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This paper is devoted to the study of the two-dimensional flow of a Johnson-Segalman
fluid in a planar channel having walls that are transversely displaced by an infinite, har-
monic travelling wave of large wavelength. Both analytical and numerical solutions are
presented. The analysis for the analytical solution is carried out for small Weissenberg
numbers. (A Weissenberg number is the ratio of the relaxation time of the fluid to a char-
acteristic time associated with the flow.) Analytical solutions have been obtained for the
stream function from which the relations of the velocity and the longitudinal pressure
gradient have been derived. The expression of the pressure rise over a wavelength has also
been determined. Numerical computations are performed and compared to the pertur-
bation analysis. Several limiting situations with their implications can be examined from
the presented analysis.

1. Introduction

The dynamics of the fluid transport by peristaltic motion of the confining walls has re-
ceived a careful study in the recent literature. The need for peristaltic pumping may arise
in circumstances where it is desirable to avoid using any internal moving parts such as
pistons in a pumping process. Moreover, the peristalsis is also well known to the phys-
iologists to be one of the main mechanisms of fluid transport in a biological system.
Specifically, peristaltic mechanism is involved in swallowing food through the oesoph-
agus, urine transport from the kidney to the bladder through the ureter, movement of
chyme in the gastrointestinal tract, and transport of spermatozoa in the ductus effer-
entes of the male reproductive tracts. Moreover, in the cervical canal, it is involved in the
movement of ovum in the Fallopian tube, transport of lump in the lymphatic vessels,
and vasomotion of small blood vessels such as arterioles, venules, and capillaries, as well
as in the mechanical and neurological aspects of the peristaltic reflex. In plant physiology,
such a mechanism is involved in phloem translocation by driving a sucrose solution along
tubules by peristaltic contractions. In addition, peristaltic pumping occurs in many prac-
tical applications involving biomechanical systems such as roller and finger pumps. The
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application of peristaltic motion as a mean of transporting fluid has also aroused interest
in engineering fields [1, 8, 30]. In particular, the peristaltic pumping of corrosive fluids
and slurries could be useful as it is desirable to prevent their contact with mechanical
parts of the pump.

Various studies (experimental as well as theoretical) on peristaltic transport have been
carried out by many researchers in order to explore a variety of relevant information. In
most of these studies, the peristaltic motion of a single fluid was considered by assuming
the nature of the fluid to be Newtonian. Some of the previous researchers (cf. Burns and
Parkes [4] and Shapiro et al. [25]) use the long wavelength approximation to simplify
the mathematical complexities involved in the analysis, whereas some others (cf. Fung
and Yih [6] and Chow [5]) applied perturbation techniques in their analyses. Misra and
Pandey [18] also used the perturbation technique to put forward a mathematical analysis
for flows through nonuniform tubes in the context of physiological fluid dynamics and
found that their results are in a good agreement with experimental data of Guha et al. [7].
A summary of analytical papers up to 1984 has been presented by L. M. Srivastava and V.
P. Srivastava [29]. Numerical techniques were used by Brown and Hung [3], Takabatake
and Ayukawa [30] for channel flow, and Takabatake et al. [31] for axisymmetric tube
flow.

Since physiological fluids are mostly of non-Newtonian nature, it is appropriate to
study the dynamics of the fluids by taking their non-Newtonian behavior into consid-
eration. Only limited information on the peristaltic transport of non-Newtonian fluids
is available (L. M. Srivastava and V. P. Srivastava [29], Böhme and Friedrich [2], Raju
and Devanathan [20, 21], Misra and Pandey [19], Siddiqui et al. [26], and Siddiqui and
Schwarz [27, 28]).

In this paper, we study the peristaltic motion of Johnson-Segalman fluids. The John-
son-Segalman model is a viscoelastic fluid model which was developed to allow for non-
affine deformations [9]. Recently, this model has been used by a number of researchers
[10, 13, 15] to explain the “spurt” phenomenon. Experimentalists usually associate a
spurt with a slip at the wall, and on this issue experiments have been carried out [11,
12, 14, 16, 17, 22]. Recently, Rao and Rajagopal [24] discussed three distinct flows of
a Johnson-Segalman fluid. The three flows are cylindrical Poiseuille flows. In another
paper, Rao [23] examined the flow of a Johnson-Segalman fluid between rotating coax-
ial cylinders with and without suction. Unlike most other fluid models, the Johnson-
Segalman fluid allows for a nonmonotonic relationship between the shear stress and the
rate of share in a simple shear flow for certain values of the material parameter. Keeping
this in view, the nonlinear partial differential equations for the peristalsis of a Johnson-
Segalman fluid are modelled. Due to the complexity of the nonlinear equations, we only
consider the case of planar flow, which is a symmetric, harmonic, infinite wave train hav-
ing long wavelength. We give the basic equations in Section 2. The formulation of the
problem is given in Section 3. In Section 4, we derive the boundary conditions. Section 5
is devoted to the partial differential equations with long-wavelength approximation. As
the problem is complicated, it is solved by the perturbation technique in Section 6. The
perturbation solution is made of two parts: a mean part corresponding to the fully devel-
oped mean flow and small disturbance. It is worth mentioning here that the mean part
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of the solution describes the flow characteristics in the case of a Newtonian fluid. The
perturbed parts of the solution are the contributions from the Johnson-Segalman fluid.
Section 7 is concerned with the numerical solution of the nonlinear partial differential
equation. In Section 8, numerical results and discussions are given. The analytical results
are also compared to a numerical computation in order to determine the range of validity
of the perturbation analysis.

2. Basic equations

The basic equations governing the flow of an incompressible fluid are the field equations

div V= 0, divσ + ρf = ρ
dV
dt

, (2.1)

where V is the velocity, f the body force per unit mass, ρ the density, d/dt the material
time derivative, and σ is the Cauchy stress.

Johnson and Segalman [9] proposed an integral model which can also be written in the
rate-type form. With an appropriate choice of kernel function and the time constants, the
Cauchy stress σ in such a Johnson-Segalman fluid is related to the fluid motion through

σ =−pI + T, (2.2)

T= 2µD + S, (2.3)

S +m
[
dS
dt

+ S(W− aD) + (W− aD)TS
]
= 2ηD, (2.4)

where D is the symmetric part of the velocity gradient and W the skew-symmetric part
of the velocity gradient, that is,

D= 1
2

[
L + LT

]
, W= 1

2

[
L−LT

]
, L= gradV. (2.5)

Also, −pI denotes the indeterminate part of the stress due to the constraint of incom-
pressibility, µ and η are viscosities, m is the relaxation time, and a is called the slip param-
eter. When a = 1, the Johnson-Segalman model reduces to the Oldroyd-B model; when
a = 1 and µ = 0, the Johnson-Segalman model reduces to the Maxwell fluid; and when
m = 0, the model reduces to the classical Navier-Stokes fluid. Note that the bracketed
term on the left-hand side of (2.4) is an objective time derivative.

3. Formulation of the problem and flow equations

Consider a two-dimensional infinite channel of uniform width 2n filled with an incom-
pressible Johnson-Segalman fluid. We choose a rectangular coordinate system for the
channel with X̄ along the center line and Ȳ normal to it. Let Ū and V̄ be the longitudinal
and transverse velocity components of the fluid, respectively. We assume that an infinite
train of sinusoidal waves progresses with velocity c along the walls in the X̄-direction. The
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geometry of the wall surface is defined as

h̄(X̄, t)= n+ b sin
(

2π
λ

(X̄ − ct)
)
, (3.1)

where b is the amplitude and λ is the wavelength. We also assume that there is no motion
of the wall in the longitudinal direction (extensible or elastic wall).

For unsteady two-dimensional flows,

V= [Ū(X̄, Ȳ , t), V̄(X̄, Ȳ , t),0
]
, (3.2)

the equations of motion (2.1) and the constitutive relations (2.2), (2.3), and (2.4) in the
absence of body forces take the following form:

∂Ū

∂X̄
+
∂V̄

∂Ȳ
= 0, (3.3)

ρ
(
∂

∂t
+ Ū

∂

∂X̄
+ V̄

∂

∂Ȳ

)
Ū =−∂p̄(X̄, Ȳ , t)

∂X̄
+µ
(

∂2

∂X̄2
+

∂2

∂Ȳ 2

)
Ū +

∂S̄X̄X̄
∂X̄

+
∂S̄X̄Ȳ
∂Ȳ

, (3.4)

ρ
(
∂

∂t
+ Ū

∂

∂X̄
+ V̄

∂

∂Ȳ

)
V̄ =−∂p̄(X̄, Ȳ , t)

∂Ȳ
+µ
(

∂2

∂X̄2
+

∂2

∂Ȳ 2

)
V̄ +

∂S̄X̄Ȳ
∂X̄

+
∂S̄ȲȲ
∂Ȳ

, (3.5)

2η
∂Ū

∂X̄
= S̄X̄X̄ +m

[
∂

∂t
+Ū

∂

∂X̄
+V̄

∂

∂Ȳ

]
S̄X̄X̄−2amS̄X̄X̄

∂Ū

∂X̄
+m

[
(1−a)

∂V̄

∂X̄
−(1+a)

∂Ū

∂Ȳ

]
S̄X̄Ȳ ,

(3.6)

η
(
∂Ū

∂Ȳ
+
∂V̄

∂X̄

)
= S̄X̄Ȳ +m

[
∂

∂t
+ Ū

∂

∂X̄
+ V̄

∂

∂Ȳ

]
S̄X̄Ȳ +

m

2

[
(1− a)

∂Ū

∂Ȳ
− (1 + a)

∂V̄

∂X̄

]
S̄X̄X̄

+
m

2

[
(1− a)

∂V̄

∂X̄
− (1 + a)

∂Ū

∂Ȳ

]
S̄Ȳ Ȳ ,

(3.7)

2η
∂V̄

∂Ȳ
= S̄Ȳ Ȳ +m

[
∂

∂t
+Ū

∂

∂X̄
+ V̄

∂

∂Ȳ

]
S̄Ȳ Ȳ−2amS̄ȲȲ

∂V̄

∂Ȳ
+m

[
(1−a)

∂Ū

∂Ȳ
−(1+a)

∂V̄

∂X̄

]
S̄X̄Ȳ .

(3.8)

In the fixed coordinate system (X̄, Ȳ), the motion is unsteady because of the moving
boundary. However, if observed in a coordinate system (x̄, ȳ) moving with the speed c,
it can be treated as steady because the boundary shape appears to be stationary. The
transformation between the two frames is given by

x̄ = X̄ − ct, ȳ = Ȳ . (3.9)

The velocities in the fixed and moving frames are related by

ū= Ū − c, v̄ = V̄ , (3.10)

where (ū, v̄) are components of the velocity in the moving coordinate system.
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We use these transformations and define the following dimensionless variables:

x = 2π
λ
x̄, y = ȳ

n
, u= ū

c
, v = v̄

c
,

S= n

µc
S̄, p = 2πn2

λ(µ+η)c
p̄, h= h̄

n
,

(3.11)

where the wavelength λ is the characteristic longitudinal length. Substituting (3.9) and
(3.10) into (3.3), (3.4), (3.5), (3.6), (3.7), and (3.8), and then using dimensionless vari-
ables (3.11), we arrive at

δ
∂u

∂x
+
∂v

∂y
= 0, (3.12)

�e
[(

δu
∂

∂x
+ v

∂

∂y

)
u
]
=
(
µ+η

µ

)
∂p

∂x
+ δ

∂Sxx
∂x

+
∂Sxy
∂y

+
(
δ2 ∂

2u

∂x2
+
∂2u

∂y2

)
, (3.13)

δ�e
[(

δu
∂

∂x
+ v

∂

∂y

)
v
]
=−

(
µ+η

µ

)
∂p

∂y
+ δ2 ∂Sxy

∂x
+ δ

∂Syy
∂y

+ δ
(
δ2 ∂

2v

∂x2
+
∂2v

∂y2

)
, (3.14)

δ
(

2η
µ

)
∂u

∂x
=Sxx+�e

[
δu

∂

∂x
+v

∂

∂y

]
Sxx−2�eaδ

∂u

∂x
+�e

[
δ(1−a)

∂v

∂x
−(1+a)

∂u

∂y

]
Sxy,

(3.15)

η

µ

(
∂u

∂y
+ δ

∂v

∂x

)
= Sxy + �e

[
δu

∂

∂x
+ v

∂

∂y

]
Sxy +

�e
2

[
(1− a)

∂u

∂y
− δ(1 + a)

∂v

∂x

]
Sxx

+
�e
2

[
δ(1− a)

∂v

∂x
− (1 + a)

∂u

∂y

]
Syy,

(3.16)(
2η
µ

)
∂v

∂y
=Syy+�e

[
δu

∂

∂x
+v

∂

∂y

]
Syy−2�eaSyy

∂v

∂y
+�e

[
(1−a)

∂u

∂y
−(1+a)δ

∂v

∂x

]
Sxy,

(3.17)

in which the dimensionless wave number δ, the Reynolds number �e, and the Weis-
senberg number �e are defined, respectively, as

δ = 2πn
λ

, �e= ρcn

µ
, �e= mc

n
. (3.18)

Equation (3.12) allows the introduction of the dimensionless stream function Ψ(x, y) in
terms of

u= ∂Ψ

∂y
, v =−δ ∂Ψ

∂x
. (3.19)
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In terms of Ψ, we find that (3.12) is identically satisfied, while the other equations take
the forms

δ�e
[(

∂Ψ

∂y

∂

∂x
− ∂Ψ

∂x

∂

∂y

)
∂Ψ

∂y

]
=−

(
µ+η

µ

)
∂p

∂x
+ δ

∂Sxx
∂x

+
∂Sxy
∂y

+
(
δ2 ∂3Ψ

∂x2∂y
+
∂3Ψ

∂y3

)
,

−δ3 �e
[(

∂Ψ

∂y

∂

∂x
− ∂Ψ

∂x

∂

∂y

)
∂Ψ

∂x

]
=−
(
µ+η

µ

)
∂p

∂y
+δ2 ∂Sxy

∂x
+δ

∂Syy
∂y

−δ2
(
δ2 ∂

3Ψ

∂x3
+

∂3Ψ

∂x∂y2

)
,

(
2ηδ
µ

)
∂2Ψ

∂x∂y
= Sxx + �eδ

[
∂Ψ

∂y

∂

∂x
− ∂Ψ

∂x

∂

∂y

]
Sxx − 2�eaδ

∂2Ψ

∂x∂y

−�e
[
δ2(1− a)

∂2Ψ

∂x2
+ (1 + a)

∂2Ψ

∂y2

]
Sxy,

η

µ

(
∂2Ψ

∂y2
−δ2 ∂

2Ψ

∂x2

)
=Sxy+�eδ

[
∂Ψ

∂y

∂

∂x
− ∂Ψ

∂x

∂

∂y

]
Sxy+

�e
2

[
(1−a)

∂2Ψ

∂y2
+δ2(1+a)

∂2Ψ

∂x2

]
Sxx

− �e
2

[
δ2(1− a)

∂2Ψ

∂x2
+ (1 + a)

∂2Ψ

∂y2

]
Syy,

−
(

2ηδ
µ

)
∂2Ψ

∂x∂y
= Syy + �eδ

[
∂Ψ

∂y

∂

∂x
− ∂Ψ

∂x

∂

∂y

]
Syy + 2�eaδSyy

∂2Ψ

∂x∂y

+ �e
[

(1− a)
∂2Ψ

∂y2
+ (1 + a)δ2 ∂

2Ψ

∂x2

]
Sxy.

(3.20)

4. Rate of volume flow and boundary conditions

The dimensional rate of fluid flow in the fixed frame is given by

Q =
∫ h̄

0
Ū(X̄, Ȳ , t)dȲ , (4.1)

where h̄ is a function of X̄ and t. The rate of fluid flow in the moving frame is given by

q =
∫ h̄

0
ū(x̄, ȳ)dȳ, (4.2)

where h̄ is a function of x̄ alone. With the help of (3.9) and (3.10), one can show that
these two rates are related through

Q= q+ ch̄. (4.3)

The time-averaged flow over a period T at a fixed position X̄ is given by

Q̄ = 1
T

∫ T

0
Qdt. (4.4)

Substituting (4.3) into (4.4), we find that

Q̄ =Q+ cn. (4.5)
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If we define the dimensionless time averaged flows Θ and F, respectively, in the fixed and
moving frame as

Θ= Q̄

cn
, F = q

cn
, (4.6)

we find that (4.5) reduces to

Θ= F + 1, (4.7)

where

F =
∫ h

0

∂Ψ

∂y
dy =Ψ(h)−Ψ(0). (4.8)

If we choose the zero value of the streamline along the center line (y = 0)

Ψ(0)= 0, (4.9)

then the shape of the wave is given by the streamline of value

Ψ(h)= F. (4.10)

The boundary conditions for the dimensionless stream function in the moving frame are

Ψ= 0 (by convention),

∂2Ψ

∂y2
= 0 (by symmetry)

(4.11)

on the center line y = 0, and

∂Ψ

∂y
=−1 (no slip condition),

Ψ= F
(4.12)

at the wall y = h. We also note that h represents the dimensionless form of the surface of
the peristaltic wall:

h(x)= 1 +Φsinx, (4.13)

where

Φ= b

n
(4.14)

is the amplitude ratio or the occlusion and 0 <Φ < 1.
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5. Equations for large wavelength

A general solution of the dynamic equations (3.20) for arbitrary values of all parameters
seems to be impossible to find. Even in the case of Newtonian fluids, all analytical solu-
tions obtained so far by Shapiro et al. [25], and by L. M. Srivastava and V. P. Srivastava
[29] are based on assumptions that one or some of the parameters are zero or small. Ac-
cordingly, we carry out our investigation on the basis that the dimensionless wave number
in (3.18) is small, that is,

δ� 1, (5.1)

which corresponds to the long-wavelength approximation [25]. Thus, to lowest order in
δ, equations (3.20) give

(
µ+η

µ

)
∂p

∂x
= ∂Sxy

∂y
+
∂3Ψ

∂y3
, (5.2)

∂p

∂y
= 0, (5.3)

Sxx −�e(1 + a)
∂2Ψ

∂y2
Sxy = 0, (5.4)

(
η

µ

)
∂2Ψ

∂y2
= Sxy +

�e
2

(1− a)
∂2Ψ

∂y2
Sxx − �e

2
(1 + a)

∂2Ψ

∂y2
Syy, (5.5)

Syy + �e(1− a)
∂2Ψ

∂y2
Sxy = 0. (5.6)

Substituting (5.4) and (5.6) into (5.5) yields

Sxy = (η/µ)
(
∂2Ψ/∂y2

)
1 + �e2 (1− a2

)(
∂2Ψ/∂y2

)2 , (5.7)

and from (5.2), (5.3), and (5.7), we finally obtain

∂2

∂y2

[(
η/µ+ 1

)(
∂2Ψ/∂y2

)
+ �e2 (1− a2

)(
∂2Ψ/∂y2

)3

1 + �e2 (1− a2
)(
∂2Ψ/∂y2

)2

]
= 0, (5.8)

(
µ+η

µ

)
∂p

∂x
= ∂

∂y

[
(η/µ)

(
∂2Ψ/∂y2

)
1 + �e2 (1− a2

)(
∂2Ψ/∂y2

)2

]
+
∂3Ψ

∂y3
. (5.9)

6. Perturbation solution

For small values of �e2, (5.8) and (5.9) can be written using the binomial theorem as

∂2

∂y2

[
∂2Ψ

∂y2
+ �e2α1

(
∂2Ψ

∂y2

)3

+ �e4α2

(
∂2Ψ

∂y2

)5
]
= 0,

∂p

∂x
= ∂3Ψ

∂y3
+ �e2α1

∂

∂y

[(
∂2Ψ

∂y2

)3
]

+ �e4α2
∂

∂y

[(
∂2Ψ

∂y2

)5
]
,

(6.1)
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where the dimensionless parameters α1 and α2 are defined as

α1 =
(
a2− 1

)
η

(η+µ)
, α2 =

(
a2− 1

)2
η

(η+µ)
. (6.2)

Now, we seek the solution of (6.1) with boundary conditions (4.11) and (4.12) for a
small Weissenberg number. We may expand flow quantities in a power series of �e2. We
write the stream function Ψ, the pressure field p, and the flow rate F in the following
forms:

Ψ=Ψ0 + �e2Ψ1 + �e4Ψ2 + ··· ,
p = p0 + �e2 p1 + �e4 p2 + ··· ,
F = F0 + �e2F1 + �e4F2 + ··· .

(6.3)

If we substitute (6.3) into (4.11), (4.12), (5.3), and (6.1), and separate the terms of dif-
ferent orders in �e2, we obtain the following systems of partial differential equations for
the stream function and pressure gradients together with boundary conditions.

6.1. System of order �e0. The following system of equations of zeroth order follows:

∂4Ψ0

∂y4
= 0,

∂p0

∂x
= ∂3Ψ0

∂y3
,

∂p0

∂y
= 0, (6.4)

with the boundary conditions

Ψ0 = 0,
∂2Ψ0

∂y2
= 0 at y = 0,

Ψ0 = F0,
∂Ψ0

∂y
=−1 at y = h.

(6.5)

This boundary value problem is that of linear viscous creeping flow in the long-wave-
length approximation. No properties of the Johnson-Segalman fluid enter its formula-
tion.

6.2. System of order �e2. The first-order differential equations are

∂4Ψ1

∂y4
=−α1

∂2

∂y2

[(
∂2Ψ0

∂y2

)3
]
,

∂p1

∂x
= ∂3Ψ1

∂y3
+α1

∂

∂y

[(
∂2Ψ0

∂y2

)3
]
,

∂p1

∂y
= 0,

(6.6)
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with the boundary conditions

Ψ1 = 0,
∂2Ψ1

∂y2
= 0 at y = 0,

Ψ1 = F1,
∂Ψ1

∂y
= 0 at y = h.

(6.7)

At this level, the material properties—manifested via a and η—now affect the flow inside
the fluid layer.

6.3. System of order �e4. The system of equations of the second order is composed of

∂4Ψ2

∂y4
=−3α1

∂2

∂y2

[(
∂2Ψ0

∂y2

)2 ∂2Ψ1

∂y2

]
−α2

∂2

∂y2

[(
∂2Ψ0

∂y2

)5
]
,

∂p2

∂x
= ∂3Ψ2

∂y3
+ 3α1

∂

∂y

[(
∂2Ψ0

∂y2

)2 ∂2Ψ1

∂y2

]
+α2

∂

∂y

[(
∂2Ψ0

∂y2

)5
]
,

∂p2

∂y
= 0,

(6.8)

with the boundary conditions

Ψ2 = 0,
∂2Ψ2

∂y2
= 0 at y = 0,

Ψ2 = F2,
∂Ψ2

∂y
= 0 at y = h.

(6.9)

In this system, further corrections due to the Johnson-Segalman constitutive equation
enter. We now seek to solve the sequence of problems at each order and generate thereby
the series solution.

6.4. Zeroth-order solution. The solution to the zeroth-order problem (6.4) subject to
the boundary conditions (6.5) is given by

Ψ0 =−3
2

(
F0 +h

)[ y3

3h3
− y

h

]
− y,

u0 =− 3
2h

(
F0 +h

)[ y2

h2
− 1
]
− 1.

(6.10)

From the second and third equations in (6.4), it is clear that the transverse pressure gra-
dient is zero and the longitudinal pressure gradient is given by

dp0

dx
=−3

(
F0

h3
+

1
h2

)
. (6.11)
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The pressure rise per wavelength (�Pλ) in the longitudinal direction can be evaluated on
the axis at y = 0. Thus, at the zeroth order, we have

�Pλ0 =
∫ 2π

0

dp0

dx
dx =−3

[
I3F0 + I2

]
, (6.12)

where

I2 = 2π(
1−Φ2

)3/2 , I3 = π
(
2 +Φ2

)
(
1−Φ2

)5/2 . (6.13)

The expressions (6.10), (6.11), and (6.12) are essentially the same as those of the Newto-
nian fluid given by Shapiro et al. [25]. This is obviously no surprise.

6.5. First-order solution (�(�e2)). Substituting the zeroth-order solution into (6.6), the
system of order �e2 reduces the latter to

∂4Ψ1

∂y4
=−α1

∂2

∂y2

[
y3
(
dp0

dx

)3
]
,

dp1

dx
= ∂3Ψ1

∂y3
+α1

∂

∂y

[
y3
(
dp0

dx

)3
]
.

(6.14)

On solving (6.14) with boundary conditions (6.7), the expressions for the stream function
Ψ1, the axial velocity component u1, the longitudinal pressure gradient dp1/dx, and the
pressure rise per wavelength�Pλ1 turn out to be

Ψ1 = α1

2

(
dp0

dx

)3[
− y5

10
+
h2y3

5
− h4y

10

]
− 3F1

2

[
y3

3h3
− y

h

]
,

u1 = α1

2

(
dp0

dx

)3[
− y4

2
+

3h2y2

5
− h4

10

]
− 3F1

2h

[
y2

h2
− 1
]
,

dp1

dx
= α1

2

(
dp0

dx

)3[6h2

5

]
− 3F1

h3
,

�Pλ1 =−
81α1

5

[
I7F

3
0 + 3I6F

2
0 + 3I5F0 + I4

]− 3F1I3,

(6.15)

where

I4 = π
(
3Φ2 + 2

)
(
1−Φ2

)7/2 ,

In =
∫ 2π

0

1
hn

dx = 1(
1−Φ2

)[(2n− 3
n− 1

)
In−1−

(
n− 2
n− 1

)
In−2

]
, n > 4.

(6.16)
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6.6. Second-order solution (�(�e4)). If we insert the zeroth-order and first-order solu-
tions into (6.8), we find that the system of �(�e4) takes the form

∂4Ψ2

∂y4
=−3α1

∂2

∂y2

[
α1

2

(
dp0

dx

)5(
− 2y5 +

6
5
h2y3

)
−
(
dp0

dx

)2(3F1y3

h3

)]

−α2
∂2

∂y2

[
y5
(
dp0

dx

)5
]
,

dp2

dx
= ∂3Ψ2

∂y3
+ 3α1

∂

∂y

[
α1

2

(
dp0

dx

)5(
− 2y5 +

6
5
h2y3

)
−
(
dp0

dx

)2(3F1y3

h3

)]

+α2
∂

∂y

[
y5
(
dp0

dx

)5
]
.

(6.17)

Solving (6.17), subject to the boundary conditions (6.9), we find, after lengthy calcula-
tions, that

Ψ2 = 3α2
1

2

(
dp0

dx

)5
[
y7

21
− 3y5h2

50
− 4y3h4

175
+

74yh6

2100

]

+
3α1

2

(
dp0

dx

)2 F1

h3

[
3y5

10
− 3y3h2

5
+

3yh4

10

]

−α2

(
dp0

dx

)5
[
y7

42
− y3h4

14
+
yh6

21

]
+

3F2

2

[
y

h
− y3

3h3

]
,

(6.18)

u2 = 3α2
1

2

(
dp0

dx

)5
[
y6

3
− 3y4h2

10
− 12y2h4

175
+

74h6

2100

]

+
3α1

2

(
dp0

dx

)2 F1

h3

[
3y4

2
− 9y2h2

5
+

3h4

10

]

−α2

(
dp0

dx

)5
[
y6

6
− 3y2h4

14
+
h6

21

]
+

3F2

2h

[
1− y2

h2

]
,

(6.19)

dp2

dx
=−3α2

1

2

(
dp0

dx

)5
[

24h4

175

]
− 3α1

2

(
dp0

dx

)2
[

18F1

5h

]

+
3h4α2

7

(
dp0

dx

)5

− 3F2

h3
.

(6.20)

The pressure rise per wavelength in the longitudinal direction can be obtained by substi-
tuting (6.11) in (6.20) and integrating the resulting equation with respect to x from 0 to
2π. The result is given by

�Pλ2 =
(

8748
175

α2
1−

729
7

α2

)[
I11F

5
0 + 5I10F

4
0 + 10I9F

3
0 + 10I8F

2
0 + 5F0I7 + I6

]

− 243
5

α1F1
[
I7F

2
0 + 2I6F0 + I5

]− 3F2I3,

(6.21)

where In is given by (6.16).
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Now we summarize our results of the perturbation series through order �e4. The
expressions for Ψ, u, dp/dx, and�Pλ may, respectively, take the following forms:

Ψ=
[
− 3

2

(
F0 +h

)( y3

3h3
− y

h

)
− y
]

+ �e2

[
α1

2

(
dp0

dx

)3(
− y5

10
+
h2y3

5
− h4y

10

)
− 3F1

2

(
y3

3h3
− y

h

)]

+ �e4

[
3α2

1

2

(
dp0

dx

)5( y7

21
− 3y5h2

50
− 4y3h4

175
+

74yh6

2100

)

+
3α1

2

(
dp0

dx

)2 F1

h3

(
3y5

10
− 3y3h2

5
+

3yh4

10

)

−α2

(
dp0

dx

)5( y7

42
− y3h4

14
+
yh6

21

)
+

3F2

2

(
y

h
− y3

3h3

)]
,

(6.22)

u=
[
− 3

2h

(
F0 +h

)( y2

h2
− 1
)
− 1
]

+ �e2

[
α1

2

(
dp0

dx

)3(
− y4

2
+

3h2y2

5
− h4

10

)
− 3F1

2h

(
y2

h2
− 1
)]

+ �e4

[
3α2

1

2

(
dp0

dx

)5( y6

3
− 3y4h2

10
− 12y2h4

175
+

74h6

2100

)

+
3α1

2

(
dp0

dx

)2 F1

h3

(
3y4

2
− 9y2h2

5
+

3h4

10

)

−α2

(
dp0

dx

)5( y6

6
− 3y2h4

14
+
h6

21

)
+

3F2

2h

(
1− y2

h2

)]
,

(6.23)

dp

dx
= dp0

dx
+ �e2

[
α1

2

(
dp0

dx

)3(6h2

5

)
− 3F1

h3

]

+ �e4

[
− 3α2

1

2

(
dp0

dx

)5(24h4

175

)
− 3α1

2

(
dp0

dx

)2(18F1

5h

)

+
3h4α2

7

(
dp0

dx

)5

− 3F2

h3

]
,

(6.24)

�Pλ =−3
[
I3F0 + I2

]
+ �e2

[
− 81α1

5

[
I7F

3
0 + 3I6F

2
0 + 3I5F0 + I4

]− 3F1I3

]

+ �e4
[(

8748
175

α2
1−

729
7

α2

)

× (I11F
5
0 + 5I10F

4
0 + 10I9F

3
0 + 10I8F

2
0 + 5I7F0 + I6

)
− 243

5
α1F1

[
I7F

2
0 + 2I6F0 + I5

]− 3F2I3

]
.

(6.25)
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If we define

F(2) = F0 + �e2F1 + �e4F2, (6.26)

then

F0 = F(2)−�e2F1−�e4F2,

�e2F1 = F(2)−F0−�e4F2,

�e4F2 = F(2)−F0−�e2F1.

(6.27)

On substituting these expressions into (6.25) and retaining only terms up to order �e4,
we obtain

�P(2)
λ =−3

[
I3F

(2) + I2
]

+ �e2
[
− 81α1

5

(
I7
(
F(2))3

+ 3I6
(
F(2))2

+ 3F(2)I5 + I4

)]

+ �e4
[(

8748
175

α2
1−

729
7

α2

)(
I6 + 5F(2)I7 + 10

(
F(2))2

I8 + 10
(
F(2))3

I9

+ 5
(
F(2))4

I10 +
(
F(2))5

I11

)]
.

(6.28)

7. Numerical method

We will solve the differential equation (5.8) with the boundary conditions (4.11) and
(4.12). Its approximate solution for small values of �e2 has been obtained in the previous
section and is demonstrated in (6.22). Its solution for any large value of �e2 can be
obtained by numerical methods.

This two-point boundary value problem can be rewritten as

∂2

∂y2

[
(η/µ)

(
∂2Ψ/∂y2

)
1 + �e2 (1− a2

)(
∂2Ψ/∂y2

)2

]
+
∂4Ψ

∂y4
= 0 (7.1)

with the boundary conditions

Ψ= 0,
∂2Ψ

∂y2
= 0 at y = 0,

Ψ= F,
∂Ψ

∂y
=−1 at y = h.

(7.2)

Because the differential equation (7.1) is nonlinear, we cannot solve this boundary value
problem by the direct finite-difference method. In fact, in solving such nonlinear equa-
tions, iterative methods are usually used, and one of them is the asymptotic method.

A general stationary problem

f
(
Ψ(y), y

)= 0, y ∈ (a,b), (7.3)
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accompanied with suitable boundary conditions, in which f may be a nonlinear higher-
order differential function, can be treated as the steady asymptotic limit as t→∞ of the
nonstationary problem

∂φ

∂t
+ f
(
φ(y, t), y

)= 0. (7.4)

It follows that

lim
t→∞φ(y, t)=Ψ(y). (7.5)

In solving the stationary problem (7.3) by asymptotic methods, that is, in solving the
nonstationary problem (7.4), we do not pay any attention to the transient behavior since
it is of no interest whatsoever.

Clearly, the nonstationary problem for φ, (7.4), can be solved by using finite-difference
methods with respect to t. For example,

φn+1−φn

τ
+ f
(
φn, y

)= 0 (7.6)

or

φn+1 = φn− τ f
(
φn, y

)
, (7.7)

where the counting index n indicates the time step and has nothing in common with the
channel width n. As for the stationary problem (7.3), the solution is given by

lim
n→∞φ

n =Ψ. (7.8)

In any case, from the point of view of solving the stationary problem, it is convenient to
interpret the index n as denoting the iteration step rather than time, and in this case the
real parameter τ indicates the iteration over-relaxation factor rather than the size of the
time step. The parameter τ should be, on the one hand, sufficiently small to guarantee
convergent iteration, and, on the other hand, as large as possible to minimize the number
of iterations.

If f is a differential function, we can obtain the discrete approximate solutions φ1(y1),
φ2(y2), . . . ,φM(yM) at discrete points a < y1 < y2 < ··· < yM < b by employing the differ-
ence equation

φn+1
j = φn

j − τg
(
φn

1 , . . . ,φ
n
M, y j

)
, (7.9)

in which the algebraic function g can be obtained by means of finite-difference approxi-
mations with respect to the algebra-differential function f in (7.7).

Here, we describe this method as applied to the boundary value problem (7.1) and
(7.2). Instead of solving the stationary problem (7.1), we solve the nonstationary equation

∂φ

∂t
+

∂2

∂y2

[
(η/µ)

(
∂2φ/∂y2

)
1 + �e2 (1− a2

)(
∂2φ/∂y2

)2

]
+
∂4φ

∂y4
= 0, (7.10)
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whose finite-difference form is

φn+1
j −φn

j

τ
+

1
(∆y)2

{
cnj+1− 2cnj + cnj−1

}

+
1

(∆y)4

{
φn
j+2− 4φn

j+1 + 6φn
j − 4φn

j−1 +φn
j−2

}= 0

(7.11)

with the expression for cnj given by

cnj =
(η/µ)

((
φn
j+1− 2φn

j +φn
j−1

)
/(∆y)2

)
1 + �e

(
1− a2

)((
φn
j+1− 2φn

j +φn
j−1

)
/(∆y)2

) (7.12)

for the iteration steps n= 0,1,2, . . . ,∞ and at space points j = 2,3, . . . ,M− 1 (where y =
2∆y,3∆y, . . . ,(M− 1)∆y) with the grid size ∆y = h/(M− 1).

The boundary conditions (7.2) can be described in finite-difference forms as follows:

φn+1
0 = φn+1

2 , φn+1
1 = 0, φn+1

M = F, φn+1
M+1 = φn+1

M−1− 2∆y. (7.13)

We start with an initial trial solution φ0
j ( j = 0,1,2, . . . ,m + 1), which satisfies the

boundary conditions (7.13). The iteration should be carried out until the relative differ-
ences of the computed φn

j and φn+1
j between two successive iterative steps for all discrete

points are smaller than a given error chosen to be 10−8. Therefore, the stationary solution,
the solution of the stationary boundary value problem (7.1) and (7.2), is achieved.

8. Numerical results and discussions

A comparison of the direct numerical results as obtained for the boundary value prob-
lem (7.1) and (7.2) and its approximate perturbation solutions to order �e4, (6.22)
and (6.23), is shown in Figure 8.1. We display the dimensionless stream function Ψ (left
panels) and the dimensionless velocity u obtained with three different values of the Weis-
senberg number �e = 0.8,1.0,1.5 and a fixed total flux F = −2. It is surprising and
pleasing that, for fairly large �e, for example, �e = 0.8, good agreement between the
approximate solutions and the direct numerical solutions can be achieved. When �e= 1,
and more so when �e > 1.0, their difference becomes conspicuously large. In fact, such a
performance can be predicted. It is dependent on the choice of the total flux F. For F =−2
used in Figure 8.1, the distribution of the stream function is close to linear, as we can see
in Figures 8.1(a), 8.1(c), and 8.1(e). In such a case, the term with �e in (7.1), which is
proportional to the second-order spatial derivative of the stream function, cannot be-
come important. We can demonstrate this even more clearly if we choose F =−1. In this
case, the solution of the boundary value problem yields a rigorously linear distribution
of the stream function (i.e., constant velocity), and hence its second-order spatial de-
rivative vanishes. Therefore, the results of the approximate perturbation solutions are in
accordance with those of the direct numerical solutions which hold for any value of �e.
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Figure 8.1. Profiles of dimensionless stream function Ψ(y) (left) and velocity u(y) (right). Solid lines
indicate the numerical solutions of the boundary value problem (7.1) and (7.2), while dashed lines
denote their approximate perturbation solutions. The Weissenberg number �e is chosen as �e= 0.8
(Figures (a) and (b)), �e= 1.0 (Figures (c) and (d)), and �e= 1.5 (Figures (e) and (f)), respectively.
The total flux is kept a fixed value of F =−2. The other parameters are chosen as h= 1, µ/η = 1, and
a= 0.8.
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Figure 8.2. Profiles of (a) dimensionless stream function Ψ(y), (b) velocity u(y). Solid lines indicate
the numerical solutions of the boundary value problem (7.1) and (7.2), while dashed lines denote
their approximate perturbation solutions. The Weissenberg number �e is chosen as �e = 0.4 and
the total flux is kept a fixed value of F =−4.

In fact, if we choose F =−4, for which a larger deviation of the stream function from
the linear distribution is obtained, an obvious difference of the approximate perturbation
solutions from the direct numerical solutions can be seen, although �e takes a fairly small
value �e= 0.4, as displayed in Figure 8.2. Only when �e= 0.1 the perturbation solution
is an adequate approximation.

To quantitatively discriminate to what extent the perturbation solutions (6.22) and
(6.23) can describe the boundary value problem (7.1) and (7.2), an error measure for a
physical variable ϕ, for example, the stream function Ψ and the velocity u, is introduced:

�ϕ =

√√√√√
∑

j

(
ϕ

app
j −ϕnum

j

)2

∑
j

(
ϕnum
j

)2 , (8.1)

where ϕnum
j denotes the direct numerical solution at the space position yj , while ϕ

app
j is

the corresponding approximate value obtained by the perturbation solutions (6.22) and
(6.23).

For various Weissenberg numbers �e, the errors of the two solutions are listed in
Table 8.1 with two different values of the total flux F. It is obvious that the errors increase
with the increasing Weissenberg number �e. For F = −2, if �e > 0.8, the approximate
solutions can no longer be used, while for a larger total flux value F = −4, the approx-
imate perturbation solutions have to be abandoned for as small values as �e > 0.2. In
such cases, this boundary value problem must be solved by direct numerical methods.

In Figure 8.3 the distributions of the stream function Ψ(y) and the velocity u(y) are
illustrated for various values of the total flux F. Results are obtained by the direct numer-
ical method because here we choose a large value of �e= 1.5 and hence the perturbation
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Table 8.1. Errors percentages for the stream function Ψ and the velocity u between the numerical
solutions and the approximate perturbation solutions of the boundary value problem (7.1) and (7.2)
listed for different Weissenberg numbers �e and fluxes F.

�e 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.5 2.0

F =−2
�Ψ 0.06 0.06 0.08 0.12 0.48 1.84 4.93 15.0 56.4

�u 0.02 0.02 0.03 0.27 1.31 4.47 11.4 33.8 124.9

F =−4
�Ψ 0.10 0.11 7.1 50.5 179.6 462.3 — — —

�u 0.21 0.39 16.8 144.4 402.8 1033.2 — — —
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Figure 8.3. Profiles of (a) dimensionless stream function Ψ(y), (b) velocity u(y) simulated for various
values of the total flux F = −0.5,−1.0,−2.0, and −4.0, respectively. The other parameters are h = 1,
µ/η = 1, a= 0.8, and �e= 1.5.

solutions are no valid approximation. Obviously, the flow is dominantly influenced by the
value of F. For a half-channel width of h= 1, if F > 1, the flow velocity near the channel
center is larger than that at the top boundary due to an exerted pressure gradient in the
direction opposite to the flow, while for F < 1, a pressure gradient in the flow direction is
required to maintain such a flux value, hence the flow velocity near the channel center is
smaller. For F = 1, a linear distribution of the stream function and a constant velocity are
formed; in this case, no pressure gradient exists.

The distributions of the pressure gradient dp/dx within a wavelength x ∈ [0,2π] are
exhibited in Figure 8.4 for various values of the dimensionless wave amplitude Φ (Figure
8.4(a)) and the total flux F (Figure 8.4(b)). The dimensionless half-channel width is de-
fined by (4.13), that is, h(x) = 1 + Φsinx. The results are plotted for the approximate
perturbation expression (6.24) because we here choose a small value of �e = 0.2, and
hence an adequate approximation by the perturbation method can still be ensured. For a
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Figure 8.4. Distributions of the pressure gradient dp/dx within a wavelength x ∈ [0,2π] for different
values of the amplitude ratio Φ (Figure (a)) and the total flux F (Figure (b)). The other parameters
are µ/η= 1, a= 0.8, and �e= 0.2.

Table 8.2. Pressure drop per wavelength in the longitudinal direction for various values of the total
flux F and the wave amplitude Φ. The other parameters are µ/η= 1, a= 0.8, and �e= 0.2.

F −0.5 −1.0 −2.0 −3.0

Φ 0.2 0.3 0.4 0.2 0.3 0.4 0.2 0.3 0.4 0.2 0.3 0.4

�Pλ −9.31 −9.17 −8.68 1.25 3.18 6.77 21.1 25.4 36.2 39.3 57.8 166.7

larger �e, one has to directly solve the boundary value problem (7.1) and (7.2) for vari-
ous values of the channel width h within a wavelength and then substitute the results into
(5.9) in order to obtain the pressure gradient at various points along the channel.

It can be clearly seen from Figure 8.4 that, on the one hand, in the wide part of the
channel, x ∈ [0,π], the pressure gradient is relatively small, that is, the flow can easily
pass without imposition of a large pressure gradient. On the other hand, in a narrow part
of the channel, x ∈ [π,2π], a much larger pressure gradient is required to maintain the
same flux to pass it, especially for the narrowest position near x = 3π/2 and when the flux
F or the wave amplitude Φ is larger.

The corresponding pressure drops in the flow direction over a wavelength are listed in
Table 8.2 for some values of F and Φ. These are still obtained by the perturbation method,
that is, (6.25) due to the used small value of �e = 0.2. For small values of F, a pressure
rise occurs in the flow direction. With the increase of the flux F and the wave amplitude
Φ, the pressure drops increase over a wavelength.
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9. Conclusions

Plane steady peristaltic motions of a Johnson-Segalman fluid were analyzed for the con-
ditions that the wall surface is sinusoidally deformed. This wall deformation has wave-
length λ which is large in comparison to the undeformed channel width and propa-
gates at a prescribed constant speed. The time-independent governing equations of this
boundary value problem are expressed in terms of the stream function and pressure as
basic unknowns with wall boundary conditions formulated in terms of the stream func-
tion alone. By prescribing the constant value of this stream function of the wall, the flux
caused by the peristaltic wall deformation is prescribed. A scale analysis and associated
nondimensionalization of the equations paired with a Galilee-transformation with speed
c discloses a steady time-independent problem in which an aspect ratio parameter δ and
the Weissenberg number �e appear as the significant physical scales. The equations in
the limit δ → 0 describe the large-wavelength approximation. These equations still con-
tain the Weissenberg number �e as a parameter. Perturbation solutions up to �(�e4) for
the flow have been constructed for prescribed flux F and these solutions have been com-
pared with numerical solutions that are valid for any value of the Weissenberg number.
The following results are found.

(i) The deviation of the flow from a linear stream function and a constant velocity
depends on both the flux F as well as the Weissenberg number �e. For F = −1, the
viscoelastic properties do not enter the flow no matter how large �e is.

(ii) With growing |F| (decreasing F to large negative values) the influence of the vis-
coelastic properties of the fluid becomes more and more significant.

(iii) The profiles of the stream functions and the longitudinal velocities as computed
with the perturbation expansion are only adequately predicted when the Weissenberg
number �e is small. The maximum values for which the perturbation solutions are valid
approximations depend on the flux variable F. It is the smaller, the larger the deviation F
from −1 is.

(iv) In general, the solutions ought to be numerically determined by using the full
equations valid for all �e.

(v) The pressure that develops for a certain flux depends very much on the flux pa-
rameter. Generally, rather localized maxima can arise (Figure 8.4). Such maxima can be
controlled by adequately choosing the flux.

The next analysis will obviously be the corresponding peristaltic motion of a fluid in a
circular flexible duct. This problem is presently under analysis.
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