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Along with the average production rate, the due-time performance is an important characteristic of manufactur-
ing systems. Unlike the production rate, the due-time performance has received relatively little attention in the
literature, especially in the context of large volume production. This paper is devoted to this topic. Specifically,
the notion of due-time performance is formalized as the probability that the number of parts produced during the
shipping period reaches the required shipment size. This performance index is analyzed for both lean and mass
manufacturing environments. In particular, it is shown that, to achieve a high due-time performance in a lean
environment, the production system should be scheduled for a sufficiently small fraction of its average
production rate. In mass production, due-time performance arbitrarily close to one can be achieved for any
scheduling practice, up to the average production rate.

AMS Nos.: 90B30, 60J20, 93A30
Kevworps: Manufacturing; performance measures; due-time performance index; lean and mass production
systems; stochastic analysis; system-theoretic properties

1. INTRODUCTION AND PROBLEM FORMULATION
1.1. Manufacturing Considerations

The likelihood to meet the shipping schedule is an important feature of manufacturing
systems with unreliable machines. Indeed, modern automotive component plants are often
expected to produce the required number of specified units (e.g., car seats with specified
trim, engines and transmissions with given characteristics) with four hours notice, referred
to as the broadcast. Analogously, automotive assembly plants are often expected to build
cars for a six-hour shipping schedule with specified car options produced. Due to the
extremely large nomenclature of all items, these demands cannot be efficiently satisfied by
maintaining finished-goods inventories, and therefore must be satisfied by the production
system. Thus the due-time performance is of importance.

The likelihood to meet the shipping schedule can be made large by maintaining a
large stock of finished goods. This is referred to as mass production. However, large
finished-goods buffers lead to many negative consequences (see, for instance [1]-[3]).
To avoid this, buffers must be small. This is called lean production. The question
arises: How should the production be organized so that the likelihood to meet the
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shipping requirements by an unreliable production system is high even in lean manufactur-
ing? This is the question addressed in this paper.

1.2. Systems Considerations

The likelihood to meet the shipping schedule can be conceptualized as a functional defined
on the trajectories of a stochastic system. We refer to this functional as the due-time
performance measure (DTP). In this paper, we address the following questions concerning
this functional:

(i) Given a production system, how can DTP be defined and evaluated?
(i) What are system-theoretic properties of this functional in both lean and
mass manufacturing?

(iii) How should the parameters of a production system be chosen so that DTP is as
high as desired?

1.3. Problem Formulation

Let T and R be the shipping interval and the shipment size, respectively.

Dernirion 1.1, The due-time performance index is defined as

DTP = Prob {n(s) = R, t = T}
where n(f) is the number of parts produced during the period [0, ¢] in the steady-state
operation of an ergodic production system.

Remark 1.1. Let p be the average production rate. Then, obviously,

R,.. = pT.

max

All other shipments can be characterized by a parameter L, referred to as the load factor:

R=1LR,, =LpT, L€E0,1].

Thus,
DTP = Prob {n(t) = LpT,t < T}.

The values of DTP parameterized by L will be considered throughout this paper.

Remark 1.2. When T is large, the manufacturing is refered to as mass production; when
T is small, the production is lean.

Problem 1.1. Given a manufacturing system, analyze DTP, both qualitatively and
quantitatively, as a function of L, p, and T.

Problem 1.2. Given a manufacturing system and parameters p, 7, and €, 0 < € < 1,
determine the largest L € [0, 1] so DTP =1 — eforall L < L".
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Problems 1.1 and 1.2 are addressed in sections 2 and 3, respectively. The conclusions
are found in section 4. The proofs are given in the Appendices A-C.

2. ANALYSIS
2.1. The Model

As it is obvious from its definition, the calculation of DTP requires the knowledge of the
probability distribution of n(f). In general, the calculation of this distribution is a
formidable task. Therefore, we analyze here a very simple production-shipment system for
which such a calculation can be carried out, and then, following Gershwin’s suggestion
[4], investigate the possibility of DTP evaluation using the Gaussian approximation.

Production Subsystem:

(i) The production system has two states: “up” (operational) and “down” (non
operational). When up, the production system is producing parts at the rate ¢
parts/min. When down, the production rate is zero.

(ii) The production system’s up time is a random variable, T,,, € [0, ), distributed
exponentially with parameter p; thus, the average up time is 7,,, = 1/p min.

(iii) The production system’s down time, 7,,,,,, € [0, ), is an exponentially distributed
random variable with parameter r; thus, the average down time is 7, = 1/r min.

Shipment Subsystem:

(iv) Parts produced are immediately prepared for shipment.
(v) Each shipment is of the size R parts and the shipping period is 7' min, T € (0, ).

Remark 2.1. The two state production systems are quite typical in large-volume
production, where the machines are either operational and, therefore, produce at a fixed
rate, or broken down, starved, or blocked, and, therefore, do not produce at all.

Remark 2.2. 'The assumption that the up and down times are distributed exponentially is
introduced for analytical convenience. Real systems may or, most often, may not satisfy
this assumption. We believe, however, that the insight developed here is of significance
even when the distributions of 7, and T, are different. We hope also that the results
are robust enough to tolerate perturbations to exponential distributions.

Remark 2.3. In reality, the parts flow is discrete. Assumption (i), however, postulates a
continuous flow. Although the discrete part model also can be analyzed, the continuity
assumption makes the calculations more transparent. Moreover, we believe that this
assumption does not cause an extreme violence to the system. Indeed, in most automotive
manufacturing processes, the cycle time, that is, the time necessary to accomplish a
machining or an assembly operation, is of the order of magnitude of seconds. The
machines’ up and down times are, typically, hours. Therefore, during the up time, a
“continuous” stream of parts is observed. This, coupled with the fact that in large-volume
production thousands of parts are “flowing” simultaneously through the manufacturing
facility, makes it impossible and, moreover, unnecessary to keep track of each particular
part and, thus, justifies the rate-based assumption (i). Note that rate-based models have
been considered in other studies as well ([S]-[8]).
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Remark 2.4. Assumption (iv) implies that no finished goods buffers are available.
Although this may be the case in some situations, many plants still have some
finished-goods inventories. In this case, the results derived here can be viewed as a lower
bound on attainable DTP.

Remark 2.5. The maximum shipment size, R, ,,, is constrained by the production system
parameters, ¢, p, r, and the shipping period, 7, as follows: Due to assumptions (i)—(iii), it
is easy to show that the average production rate, p, is:

p=c [parts/min].

r+p

P,, (¢) = Prob {production system is up at time 1,

P, (1) = Prob {production system is down at time t}.
Due to the ergodicity of the production system (i)—(iii), the following limits exist:
P, =lmP,, (1), (¢))
t—%
Pdown = lim Pdown (t)
1%
Therefore, Definition 1.1 is applicable and DTP is calculated next.

2.2. Exact Calculation

THEOREM 2.1  Under assumptions (i)—(v),

_ o
DTP (c,p,r, T, L) = L +p] ~[pF+r(1 - mrz 2(1)7’) [r(1 i‘F)T] .
i=0 j=0 : .

+ p ][1_ o PP+ =PI i é (pFTY [r(1 — F)TT ]

| 7 +p =0 i=0 J! i!

where F = L (r/(r + p)), and the infinite sums converge.

Proof. See Appendix A.

The behavior of DTP as a function of L is illustrated in Figure 1 for the production
system defined by parameters ¢ = 10, p = 0.15, and r = 0.30. These parameters correspond
to a machining department of an automotive component plant which we have studied. The
number of terms used to approximate the infinite sums in (2) was chosen so that the
inclusion of additional terms resulted in practically no change of the curves. For the sake
of mathematical completeness, Figure 1 uses the load factor, L, defined on [0, (p + r)/r]
rather than on [0, 1].
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As it follows from this figure, DTP is close to 1 for all L € (0, 1) if the shipping period
T is much larger than the production system’s “up—down” period, T4, defined as Tup +
T 1own- FOr the example of Figure 1, T, ; = 10 min. Thus, if the production is “sufficiently
mass” in the sense that

Tr>> Tup + Tdown

the scheduling of the production for almost the average production rate, that is, for L close
to one, would still result in a good DTP. However, when

T~ Tup + Tdown’

the load factor must be sufficiently small in order to meet the shipping schedule with large
probability. The choice of such a load factor is addressed in section 3.

2.3. An Approximation

As it has been mentioned before, exact calculation of DTP is possible only for very simple
manufacturing systems. On the other hand, the behavior of n(f) is defined by many
“independent” events and, following Gershwin’s suggestion [4], may be characterized by
a Gaussian distribution. Since system (i)—(v) admits an exact analysis, it is of interest to
compare it with a Gaussian approximation. The variance of n(T) necessary for this
evaluation is given below:

0.6
Figure 1 DTP as a function of L.
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THEOREM 2.2  Under assumptions (i)—(v),

E{n(T)} = ¢ . _:

T 3)
p

2 2
2c¢rpT 2¢‘rp [1 _ e_(’“’)r]

VO = G Ty

Proof. See Appendix B.
Given this expectation and variance, an estimate of DTP can be calculated from

1 . 1)
DTPest = ﬁfuﬂ_e 2[ o ] dx, “4)

where p = E{n(7)} and o? = Var{n(T)} are the expectation and variance of n(7),
respectively.

At present, we do not have an analytical bound on the accuracy of the estimate (3)—(4).
Therefore, a numerical investigation has been carried out by comparing DTP values
derived using (2) and (3)-(4). The results are illustrated in Figure 2 for the same
production system as in Figure 1. As it follows from this figure, approximation (3)—(4) is
quite good for T"s which are more than five times greater than 7,,_,. For T>> T, _, the
two curves are practically indistinguishable. Thus, when the production is not “very” lean,
the Gaussian approximation of DTP can be utilized. However, in a very lean environment,
this approximation may lead to errors as high as 5% and more.

DTP

L] T T T T ] L)

1 = exact ——
~~~~~~~~~~~~~~~ approximation ------
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Figure 2 Exact and approximate DTP calculations.
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3. DESIGN

3.1. System-Theoretic Properties

In this section we describe the monotonicity properties of DTP with respect to the
production—shipment system’s parameters and analyze DTP limits when the shipping
period and the load factor tend to their minimum and maximum values.

THeoreM 3.1  Under assumptions (i)—(v)

r 1
lim DTP (L, T) = , VLE|O, -
g DTP (L1 =555 [ p}
. ] 1 for0<L<1
}EDTP(L’n‘{o for L > 1.

Proof. See Appendix C.

Thus, in an “extremely” lean environment, DTP is independent of L and approaches the
normalized (by c) average production rate. Since this value can be quite small, Theorem
3.1 shows that the “extremely” lean operation of an unreliable system cannot produce
acceptable DTP. To improve the performance, either p must be decreased or r must be
increased. Since 0DTP(L, 0)/dr = p/(r + p)2 and 0DTP(L, 0)/dp = —r/(r + p)?, the largest
DTP improvement in an extremely lean system occurs when r is increased, if p > r, or p
is decreased, if p < r. When p = r equal improvements take place when either p or r are
changed appropriately. Note that a decrease in p amounts to improvement in the
preventative maintenance; an increase in » amounts to improvements in the skilled trades
(repair) operations.

THeorReM 3.2 Under assumptions (i)—(v),

lim DTP (L, T) = 1 — —2— ¢,
L—0 r+p

Proof. Follows immediately from (2) with F = 0.

Thus, for any shipping period T € (0, =), the DTP is less than 1 for any load factor, even
for L as small as desired. Also, no production—shipment system (i)-(v) can ensure DTP
greater than indicated in Theorem 3.2.

THeEOREM 3.3 Under assumptions (i)-(v), DTP = DTP(p, r, L, T) is monotonically
decreasing in p and L, and monotonically increasing in r.

Proof. See Appendix C.

This result is quite expected, however monotonicity with respect to T, which also could
have been expected, does not take place. This can be explained as follows: Consider a
system which is up most of the time (#/r + p =~ 1), and which is operating with a load
factor L slightly smaller than one. If the shipping period T is increased from zero to
infinity, the DTP passes through three regimes. For T =~ 0, from Theorem 3.1 it follows
that DTP = r/(r + p) = 1. As T increases, the satisfaction of the schedule requires that the
system be up at the start of the shipping period and remain up for most of it. Therefore,
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DTP decreases. Indeed, from approximation (3)-(4) it follows that DTP decreases to
approximately % However, in the limit T — o, from Theorem 3.1 DTP — 1, and hence
DTP must increase for large values of T.

The qualitative properties, specified by Theorems 3.1-3.3, can be used as a guide for the
choice of L so that DTP reaches a desired value. This is described next.

3.2. Existence of Solution

TueoreM 3.4  Under assumptions (i)—(vi), the design problem 1.2 has a unique solution
ife> (pl(r+ p))e L. This solution is unique.

Proof. The existence follows directly from Theorem 3.2. The uniqueness is a
consequence of the monotonicity of DTP with respect to L (Theorem 3.3). Indeed, since
DTP(L) is monotonically decreasing for L € [0, (r + p)/r], for any given c, p, r and T,
equation

[ ] ~[pF+r(1- F)]TE 2 (PFT)J [r(1 — F)T]*
r+p =0 j=0 ! il

it il
r+p j=0i=0 J’ i!

has a unique solution, F*(e), for all € € [(p/(r+ p)) e~"7, 1]. Then L"(€) can be calculated
then from

L' (e) = F (&)1 +=

The behavior of L*(e, c, p, r, T) is illustrated in Figure 3 for the same production system
as in Figures 1 and 2. As it follows from this figure, when e is, for instance, 0.1, the DTP
requirement is satisfied for L’s as high as 0.95, if the production is mass, and as low as
0.1, if the production is lean. Thus, to achieve high DTP in a lean operation, the shipment
should be scheduled for a sufficiently small fraction of the system capacity. This
conclusion is in agreement with the report [9] where it is indicated that the Japanese
semiconductor manufacturers plan to load their production systems, by the end of this
century, only up to 10%—-15% of their capacity, in order to rapidly satisfy their customers’
demands. Analogous practices have been reported by the best U.S. semiconductor
manufacturers [10].

4. CONCLUSION

In this paper, a formalization of the due-time performance measure for large-volume
production systems has been introduced and analyzed. Both quantitative and qualitative
properties have been investigated. It has been shown that no perfect DTP can be provided
by an unreliable system. However, DTP arbitrarily close to perfect can be attained in a
mass-production environment. No such possibility exists in a lean mode. Nevertheless,
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Figure 3 L* as a function of e.

even in lean production, a sufficiently high DTP (commensurable with the system
reliability as stated in Theorem 3.4) can be attained by choosing an appropriate load factor.

These conclusions seem to explain the following observation: During the last 5-10
years, many of the U.S. automotive manufacturers have been transferred from mass to lean
production. Almost universally, it has been observed that the due-time performance
measure has deteriorated dramatically. In view of the results described here this is not
surprising, since, again almost universally, this change has not been accompanied by a
change in scheduling practices, and the newly introduced lean systems have been
scheduled for shipments defined by the average production rate. In this situation, nothing
else but a dramatic drop in DTP is possible.

Lean production cannot be viewed as a tool of producing as much as mass production;
rather, it is a tool of producing less but in a more efficient manner, as articulated, for
example, in [3].

APPENDIX A. PROOFS FOR SECTION 2.2

Proof of Theorem 2.1  First, we calculate P, and P ,,,,, defined in (1). As it follows from
assumptions (i)—(iii),

P, (t+A) =P, (0 + Py, () (1 — &™) + 0 (AF)

=P, (1) (1 = pAD) + P, () (rAt) + O(AP).
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In the limit as t — o,

P,, = P,(1 = pAt) + P, (rAt) + O(AP),
PAtP,, = rAtP,,,, + O(AP).

Since P,, + P, = 1, in the limit A t — 0, we obtain

r

Pu= 117 Q)

S+

Pdow'n—r+p'

Next, we consider system (i)~(v) in the steady state defined by (1), (5) and calculate the
DTP as a sum of two terms: the first one, DTP,,,, is calculated under the assumption that
at t = 0 the production system is up; the second, DTP,,,,, is calculated under the
assumption that it is down at ¢ = 0. Then,

T 14
DTP = [r_+5] DTP,, + [TT;] DTP,,,,. (6)

To calculate these two terms, we need additional variables. As it follows from
assumptions (i)—(iii), during its operation the production system changes its states between
“up” and “down.” Let U(j) be the duration of the jth uptime, and let D(j) be the duration
of the jth downtime. Due to assumptions (ii) and (iii), U(j) and D(j) are distributed
exponentially with parameters p and r, respectively. Define

D,=D(1) + - - - + D(j)
U=U1)+---+UQj), j=1

The cumulative distributions of U; and D; are calculated in [11] to be:

x)/ 7!
Prob{Uij}=l—e“’”‘{1+px+...+ (px) }

G- D!
-1
Prob{D; = x} =1 —e_”{ L+rx+...+ ((]r)? 1)!} @)

Finally, let V(j), j = 1, denote the event that the parts required for the shipment are
completed during the jth uptime and that they are completed in time for shipment, given
that the system was up at time ¢ = 0. Then Prob{V(j)} = Prob{n(¢) = LpT, t = T, and ¢
occurs during the jth uptime | system is up at ¢ = 0}.
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Event V(j), j = 2, occurs if and only if

(@) U, <FT
8) U= FT
W) DL =(1-PT,

where F = L(r/(r + p)), and F can be interpreted as the fraction of time the system must be
up for ¢ € [0, 7] to satisfy the shipping schedule. Condition (o) implies that the required
production was not completed during the (j — 1)tk uptime; condition () implies that the
production is completed by the end of the jth uptime; conditions (B) and (y) together
imply that the production is completed at time ¢ < T. Based on (7), the joint probability
of U;_; < FT and U; = FT can be calculated to be:

ji—1
(PFT)™"

Prob{U;_; < FT and U; = FT} = TR e

Therefore,
Prob {V(j)} = Prob{U;_, < FT and U; = FT} X Prob{D;_, = (1 — F)T|U;_,

FT/!
< FTand U; = FT} = e‘P”[(p—] [1 — e - hr {1 +r(-FT+- -

G-
1-FT1)y?
L ®

The probability of V(1) is the probability that U; = FT, and is, therefore, given by
Prob{V(1)} = 1 — Prob{U(1) < FT} = ¢ 7", ©)

Using (8) and (9), DTP,,,, can now be calculated as the probability that the parts required
for shipment are completed during any uptime before the shipping time 7, that is,

DTP,, = X Prob {V(,)}

j=1

= e P+ e T pFT] —e P pFT]e "7 + . . .

+ e P [(—pf,—w] —e‘P”[(pf—!I)J]e"‘l‘F’T(l +r(1-FT+- - -
_ j—1
Jou-pnt

G- 1!
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This can be re-arranged as

» i J _ i
DTP,, = ¢ PP I-AIT 3 3 (P;’“!T) (r1 i!F)T) 10)

i=0 j=0

Similar analysis applied to DTP,,,,,,, yields:

x i J 1 _ i
DTP,,,, = 1 — e?F -0 [2 R I;“!T) wl = ] an

i!
j=0i=0

Then, the expression for DTP, given in Theorem 2.1, is obtained directly from (6), (10),
and (11).

The convergence of the infinite sums follows immediately from the ratio convergence
test applied to the inner summations in (10) and (11).

APPENDIX B. PROOFS FOR SECTION 2.3

Proof of Theorem 2.2. Taking into account that

Prob {n(f) = ct and the system is up at time t} =

r —
e (12)

Prob {n(r) = 0 and the system is down at time #} = ; _‘I:_ ; e "

introduce functions m,,(n, f) and m,,,, (n, 1), 0 <n <ct, t >0, as follows:

Prob {n(t) < n, and the system is up at time t} = f On m,, (5, 1)ds (13)

Prob{n(t) =< n, and the system is down at time t} = fon T down (5, 1)ds + = _{ > e "

The density functions ,,(n, ) and m,,,,(n, f) are smooth. Indeed, for n € (0, c1), from
(13)

[ 7y (s 0y ds = 1 - DTR,, (L), (14)

where L = n(r + p)/crt. Since, as it follows from (10), the right-hand side of (14) is a
smooth function of L (note that F = L r/(r + p),

oDTP,, (L,t)[r +p
Tup (n,1) = oL ctr

oDTP,,,.(L,)[r+p
Taown (M, 1) = oL ctr
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Therefore, wup(n, 1) and m,,,.(n, t) are smooth for n € (0, ct).
Due to assumptions (ii) and (iii), m,,(n, t) and 7,,,,(n, f) obey the following evolution
equations:

t+At
T (0t +A1) =, (n — cAt,f)e PA! +f T (1 — €t + At — 1), H)re” " dr
t

+ O(AP)
T goun (M 8 +AL) = 14, (1, )™ + fl t+At1rup (n — c(t — 1), hpe P dr + O(AP)
cAt<n<ect.
With the accuracy of O(A#?), these equations can be rewritten as
T (n, t A1) = (1 = pA B)m,, (n = cALE) + (rA 1) Typ,,(n, 1) + O(AF)

Tiown (1, t +A2) = (pA t)w,, (n — cAtt) + (1 — rA 1) my,,,(n, 1) + O(AF)

cAt < n<ct (15)

Taking into account (12), introduce now the following expectations:

_ _ ct ctr —pt
E,(0) = Eup{n(t)} = fo n,, (n, t)dn + TP

Euoen®) = Eant®} = [ 170 1, 100 (16)
and
S0 = B0} = [[5 10y (1) + Ty 1D+ s ()
Then
E(t) = E{n(0)} = E,p(t) + Ejpn (1) (18)
and
V(1) = Var{n()} = S(1) — (E(1))". (19)

Next, using the evolution equations, we derive and solve the differential equations for
E,,(2), Eg5,,(1), and S(2), and thus obtain Var{n(T)}. From (15) and (16) we write:
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o(t+Ar) c(t + Ar o plE+8)

nm,, (n,t + At)dn + TP

E,(+a)=

0
cAt ct
= [y 4 Aan + [ 00 = pA D, (- cA L)

+ (rAf)my,,, (n, 1)] dn

c(t+Ar) c(t+ Anr _ (+A)
+fc n*rrup(n,t+At)dn+ﬁe it ’+0(Atz)

t

(20

Evaluating each of the terms in the right hand side of (20), we obtain:

cA
’ [ nmy (n 1+ Ay dn| = (c A1) max nm,, (n,0+ A~ 0@AA)  @D)
ne[0,cAf]

Introducing n, = n - cAt, for the second integral we have:

f Z’ n[(1 — pAt) w,, (n — cAtt) + (rAf)m,,,, (1, 1)ldn
c(t—A cl
= (1 — pAr) fo o (n, + cAf) m,, (ny, )dn, + (r A1) fAt' R 40 (1, 1) dn
c(t—4n c(t—Ap)
= (1= pa) [T nymy o, an + 80 [ e, 0, 0) iy
ct
80 [ gy (n, 1) + O(8P)

ct ct
= (1 — pAp [fo ny m,, (ny, Hdn, —fc(t_m)nl (N, 1) dnl]

ct ct

+ (cAf) [fo w, (ny, Ddn, —fc(t-—At) Ty (M1, 1) dnl]
c cA

+ (rAr) [fo "n T gowm (s DR —fo 'n*rrdaw,, (n, 0 dn] + O(AP)

ct ct
= (1 — pAp) fo ny m,, (ny, H)dn, _fc(t—At)nl m,, (ny, 1) dn,
+ (cA?) f 0" m,, (g, dny + (rAf) f 0”' 1 T, (1, 1) dn + O(AP)
ct

ctr _
= (1 - pAt) (Eup(t) - r_‘!:—l; e p') — fc(t_At) ny 1Tup (nl, t)dnl

+ (A (P, — —— e} + (rA1) Ey,,, (1) + O(AP), 22)
?» r+p
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where the last expression was obtained using (12), (13), and (16). For the last integral in
(20), using the smoothness of m,,(n, f), n<ct, we write:

c(t+Ar) ct
f nm,(nt + At) dn = f (ny + cAf)m,, (n, + cAt, t + At)dn,
ct c(t—Ar)

N 2
- f oy M (1, Dy + O(AP). (23)

Substituting (21)—(23) back into (20), we obtain:

E (t+A)=(1—pAd) (E (1) = =2 ¢7) + (cA M
up(t+ t)—( p t) up(t) r—_i__pe +(C t) pup—r_+;e

t+ At
+ (rA¢) Edown(t) + E_(T:% e‘P(H'At) + O(Atz)

= (1 — pAY) E,(1) +(rAt) Eg,,, (1) + (cAD) P, + O(AP).

Using (5) and rearranging,

E, (t + A1) — E, (1) r
p N 2" = —PE, () + TE oy (1) + TP + 0 (An),

and, therefore, in the limit At — 0, we obtain

dE,, (1) cr
T = DB (1) + B )+ 75 Ef0) =0, @9

where the initial condition follows from (16).
Similar arguments applied to E,,,,,(f) and S(¢) yield

dEdown (t)
dt =D up(t) - rEdown (t)’ Edown(o) =0 (25)
das(r)
_Et— = ZCEup(t), S(0) = 0. (26)

The unique solution of (24) and (25) is:

_ cr2 crp _ —(rpn
Eup(t) - [(r +p)2] t+ [(r +p)3] (1 € P )

| P || P o —rpX
O P I ] ! @n
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Then, the solution of (26) is

_ i 202rp 2¢‘rp o (P
o-[555 ) (oo - [ ga- e e

The statement of Theorem 2.2 follows directly from (18), (19), (27), and (28).

APPENDIX C. PROOFS FOR SECTION 3.1

Proof of Theorem 3.1. The first statement of the theorem follows immediately from (2)
with T = 0.
To prove the second statement, we use the inequalities [11]:

2

o
< e <
Prob{X < x} S #)2, x<u 29)
2
Prob{X >x} < x> (30)
o’ + (x— /.1)2'

where X is a random variable with mean p and variance 0. Then, for 0 < L < 1, from (29),
and Theorem 2.2,

DTP (L, T) = Prob{n(T) = LG )T} =1 — Prob {n(T) < Lc(—)T}

2¢% rpT 2c%rp

_ (r+p)’ _ (r+p)*
202rpT 2c%rp

_
o~ tPIT _ _r
s s AL ”[“‘ 1)(r+p)CT]

( —(r+p)T)

Therefore, limy._,,, DTP(L, T) = 1. The result for L > 1 is derived similarly using (30).
Proof of Theorem 3.3. Define functions g,(x, y), g,(x, ), 8,,(X, ¥), and go,,.(x, ¥) as
follows:

gl(x’ )’)
g1(x,y) + g(x,y)

gl(y’ x)
g1(x, y) + gy(x, y)

8up(%, ¥) =

gdown(x’ y) =1- (31)
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Observe that

¥

=01 j

ud
0!

=t (32)

™

x x< f
sl y) oy =2 2 j—y—,

and, from (31), (32), (10), and (11),
DTP,, = g, (PFT, 1l — F)T)

DTPdown = 8down (pFT’ r(l - F)T) (33)
Also, from (31) with x > 0, y > 0, we obtain:

98up %, Y) _ ‘("”’2 (xy)’
ax i! )2

i—l

ag“ﬂ @, y) —(X+y)2
ay Z@a-n

Ay
aown %, Y) _ —(x+y)2 Y
ox L=t

agdown ('x’ y) —(x+y) (x}’)'
T E @ (34)

and

gdown(x’ }’) - gup(x, y) =1- gl(y’ X) _ 81 (X, y)
81 (x’)’)"'gz(x,)’) gl(x,y)+g2(x,y)

'(X+})2 (xy) (35)

Using (6), (34), and (35),
oDTP (c,p,r, T, L)
op

3 [( . )gu,,@FT 1 — F)T) + ( b )gd,m,, (PFT, (1 —F)T)]
r+p +p 7
ap
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) FT,r(1 — F
=( r ) 8 PFT, (1 = A1)
r+p ox

08 4o PFT, r(1 — F
+ ( p ) gdown(p r( ):r) FT
r+p Ox

+ <(r +r p)z) (8aown®FT, r(1 — F)T) — g,,(pFT, r(1 — F)T)]< 0;

dDTP (¢c,p,r, T, L)
or

r p
d I:(E) 8up (FT, r(1 — F)T) + (:—l-_p> 8aown OFT, r(1 — F)T)]
ar

_ ( r ) 38,,(pFT, r(1 — F)T) - FT

r+p dy

N ( p ) BaPFT.H1 = PD) |
r+p

dy

+ <z;—_€—-p_)i) [gup(pFTv r(l - F)D - gdown(pFT7 r(l - F)D]> 0,

and, therefore, DTP(c, p, r, T, L) is a monotonically decreasing function of p and a
monotonically increasing function of r. Additionally, since F = L (#/Ar + p), using (6), (34),
and

oDTP (p,r, T, L) r d 8, PFT, r(1 — F)T) 0 8., PFT, r(1 — F)T)
= pT— rT
oF r+p ox dy

—+

( p )[agm@FT, n(1 — F)T)
pT

r+p ox

_ 6gdown (pFT’ r(l - F)T)
dy

rT] <0,

we conclude that DTP(p, r, L, T) is a monotonically decreasing function of L.
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