIONS

Let X be a reflexive Banach space considered as the state space; and Y another reflexive
Banach space where the control take their values from. For any interval I = [0,T], T < 0,
L(LY), 1 = p <  will denote the Banach space of strongly measurable Y— valued
functions having pth power summable norms. For any two Banach spaces X and Y, L(X,
Y) will denote the space of bounded linear operators from X to Y.

Let 2 be a compact Polish space and M () the space of probability measures on =. A
sequence p, € M (2) is said to converge weakly to p € M () if

f s g(o)u,(do) — f 5 g(o)u(do) inX

for every g € C(Z, X), the space of continuous functions from X to X.
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For the necessary conditions we shall introduce the following assumptions:

(A1) A is the infinitesimal generator of a strongly continuous semigrup 7(¢),t = 0, in X.

(A2) U: I -CC (Y) = class of nonempty, closed, convex subset of Y is a measurable
multifunction satisfying U(f) C % for almost all ¢ € I, where % is a fixed weakly compact
convex subset of Y. For the admissible controls, we choose the set U,; = {u € L,(Y): u(?)
e Ul ae} (1 =p=m).

(AN G IXXXYXZ—=X, forp € MQZ), gt, x, u, 1)

J s &(t, x, u, o)u(do),

1) t - g (.,x, u, p) is a measurable function,
2) For any given u € U, u € M (), there exists a K € L*(]) s.z.

| 8t x, u, ) [ly =< K(2) (1 + || x|

x):

3) g is Frechet differentiable with respect to x and u with the Frechet derivatives

&.» &, bounded measurable in ¢ on I and continuous and bounded on bounded subsets of
X XY

(A4) I: 1 X X X Y — RU{+} is continuous, and Frechet differentiable in both x and u
on X and Y, respectively, so that [, € L,(I, X*) and I, € L (I, Y*) in the neighborhood of
the optimal trajectories.

Under the assumptions above we consider the following system

X(t) € Ax(t) + G(t, x(£), u(?)) 4
x(0) = x° @

where G(t, x, u) = {g(t, x, u, W, nE M)}

DeriniTion 2.1 A function x is said to be a mild solution of the problem (4) corresponding
tou € U,, if

D x € C{, X),
2) there exists a p € M (Z) so that x satisfies the integral equation:

x(t) = T(H)x° + f(; T(t — 7)g(T, x(7), u(t), p)dr.

Define X(1) = {x | x is a mild solution of (4) corresponding to u}.
Our problem (P) is to find u, € U,, s.t.

Jo(”o) = inf Jo(u)
ueU,,

where Jo(u) = sup,ex () [[1{Ex,u)dt.

3. PREPARATORY RESULTS

Before discussing the necessary conditions, we need some preliminary results.
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THEOREM 3.1  Suppose the Assumptions (Al)—(A3) hold. Then, for every LEX uEU,
and u € M (2) the following Cauchy problem

{ %= Ax(r) + g(t, x(t), u(t), p)

x(0) = x° )

has a unique mild solution.

Proof. For proof see [8, 2].

Occasionally, for fixed x, € X, we use the notation x(u, p) to denote the solution of (5)
corresponding to u € U,, and p € M ().

In the following two Theorems we give some results on the continuous dependence of
solutions on controls and parameters.

TueoREM 3.2.  Suppose the Assumptions (Al)~(A3) hold and x° € X and p, € M (Z) be
given. Then if u, = ug in L (Y) (1 = p = ), the solution x,, = x(u,, ty) = Xy = x(Ug, Ho)
in C(I, X).

Proof. Define

R0 = J7 0,300 + s(,0) = 50, 0,0, o)

5,00 = [ 8.0t 5000, 10) + s0,0) = o), o)

Since

xn(t) - xO(t) = f(; T(t - T)[g(T5 xn(T)’ un(T)’ “0) - g(‘l’, xO(T)’ uO(T)’ l‘lO)]dT
-f " Tlt = DR, (1), (r) — xo(7))d
+ J170 = 95,5) ) — ugl)an

the assertion follows from Assumptions (A1), (A3), and Gronwall inequality.

THeOREM 3.3.  Suppose the Assumptions (Al)—(A3) hold and x° € X and to €E M (2). For
anyu € M (2)and € = 0, let u, = yy + € (U — yp). Then as € = 0, x, = x(uy, py) —> x,
= x(ug, Yo) in C(1, X).

Proof. Define
L) = [[1 .1, 50(7) + s(x,(1) = xq(r), (o), ).

Then we have

xs(t) - xO(t) = f(: T(t - T)[g(T’ xe(T)’ uO(T)9 ps) - g(T9 xO(T)v uO(T)’ p())]dT
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= J1 7 = g, 5,001, ), ) = 85, 3, ),
+ 170 = gr,xglr), w0, ) = 85, 3, (), )
= [110 - DLEm — sy
+ e 170 = Dlgln xr), ), 1) = 805, %), o), mo) e

By virtue of assumptions (A1) and (A3), there exist constants M > 0, L > 0, so that

50) = %@ | X = e L+ M [*]2,(1) = xq(r) | .
Hence, by Gronwall Lemma, we have

x, = xy in C(I,X)

as € — 0.

Remark 3.4. In fact, if p, converges weakly to p € M (Z), one can easily verify that x(u,,
K —x(ug, Ho) in C(, X).

Let X* denote the topological dual of X and X*,, the space X* endowed with the w*
topology. Let C(I, X*,) denote the topological space of w*-continuous X*-valued
functions defined on the interval . Let (, ) z*,z denote the duality pairing between Z* and
Z, where Z is any Banach space. Let A* denote the adjoint of the operator A.

As usual in the study of optimal control problems, we need an associated adjoint
problem. In the following theorem we present an existence result for the associated adjoint
Cauchy problem.

THeoreM 3.5. Let B € C(I, L(X)), f € LI, X*). Then the adjoint problem:

{ @ BOW =~ f ©

WT1) =0
has a unique solution ¢ € C(I, X*) in the weak sense.

Proof. By virtue of perturbation theory of semigroups, there exists a strongly continuous
transition operator S(z, 1), 0 = T <t < %, generated by (A + B(.)) (see Theorem 2.4.4 of [1]).
Since X is a reflexive Banach space, the adjoint transition operator S*(¢, 7), 0 = T < t < ®,
is also strongly continuous and its generator is given by A* + B*(¢), t = 0. Define

(1) = f, T §*(1,0)f(v)d.

Clearly this is the mild solution of equation (6).
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For any h € D(A),

(0. )= [T (50 )

and hence

d k]
=0, By = = (0 H) o — f, T (S (rAf(), (A + B@)h) y xdr

Thus, for all h € D(A),

d
:i—t <¢‘(t)’ h> X' X + <l1’(t)’ (A + B(t))h>x“,x =- (f(t), h>x’,x’

for almost ¢ € [0, T]. Clearly y(T) = 0. Thus, {, as defined above, solves the problem (6)
also in the weak sense.

4. NECESSARY CONDITIONS OF OPTIMALITY

In this section we present our main results on the necessary conditions of optimality for
the problem (P) as stated in section 2. In what follows we shall assume that an optimal
control exists (see [4]).

DernitioN 4.1.  For problem (P), suppose (g, 1) € U,, X M (Z) satisfies

inf  sup J(u,p)= sup inf J(u, p) = J(uy, p)
u€lU,, pPEM(Z) HEM(Z) u€U,

where J(u, p) = [ 1 I8, x(u, ), w)dt with x(u, p) being the solution of equation (5). We call

(ug, M) optimal (saddle) solution of problem (P).
Since (uy, Ho) is an optimal solution, the following system of inequalities must hold:

J(ug, 1) = J(ugp, o) = J(u, ng) Yu€ U,y p € MRZ). @)
TueoreM 4.1  (Necessary Conditions) Suppose the assumptions (Al)—(A4) hold. Then, in
order that (uy, ) be the optimal solution of problem (P), it is necessary that there exists
a v € C(I, X’,) such that the following equations and inequalities hold:
(1) x,(t) = TOX° + I 7)8(Txo(T), ug(T), Ho)dT;
2)wr) + A +B O = 10, «(IT) = 0,
where B(t) = g,(t.x,(t), ug(t), to), 19(t) = L (t.x,(t), up(t));

3) [I{C@w@) + 150, u(t) — uy(®) yydt = Oforallu € U,
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Where C(t) = gu(t; xo(t)) uo(t), /‘l())’ ls(t) = lu(t) xo(t)) uo(t));
(4) S {w(0), gtx0(0), ug(0), ) - ,dt = S (w(0), g(1.x0(0), uo(t), uo(t), o)) vt
forall ue M (2).
Proof. Let (uy, Hp) be an optimal (saddle) solution of problem (P) and x, = x(uy, Hp). By
convexity of U,,, forany u € U, u° = ug + e(u — uy) € U ,,for 0 = & = 1. According
to Theorem 3.1, the state equation (5) has a unique mild solution x° = x(u®, p,)

corresponding to the control #® and parameter py,.
Using the second part of the inequality (7), we have

[ 1oy, winae = [ 16 500, uotopai = o. @®)

Define y® = (x°* — x,)/e. Note that y® satisfies the integral equation

= [ 1= [ &0 x4, + s07) = 3o, ), mo)der)ae
+ f ; T(t — 7 f (: 8.(1, x5(7), ug(7) + s@°(t) — uy(7)), po)ds)(u(t) — uy(t))dr.

By virtue of assumptions (A3) and Theorem 3.2, one can justify taking & to zero in the
above equation to obtain

¥() = f; T(t — 7)B(7)d7 + fot T(t — 7)C(T)(u(T) — up(T))dr. )

The integral equation (9) has a unique solution y € C(/, X) (see Theorem 2.4.3 of [1]).
Hence y is a mild solution of the equation

{ ¥(t) = Ay + B(t)y + C(t)(u(t) — uy(t)) (10)
y(0) = 0.

Note that y is the Gateaux differential of x in the direction u — u,,.

By use of hypothesis (A4), and some elementary computations, one obtains from (8) the
following inequality

fl (1% Yy, xdt + (19, u — up) y,ydt = 0. (11)

By virtue of (A4), 12 € L,(I, X"), and hence, by Theorem 3.5, the adjoint equation

{ll’ + (A* + B*)'l‘ = - lg (12)

W(I) =0

has a unique weak solution ¢ € C(I, X¥).
Since the solution y(f) need not belong to D(A), we use the Yosida approximation of the
identity, I, = nR(n, A) where R(\, A) is the resolvent of A corresponding to A € p(A). It
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is well known that I, — I (Identity operator) in the strong operator topology in L(X), and
for any x € X, I,x € D(A) for n € p(A). Consider the following equation

{ yn = Ayn + (InB)yn + InC(u - u())

7,(0) = 0. )

Equation (13) has a unique strong solution y, with y,(f) € D(A) for almost all t € [
provided n € p(A). Note that a strong solution is obviously a mild solution, and, hence

30 = 116 = @y, + [0 = D1,CE) - 1) d.
Using Gronwall inequality it is easy to verify that y, — y in the usual topology of C(/, X).

By considering {s as the limit of strong solutions of equation (12) corresponding to Holder
continuous approximations of /% we have

2 Syt = tim [ 19, 3,)
n—x
= lim f (=0 = @+ B )y
n—c
=tim [ (0.3, = Ay, — U, By, — By, + I, By,)y x dt

n—

= lim fl <l]—’9 InC(M - Mo) - Byn + In Byn)X*,th

n—%

- f (b, Clu = ug))y, . (14)

Here we have used the strong convergence of I, to I and uniform convergence of y, to
y and the following estimate

I 2, By, = By, | x =<1, By, — I, By | x + || 1, By = By || x + || By — By, || x-
Combining (11) and (14), we have
fl <(‘J, C(u - u0)>X‘,X dt + f[ <lg, u— u0>Y', ydt =0.

This proves inequality (3) of the Theorem.
Since (1, M) is an optimal solution of the problem (P), it follows from the first part of
the inequality (7) that

[ 10,2t ). gy de = [ 10, gy o). wg) de = O foral p € M(S). (1)

Forany p € M(z),letp, = po+ £ (U — W) € M (Z),0 =< & < 1, and let x, = x(uy, p,) be the
unique mild solution of the state equation corresponding to the control u, and parameter
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Y. Thus it follows from (15) that

fl I(t, x,, uy) dt — fl I(t, xg, up) dt =0, for0=eg=1. (16)

Define ® = (x, — x,)/e. Note that »° satisfies the integral equation

o @) = [0 = [ gl xo(n) + s(,(8) = xo(r)), wr), W)ds)o’(s) di
+ [1 = Dlte, 20, o), ) = 805, 3o, )

By virtue of assumptions (A3) and Theorem 3.3 one can justify taking € to zero in the
above equation to obtain

w(t) = f Tt = MB(r)o(r) dr

+ [ = 2)ar, w0 (0, ) — g5, 0o, (), )] an

This integral equation has a unique solution ® € C (I, X).

Following similar arguments as in the case of control proving inequality (3), we can
verify that

fl <l|1, 8(t, xo, Uy, H))x‘,x = fl (W, g(2, xq, ug, Po))x‘,xdt

for all p € M () where s satisfies the adjoint equation (2) in the weak sense. This
completes the proof of Theorem 4.1.

In the above result we assumed that [ is Frechet differentiable in the control variable. In
case I(t, x, u) is merely continuous in u and Frechet differentiable in x and U C Y is a closed
bounded convex set, we can prove Pontryagin type necessary conditions of optimality
using well known Ekland’s variational principle. Define

M = {u:1—- Y, strongly measurable: u(t) EU  a.e}

with the topology induced by the metric

p(u, v) = Mt € I: u(t) # v(2)},

where A denotes the Lebesgue measure. Since U is a closed subset of a Banach space, the
set M, with the metric p as defined above, is a complete metric space.
We need the continuous dependence of solutions on control.

Lemma 4.2 Suppose the Assumptions (A1) and (A3) hold, with (A3) modified by replacing
the Frechet differentiability of g in u by mere continuity and boundedness. Let U,; = M.
Then the semilinear system (5) has a unique mild solution for every u € M and u €
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M (Z). The mapping u — x (u) = x(u, u) (for fixed y) is continuous from M to C(I, X)
in the respective metric topologies and further there exists a constant (3 such that

(@) = x(Wlcax) = B p(u, v)

forallu v € M.

Proof. The proof of existence of of mild solutions is standard, see [2,8]. Let x(¢; u) and
x(t; v) denote the solutions corresponding to u and v respectively. let o = {t € I: u(t) #
v(f)}. We have

x(t; u) — x(t;v) = fot T (t — 7)[glr, x(; u), u(t), ) — glr, x(1; v), v(7), nj dr
= [ =) [ gr x5 0) + st ) = ), ), ) (ot ) = x5 )
+ fo T(t — 7)[g(r, x(1, v), u(r), n) — g7, x(7; v), v(7), w)] dt

It follows from our assumptions that there exist constants a, b, such that

| x(t; w) — x(t; V)| x < a fot | x(t; u) — x(7; v)|lx dT + b p (4, v).

Thus the assertion follows from Gronwall inequality.

THEOREM 4.3  Suppose the assumptions of Lemma 4.2 hold and further u — I(t, x, u) is
merely continuous and x —I(t, x, u) is continuously Frechet differentiable with |, € L,(,
X*). Then the optimality conditions (1), (2), (4) of Theorem 4.1 hold and (3) is replaced
by (3)’

(3)1 l(t’ xO(t), uO(’)) + <¢(t)9 g(t’ xO(t)7 uO(t)s Po))Y’,Y
= l(” xO(t)v V) + <l‘1(l), g(tv Xo(t), v, %))f. Y

for allv € U and almost all t € I.
Proof.  Since (uq, Y,) is optimal, again by the second part of the inequality (7), we have
[ et wa - [ 1exu)dt=0 ¥ uem.

For any measurable set 0 C [ and v € U, define

- t tel\
u(t)={t°() tEcr.G

Let x° be the solution of the system (5) corresponding to u® and .
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Then

fl I(t, x°, u%) dt — f[ I8, xq, up) dt = f I(t, x°, v) dt — f (8, xq, ugp) dt
+ fl\c [i(t, X%, ug) — I(t, xq, up)] dt =0 (18)

By virtue of Frechet differentiability of /, we have

fI - LU, x°, ug) — U2, xq, ug)] dt = f o (L, (8, x¢, Ug), X° — x) dt + o(\(a))
= f , (L, (8, xg, Ug), X7 — x) dt + o(N(0)),

where o() stands for small order of approximation.
Hence expression (18) reduces to

[t xpudi= [ 105 u) + [ 10020105 = xydt + 0(Mo)).  (19)

Using the adjoint equation (2) of Theorem 4.1 and following similar arguments as in that
Theorem, one can verify that

fl <lx (¢, Xos uo), x° = x0> dt
= fl (W, 8(t, x%, u°, 1) — (8, Xo, g, Ho) — B(x"— xo))dt
= f (W, 8(t, %0, 4, 1o) = 8(8, Xo, gy Mp)) dt + 0(N(0))

= [ st xwmhat = [ (g0t g uo) dt + oMO)).

Thus the expression (19) reduces to

[ 1w+ [ 5050, 0 o) d
= fc I(t, xo, v) dt + fc (W, g(t, xp, v, p)) dt + 0 (\(0)) (20)

Let ¢ be any Lebesgue density point of 4, and o any measurable set containing ¢ shrinking
to the one point set {¢} as A(o) — 0. Dividing (20) by A(c’) and letting it converge to zero,
we obtain the inequality (3)'. This completes the proof.

Remark 4.4. 1In case —A is the generator of an analytic semigroup, the assumptions on
g can be considerably relaxed admitting unbounded nonlinear operators which are
relatively bounded with respect to fractional powers of A. In that situation the preceding
results can be improved as in [3, Theorem 14, p. 401].
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Remark 4.5.  All the results presented here do also hold for time varying operators A(f),
t = 0 generating bounded evolution operators U(t, 5), 0 = s = t < %, in X.

5. COMPUTATIONAL ALGORITHM

Based on the necessary conditions of optimality given by Theorem 4.1, we can construct
an algorithm for computing the optimal solution of the problem (P). For this purpose, we
require the duality maps.

Since Y is a reflexive Banach space, L(I, Y*) = L (Y*) is the dual of L(Y)(1<p,g<
). The map v;: L (Y*) — L,(¥) denotes the duality map, that is, for § € L(Y"

v@®=MeEL,®):EMN ) ,m=lEl iq(y”) = ip(Y) 2

If Y is strictly convex then L,(Y) is also strictly convex and the duality map v, is uniquely
defined. Since = is a compact Polish space, the dual of C(Z) is given by M, ,(2) which
is the space of regular countably additive bounded measures on 2. Thus we may define
the duality map v, : C(Z) — M, .,(Z) such that for any { € C(X)

v Q) ={uE M, ,(2): (L Wemm. =L 20(2) |3

rea

For Frechet differentiable /, we can define D, J() = (C*lbo + 13)(,). The inequality (3) of
Theorem 4.1 is then equivalent to following inequality

T, (g, 1y = ug) = (D, J, u — ug) = f1<C*\|f0+ By u = gy ydt =0

forallu € U,,
Similarly, the Frechet differential of J with respect to p is given by

D, (@)= [ (ba(0). &0t xo0), uo0), oY)y, .

Then the inequality (4) of Theorem 4.1 is equivalent to following inequality

J;. (45 M3 1 — M) = (D, J(g, Mo)s 1 — Hodezym, 3 = O
Now the algorithm may be stated as follows:

Algorithm 5.1:

Step 1. Suppose that at the nth stage, the control and the measure (parameter), is given
by {u", 1"}, u" € L,(Y), p" € M (2) C M, (2).

Step 2. Use {u", u"} to determine {x", ¢’} where x" is the solution of equation (5)
corresponding to {«", "'} and ¢/ is the solution of the adjoint equation (2) of Theorem 4.1.

Step 3. Compute D, J(u", i*) and D, J(u", u*).
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Step 4. Define

+1
un

=" — e, i, e vi(DJW", 1)), & >0,

n+l _

=yt yE,,  G,evy(D W), v>0,

choosing &, v sufficiently small so that

Ju Wy = J”, ph) — D JW, i), @) + o(e)

=J", u") — e| D, J", 1" || iq(y*) + o(g) = Ju", u")
Ja W) = !, w0 = Y(D, JW'), 77) + o(Y)

= J', W) =y || DLW W) || sy + oY) = TG, W,

Step 5. Solve the state equation corresponding to the pair {¥"*', y**'} and compute
Jw™!, u™*') using the following expression:

J(un+l, p”+l) = f[ l(ty xn+1(t), un+1(t)) dt

If | J@™!, y™Y) — J@", 4") 1< 8 for some preassigned small positivie number 3, stop;
otherwise go back to step 2 with new control #™*! and the new measure y™*'

Remark 5.2. If U, ={u € L,(Y): u(t) € U(t) a.e}, U(t) C #(see Assumption (A2)), then
in Step 4

W = P — ed,), @, € v(DJW", p")),

where P, is the projection operator from Y to 7.
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