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In this paper we discuss some problems arising in mathematical modeling of artificial hearts. The hydrodynamics
of blood flow in an artificial heart chamber is governed by the Navier-Stokes equation, coupled with an equation
of hyperbolic type subject to moving boundary conditions. The flow is induced by the motion of a diaphragm
(membrane) inside the heart chamber attached to a part of the boundary and driven by a compressor (pusher
plate). On one side of the diaphragm is the blood and on the other side is the compressor fluid. For a complete
mathematical model it is necessary to write the equation of motion of the diaphragm and all the dynamic
couplings that exist between its position, velocity and the blood flow in the heart chamber. This gives rise to a
system of coupled nonlinear partial differential equations; the Navier-Stokes equation being of parabolic type and
the equation for the membrane being of hyperbolic type. The system is completed by introducing all the
necessary static and dynamic boundary conditions. The ultimate objective is to control the flow pattern so as to
minimize hemolysis (damage to red blood cells) by optimal choice of geometry, and by optimal control of the
membrane for a given geometry. The other clinical problems, such as compatibility of the material used in the
construction of the heart chamber, and the membrane, are not considered in this paper. Also the dynamics of the
valve is not considered here, though it is also an important element in the overall design of an artificial heart.
We hope to model the valve dynamics in later paper.
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1. MATHEMATICAL MODEL OF ARTIFICIAL HEART

In this section we develop the dynamic models of each of the components of an artificial
heart and finally combine them to form the complete model.

1.1. Membrane Dynamics

We use the Lagrange principle to develop the dynamics of the diaphragm. Let p denote the
mass density of the membrane, z the distance of the membrane from the base D where it
is attached. Here we call the set D C R?, which may be either circular or elliptic in shape,
the base of the heart chamber.

Energy Densities. The kinetic and potential energy densities of the membrane are given
by (K-E),, = (1/2)(p) zf and ( P-E),, = (1/2)(2 V z, V 72), respectively, where
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is the stress tensor.
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The Lagrangian is given by
l(zv gy Ly Zy) = fD lodxdy.

where

1°= (172{(p) 7 — (04, 22 + 20, 2,2, + 0 D)}

Using D’Alembert’s principle of least action we obtain the differential equation for the
membrane

Pz, — Lz=f (6]
where
Lz = (0)) 2 + 2052, + 092,))
and
f=p; = ptxy 2t x)

is the force driving the membrane, with p; being the internal compressor pressure, and p(t,
x, ¥, z(t, x, y)) is the fluid pressure on the surface of the membrane inside the heart
chamber. This equation is to be completed by defining the boundary and initial conditions
as follows.

Boundary Condition. Since the membrane is attached to the boundary of the base D, z
must satisfy the Dirichlet boundary condition:

2(t, X, ¥) lxyyeap = O- @)
Initial Conditions.

20, x,y) = z(x,y), (x,y) €D

20, x, y) = z;(x, y) (x,y) € D. 3)

Complete Membrane Dynamics. Thus the complete membrane dynamics is given by

Pzy — Lz
=pi — p(t,x, y,2(t, x,¥)), (x,y) €D
Z|s=ap = 0, )

2(0, x,y) = zp, (x,y) €D
z(0, x, y) = z,, (x,y)€D

1.2. Fluid Dynamics of Heart Chamber

Basic equation. Let
U
u=\ u 5)
Uz
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denote the velocity field of the fluid in the heart chamber. From the principle of
conservation of momentum and the incompressibility condition we know that fluid motion
is governed by the well-known Navier-Stokes equation:

po ou/ot + pou.Vyu — vy Au+ Vp = pyg, t>0,6€Q,diviu) =0 6)

where p, is the mass density of the fluid and g denotes the force per unit mass due to
gravity and vy the kinematic viscosity and p the pressure and £ = (x, y, z) € Q C R>. The
set () is the heart chamber having ports and solid boundaries.
Boundary Conditions. The boundary consists of four parts as described below:
a=r,ur, ur, ur,
I'; = inlet port, I', = rigid boundary @)
I', = outlet port, I',, = flexible membrane boundary
area I', = areal’, = a.
Let v denote the outward normal to the boundary 9€). Assuming, for simplicity, uniform

velocity throughout the cross section of the inlet and outlet ports having cross sectional
area a, we have

uvlp =0, uv|p = ult,x,y, z(t, x,y)).v = = z.v
8
uvlp = uvlp = (1/a) fD z(t, x, y) dxdy, ®
where Z, = col(0, 0, z,).
Define the boundary operator
TU= UV, s={r,m,o,i}. ©)]
Introducing the operator C, this can be written compactly as
{ = X,0 + Iy X, (1/a) [ 2, dudy = X, 50 + 1nX,1/a) [ 2, dudy. 0
= Cz,

Where Xs(g) = {Ol,’ggeerr:ga

and I, and I are the indicator functions of the intervals [0, 7/2] and [772, T], respectively.
So the dynamics of the fluid (blood) in the heart chamber is given by the nonhomogeneous
boundary value problem as presented below

podu/dt + po(u.Viu —y Au + Vp = pyg, t>0,£€Q

div(u) = 0;

Tu=uv|f=v=_Cg an
u(0) = u(0, &) = u,, where &£ = (x, y, 2).
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For simplicity, in the development of the above model we have tacitly assumed that blood
is a Newtonian fluid.

2. COMPLETE DYNAMICS OF ARTIFICIAL HEART

Strictly speaking, equation (11) is not complete. The domain of fluid motion () is variable
and itis givenby Q, = {E € Q: &= (x, y, 2), z = z(t, x, ), (x, y) € D} which represents
the part of the domain that lies on one side of the membrane surface. Thus the complete
dynamics of the artificial heart driven by a compressor is given by:

pzy — Lz
= pi - p(t9 X, y! Z(t’ X, )’)), (X, y) S D
Z |S=6D = 0, (12)

20, x,y) =z, (xy)ED
Zr(o’ X, )’) = zl’ (x’ }’)ED

podu/dt + po(u.V)u —yAu+ Vp =pg, t>0,
EEN={E€EQ:E=(xy 2, 2=zt x )}

div(u) = 0, (13)
Tu=v=_Cg

u(0) = u(0, x, y, z) = uy,.

This is a nonhomogeneous moving boundary value problem and is notoriously difficult
both theoretically and computationally. This model is closer to the actual physical
situation than the model presented in [1].

3. FORMULATION OF CONTROL PROBLEM

It is known that hemolysis is caused largely by excessive shear stresses and vortices.
Blood clot may be caused by recirculation and stagnation. Hence an artificial heart must
be designed and controlled so as to minimize shear stresses, vortices and stagnation. We
present here two different formulations of the control problem.

(F1): Let (u”v)ITo((u”v)IT';) denote the outward normal velocity distribution across the
outlet (inlet) port required to empty (fill) the heart chamber during systolic (diastolic)
phase of the cardiac cycle [0, 7] = I. Define

0,V w, = [ (©(Vu), Viyag
Q, (t,curlu) = f 0 (Qycurl u, curl u)dg,
Q5 (tu—u)=\, fr | (u(t, &) — ul(t, £)).v |2d§, s=1,o.

The first quadratic form Q, is a measure of shear stress and the second form Q, is a
measure of recirculation and stagnation and Q3, s = i, o is a measure of discrepancy
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between the desired and the actual flow at the outlet or the inlet ports. Let Q,(p;) denote
any nonnegative possibly quadratic functional of the compressor pressure operating the

heart. Using these components we can construct the following objective functional given
by

Ip) = (172) [ {06,V ) + @, curl )

+ I, 04t u — u®) + LOYt u — u) + Q,(p))} dt. (14)

The problem is to find a control policy describing the input pressure p; that minimizes
the functional J(p,) subject to the dynamic constraints (12) and (13).

(F2): An alternate formulation is given as follows: Find a control policy that minimizes
the functional

ey =72) [ 106V ) + 0, (, curl w) + Qy(pr (1s)

subject to the dynamic constraints (12) and (13) and the equality constraint
72 r
po J. " [z onne = My = o [ [z o (16)

where My, is a known constant representing the total mass of fluid (blood) that must be
sucked in and pumped out during the half cycles [0, 7/2] and [7/2, T], respectively.
Unfortunately the necessary conditions developed by Abergel and Temam [2] and those
developed by Ahmed [1] do not apply in the present situation.

4. A SIMPLIFIED ABSTRACT MODEL

Recall that the domain of fluid motion () is variable, in fact, a function of the position of
the membrane, that is, {)(z). This makes it difficult to construct an abstract model.
Assuming that the membrane displacement is so small that it is negligible, we can write
an abstract evolution equation. Later we shall discuss the modification necessary to relax
this assumption.

For membrane dynamics define operator A, as

{ DA)={pEL,(D): Lp EL, (D), 9! ,_,p = 0}

A= — (I/p)Loforg €D (A,). an
Define
W=Z,w, =2, (18)
For the fluid dynamics, the standard function spaces required are as follows:
V=cet {¢E€C; (Q,R"):divp =0,9.v=0}
{H5c€’4{¢€C‘(’;(Q,R"):div¢=0,¢.v=0}. (19)
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where V is given by the closure, in the topology of the standard Sobolev space H', of
divergence free vector fields from the class of C”™—functions whose outward normal
component vanish on the boundary. Similarly H is defined with reference to L, in place
of H'.

Then we obtain the well-known Gelfand triple

Vo H=H < V' (= dual of V), (20)

where the embeddings are continuous.
Consider the Dirichlet problem

Mp=vyAgp=0

N @

It is known that this equation has a unique solution ¢ = Rv, where R is the Dirichlet map
given by R = (Tlg,,a) "

Let P denote the projection of L, to H.

Define

Ay = — (V/po)P(A 9)
b(s, ) = P((4.V))
B(g) = b (4.9) 22)

g = P(g).

Then the membrane equation (12) and the fluid dynamics equation (13) can be
combined to form an evolution system

du/dt + Au + B(u) = A,RCw, + ¢
dw,/dt = w, (23)
dw,/dt + Ayw, = (1/p)(p; — p(t, w));

with the initial conditions

u(0) = up, wi(0) = wig = 2o, wy(0) = wyy = z4,

where w; and w, represent respectively the instantaneous position z(t,.,.) and velocity
z(t,.,.) profiles of the membrane.

Defining
u
§= (w) a five vector,
A, 0 —A,RC
A= 0 0 -1 5

04 O
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B(u)
F(y) = 0 ;
(17(p)) p (2, wy)
g
G= 0 ;
(1/p)p;

we have the abstract evolution equation

{ dp/dt + Ay + F§) = G
Y(0) = s, (24)

Note that the domain of the operator A is given by
D(A) = H, () X (H (D) N Hy (D)) X Ly(D),

where H? denotes the class of divergence free-vector fields contained in the standard
Sobolev space H2. Equation (24) can be solved in the weak sense in the Hilbert space

X=HXDO\/(A))) X LD). = H X HYD) X LyD).

The control here is the internal compressor pressure p; as applied to the membrane.

5. CORRECT ABSTRACT MODEL

Here we present a more complete abstract model. Let m € H{,(D) N HXD) and define

Q) ={=xy 20 EQ:z2=n(xy),(z,y) € D}.

Since the membrane is not allowed to stretch beyond certain limits inside (), this set is
nonempty. By Sobolev embedding theorem, n € C*(D) for a € (0, 1). Thus Q(m) is
sufficiently smooth. Replacing the set {) of expression (19) by ((n), we obtain the
parameterized family of Gelfand triples

V(M) < H(n) < V(n)’,

parameterized by m. We redefine the operators A, and B of the expression (22) as follows.
Let P, denote the projection of L,(¥(m)) to H(m). Define

Ay)(m)p = — (v/po)P, (L 9)
b(n, ¢, ¥) = P, ((0.V)¥)
B(m, ¢) = b(n,0, 9)
g=P.(8).

(25)
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Thus the correct evolution equation for the controlled artificial heart may be written as

du/dt + Ay(w))u + B(wy, u) = Ay(w;)RCw, + g
dw/dt =w, (26)
dwy/dt + Ayw, = (1/p)(p; — p(t, wy)).

In this case the evolution equation (24) takes the form

d/dt + A() + Fb) = G
{ $(0) = . @7

which is fully nonlinear or more precisely, quasi-linear. Here the operator A which was
linear in case of (24), is no more linear since A, and B are both dependent on w;,.

The question of existence and regularity properties of solutions of this equation is
completely open. We expect that the semigroup technique developed by Kato (see [3], p.
174] for quasi-linear systems may work. Once this problem is resolved we can undertake
the questions of optimal controls of artificial heart on a rigorous basis.

Another difficulty with equation (26) is that even though the pressure term disappears
from the abstract Navier-Stokes equation, it remains in the membrane equation. This
difficulty can be partially overcome by reformulating the control problem as follows: Let
F C L.(I, L,(D)) be a w* compact set. Find f € so that

19)= [ + 0+ 0y di - Inf,
subject to the dynamic constraint

du/dt + Ay(w))u + B(w,, u) = A,(w;)RCw, + ¢
dw/dt = w, (28)
dw,/dt + Ayw, = f.

Once an optimal f° is determined, one can choose p? = pf° + p(.,w9), where

0 _ u’ 0 _ 0
Vi=|,0).P =p(w)

is the optimal state trajectory.

6. SIMPLIFIED CONTROL PROBLEM

Recently a simplified version of this problem has been solved in [1] where the membrane
dynamics is omitted. In that the boundary condition in equation (11) is replaced simply by
Tu = v where v is considered to be the basic control to be chosen so as to minimize the
objective functional given by equation (14) with p, replaced by v. The question of
existence of solutions of the nonhomogeneous boundary value problem is treated by use
of semigroup theory [3]. Existence of optimal controls is based on weak lower
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semi-continuity and compactness arguments. Also several necessary conditions of
optimality were given in [1]. We reproduce here one of the necessary conditions [see 1,
Theorem 4, p. 114] which is closer to the problem considered here.

Necessary Conditions of Optimality

TueoreM 1 In order that the pair {u°, V°} be optimal, it is necessary that the following
equations and the inequality hold:
f (i) : du®/dt + A2u0 + B(®) = A2Rv0 + g, u%0) = U,
(i) : — dZ%dt + B" 2° = €,(u°,v0), 2(T) = 0
T * 0 0 0 0
(iii) fo {<(AR) (1), v'(t) >p g + €(u" (1), v'(2))}dt

A

(29
T *

= [7{< AR 20, v(0) > g + €0, o)}

Y for all ve U,

where £” is the adjoint of the operator B given by Bz = A, z + b(u°, z) + b(z, u°), and €
is the cost integrand as in (14).

In case € is Frechet differentiable in the control variable v one can present a simple
algorithm for computing the optimal control.

J'(") = (AR)'Z" + €,u", V")
vn+l =" — eA—l Jr(vn)
JOY = 30" = el AP 00 [ ) + Oe), (30)

where A = (—Ap)'? and Ay is the Laplace-Beltrami operator corresponding to the
boundary T

This algorithm has been successfully tried on 2-d Navier-Stokes equation [4, 5].
Currently 3-d codes are being written. One of the difficulties in developing numerical
codes for optimal control problems as given above is that commercially available
Navier-Stokes solver can not be adapted to this problem because of the requirement that
the adjoint equation must be solved backward in time simultaneously. Thus an
independent code was developed right from the scratch.

7. CONCLUSION

In this paper we have presented a complete dynamic model for the artificial heart. We have
also given a correct formulation of an optimal control problem with a performance
functional that takes into account all the potential flow related causes of hemolysis.
However we have not been able to develop a sound theoretical basis concerning the
questions of existence and regularity properties of solutions of these general equations.
This remains an open problem. For a simplified problem, we have developed necessary
conditions of optimality which have been used by our Control and Systems group in
Ottawa University to develop numerical codes modifying standard CFD codes. Very
interesting numerical results have been reported in several conferences [1,4,5]. Based on
the results of the simplified problem we are convinced that a solution of the complete
problem as presented here would be of great value to the designers of artificial hearts.
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