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Various models, based on a filtered Poisson process, are used for the flow of a river. The
aim is to forecast the next peak value of the flow, given that another peak was observed not
too long ago. The most realistic model is the one when the time between the successive
peaks does not have an exponential distribution, as is often assumed. An application to
the Delaware River, in the USA, is presented.

1. Introduction

In [2] (see also [5]), a filtered Poisson process was used to forecast the various peaks of
rivers. Let {N(t), t ≥ 0} be a homogeneous Poisson process and let X(t) be the river flow
at time t. It was assumed, in the previous references, that

X(t)=
N(t)∑
n=1

Yne
−(t−τn)/c, (1.1)

where the random variables τn are the arrival times of the Poisson events, Yn is the mag-
nitude of the signal that occurred at time τn, and c is a constant which characterizes the
river system. The authors also assumed that the random variables Yn have an exponential
distribution. The stochastic process {X(t), t ≥ 0} defined by (1.1) is indeed a particular
case of what is known as filtered Poisson processes. This type of stochastic process has
been used to model various phenomena; see [3, page 144]. In civil engineering, filtered
Poisson processes have served as models for stochastic rainfall [6] and seismic hazards
[4], in particular.

Going back to the {X(t), t ≥ 0} process, the authors considered the limiting stationary
version of this stochastic process, from which they defined a Markov chain {Xn, n =
1,2, . . .} for the sequence of peak river discharges. Using various estimators based on the
transition probability function of the Xn’s, they obtained the forecasted value of the “next
flood,” given the value of the “last flood” observed.

The model set up in [2] worked only relatively well, mainly because the correlation
coefficient between the successive peaks is rather weak, in general. It is well known that
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trying to predict the next peak value of a river flow is a very difficult task. However, we
believe that we can at least improve the results obtained so far by rendering the model
more realistic. Indeed, many mathematical assumptions made in the formulation of the
model are often not realistic at all or are only used to make the model tractable or for lack
of better alternatives.

There are two main criticisms that one can state with regard to the {X(t), t ≥ 0} pro-
cess above. First, it assumes that an event that occurs at time τn has an immediate max-
imum effect and that this effect decreases with time. In practice, a more or less steep in-
crease of the river flow is almost always observed before it begins to decrease. Therefore,
the choice of an exponential function as a “response function” can surely be criticized.

Second, the main assumption in the model above is that the time between two consec-
utive peaks has an exponential distribution, so that events occur according to a Poisson
process. Again, in practice this will almost surely be false. At least, this assumption should
be checked by performing a statistical test to make sure that the exponential distribution
is indeed a good model for the random variables representing the times between the
events. We will see, in Section 3, that in the case of the Delaware River this assumption is
clearly false.

In Section 2, the notion of a filtered renewal process will be introduced. We will see
how the next peak flow value could be forecasted, based on the most recent peak observed.
An application to the Delaware River will then be presented in Section 3. Finally, a few
conclusions will be drawn in Section 4.

2. A filtered renewal process

A homogeneous Poisson process is characterized by the fact that the times T1,T2, . . . be-
tween the consecutive events are independent and have the same exponential distribution
with constant parameter λ. It is a particular renewal process, namely, a counting process
for which the times T1,T2, . . . are independent but can follow any common distribution,
be it discrete or continuous.

Now, the probability density function of an exponential distribution is strictly decreas-
ing from zero. However, in practice, the distribution of the times between the various flow
peaks is not strictly decreasing. Rather, it generally increases toward a maximum value
and then is strictly decreasing until infinity. Because of that, assuming that the sequence
of occurrence times of peak flow values forms a Poisson process is not appropriate.

In the case of the Delaware River, we will see in Section 3 that the distribution of the
Tk’s is well approximated by a Rayleigh distribution, that is,

fTk (t)�
t

α2
e−t

2/2α2
for t ≥ 0, (2.1)

where α is an unknown parameter that must be estimated.
The general model that we propose for a river flow is of the form

X(t)=
N(t)∑
n=1

w
(
Yn, t− τn

)
, (2.2)
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where w(·,·) is the response function and {N(t), t ≥ 0} is a renewal process whose dis-
tribution of the times Tk’s between the events must be determined.

Remark 2.1. Although the distribution of the Tk’s is generally not an exponential distri-
bution, it is sometimes possible to apply a function to the Tk’s that transforms them into
exponential random variables. This amounts to working on a different time scale. For
instance, in the case of the Rayleigh distribution with parameter α = 1/

√
2 above, if we

define

T∗k =
(
λTk

)1/2
, (2.3)

where λ > 0, then we easily find that T∗k has an exponential distribution with parameter λ.
Thus, by taking the square root of all the time variables, we can assume that {N(t), t ≥ 0}
is indeed a Poisson process.

Next, by choosing a response function of the form

w
(
Yn, t− τn

)= Yne
−(t−τn)/c, (2.4)

we neglect the fact that there is almost always a period during which the river flow in-
creases before decreasing again; that is, the flow increase is not instantaneous. To obtain
this feature, we can consider a response function given by

w
(
Yn, t− τn

)= Yn
(
t− τn

)k
e−(t−τn)/c , (2.5)

where k is a positive constant that must be estimated. Of course, it will be more difficult
to forecast the future peak values from the more general model. In the case of the basic
model, we have

X(t+ δ)=
N(t+δ)∑
n=1

Yne
−(t+δ−τn)/c (2.6)

for any δ ≥ 0, so that

X(t+ δ)= e−δ/c
{N(t)∑

n=1

Yne
−(t−τn)/c +

N(t+δ)∑
n=N(t+)

Yne
−(t−τn)/c

}

= e−δ/c
{
X(t) +

N(t+δ)∑
n=N(t+)

Yne
−(t−τn)/c

}
,

(2.7)

where t+ is equal to t + ε, with ε > 0 as small as we want. If {N(t), t ≥ 0} is a Poisson
process, we may write

X(t+ δ)= e−δ/c
{
X(t) +X∗(δ)

}
, (2.8)

where X∗(δ) has the same distribution as X(δ). It follows that

E
[
X(t+ δ)|X(t)

]= e−δ/c
{
X(t) +E

[
X(δ)

]}= e−δ/cX(t) +
λc

µ

(
1− e−δ/c

)
(2.9)
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if Xn has an exponential distribution with parameter µ for all n (see [3]). With the more
general response function (2.5), we cannot obtain such a simple formula.

To be able to use the model defined by

X(t)=
N(t)∑
n=1

Yn
(
t− τn

)k
e−(t−τn)/c (2.10)

to forecast peak flow values, we first need to estimate the unknown parameters k and c.
This will be done as follows: let

g(t)= tke−t/c. (2.11)

This function attains its maximum value at tmax = kc. Therefore, we can estimate the
value of the product kc by computing the mean time taken by the river flow to reach a
peak from the preceding minimum.

Next, if the time between the consecutive peaks is assumed to be large enough, we can
neglect the effect of the signals Y1, . . . ,YN(t)−1, retaining only YN(t), and write that

X(t+ δ)� YN(t)
(
t+ δ− τN(t)

)k
e−(t+δ−τN(t))/c. (2.12)

Remark 2.2. In the next section, we will see that with the value of k estimated from the
data, the function g(t) is indeed such that we can neglect all the events prior to the one
that occurred at time τN(t).

We deduce from (2.12) that

X(t+ δ)
X(t)

� YN(t)
(
t+ δ− τN(t)

)k
e−(t+δ−τN(t))/c

YN(t)
(
t− τN(t)

)k
e−(t−τN(t))/c

= e−δ/c
{

1 +
δ

t− τN(t)

}k
.

(2.13)

This formula is valid for values of t and t+ δ between two consecutive peaks. If we choose
t to be the time at which the most recent peak was observed, then we may write

X(t+ δ)
X(t)

� e−δ/c
{

1 +
δ

kc

}k
. (2.14)

Since kc can be estimated, we solve for k in (2.14) and obtain that

k � ln

(
X(t+ δ)/X(t)

)
ln
(
1 + δ/kc

)− δ/kc
. (2.15)

Finally, to estimate k (and hence c from the estimated value of kc), we will compute
the mean value obtained for k if t + δ is the time at which the minimum following the
last recorded peak was observed. That is, we compute the ratio of the minimum over
the preceding maximum for the observations, and we calculate the mean value of the
expression in the right-hand member of (2.15).
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Our aim, in the next section, will therefore be to forecast the next peak flow value,
based on the preceding peak, once we have observed that the river flow has started to
increase again. It is an objective less futile than trying to predict the next peak flow based
on the most recent one.

In theory, we must also find a model for the distribution of the signals Yn, n= 1,2, . . . .
However, in practice only the mean value of the previous signals will be used to forecast
the next peak flow, so that the actual distribution of the Yn’s is not needed.

To forecast the value of the next peak flow, we will use the following estimator:

�Peak1 =Max
(
N̄I +ND

)k̂
e−(N̄I+ND)/ĉ + Ī , (2.16)

where Max is the value of the most recent peak flow, N̄I is the average number of days
taken by the river to go from a minimum to a maximum flow, ND is the number of days
between Max and the following minimum flow, and Ī is the average difference between
the various peaks and the preceding minima. Finally, k̂ and ĉ are the point estimates of
k and c. To obtain k̂, ĉ, N̄I , and Ī , we will use part of the available data, and we will then
apply our estimator to the rest of the data.

We will compare the results obtained with �Peak1 to the corresponding ones when the
constant k is taken equal to zero, so that we neglect the time taken by the river to reach a
peak. Based on this model, a simple estimator of the next peak flow is

�Peak2 =Min+Ī , (2.17)

where Min is the minimum flow that has just been observed (so that this estimator, as
the previous one, is produced one day after the minimum was observed), and Ī has been

defined above. Notice that the �Peak1 estimator does not make use of the value of Min (or
the value of the flow one day after the minimum), but rather it only uses the variable ND

representing the number of days elapsed between the maximum and minimum flows.

We will also consider the estimators �Peak3 and �Peak4 obtained by using linear regres-
sion, with one and many response variables, respectively. This technique has given excel-
lent results for short-term forecasting in other works (see [1]).

As a criterion to assess the quality of the various estimators considered in the paper, we
will use the correlation coefficient. As mentioned previously, the reason why the problem
of forecasting peak river flows is so difficult is that the correlation between consecutive
peaks is small. If we can obtain forecasts that are relatively highly correlated with the
actual observed peaks, we will be satisfied.

3. An application to the Delaware River

To test our model on real data, we have chosen the Delaware River, which is an important
river whose flow values are freely available on the WWW (see http://nwis.waterdata.usgs.
gov and http://pa.water.usgs.gov). More precisely, we have used the data for the years
1993–2002 at the Montague Station, NJ (no. 01438500). During this time period (un-
til September of 2002, actually), there have been 91 peak flow values greater than or

http://nwis.waterdata.usgs.gov
http://nwis.waterdata.usgs.gov
http://pa.water.usgs.gov
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Table 3.1. Goodness-of-fit test of a gamma distribution for the random variable T .

j [0,5] (5,10] (10,15] (15,20] (20,∞)

nj 6 26 15 8 6

pj 0.107 0.345 0.293 0.155 0.100

mj 6.53 21.05 17.87 9.46 6.10

equal to 10000 ft3/s, of which 61 were followed by another peak (greater than or equal
to 10000 ft3/s) in a short-enough interval.

Our objective will be to first find a model for the flow of the Delaware River. Next,
we will use the data from the years 1993–1997 to estimate the various parameters and
quantities in the model, and then we will forecast the 33 peak flows that were preceded
by another peak a few days beforehand during the 1998–2002 time period. We will thus

compare the estimators �Peak1, . . . ,�Peak4.

3.1. Model fitting. The first step in fitting a model of the type defined by (2.2) to the data
is to find an approximate distribution for the times Tn’s between the successive events. If
we denote by T the general random variable representing the time between two events,
we find, using the 61 data points, that the average value of T and its standard deviation
are given by, respectively,

t̄ � 11.689, sT � 6.125. (3.1)

We immediately notice that an exponential distribution is not an appropriate model for
these data, since if T has an exponential distribution, then we know that

E[T]= STD[T], (3.2)

which is clearly not the case here. Therefore, we must conclude that we should not con-
sider a filtered Poisson process as a model for the flow of the Delaware River. Indeed, we
will try to fit a gamma distribution to the data. Knowing that E[T]= α/λ and STD[T]=√
α/λ if T has a gamma distribution with parameters α and λ, we deduce from (3.1) that

α̂� 3.64, λ̂� 0.31. (3.3)

Applying a chi-square goodness-of-fit test, we find that we can accept this model with a
large p-value (of approximately 0.39). The test is summarized in Table 3.1.

In this table, nj is the number of peak flow values observed in interval j (in days), pj

is the probability of having an observation in interval j if the model is correct, and mj

is the expected number of observations in interval j (again, if the model is correct). We
obtain a D2 statistic equal to approximately 1.895, which is compared to the quantiles of
a chi-square distribution with two degrees of freedom.

Remark 3.1. When we apply a chi-square goodness-of-fit test, we assume that the data
are independent observations of the random variable, which is not exactly true here.
We could use only a subset of the data that are (almost) uncorrelated. However, since
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Table 3.2. Goodness-of-fit test of a Rayleigh distribution for the random variable T .

j [0,10) [10,15) [15,20) [20,∞)

nj 27 19 8 7

pj 0.437 0.288 0.174 0.101

mj 26.66 17.57 10.61 6.16

the number of observations and the correlation coefficient of the consecutive observa-
tions are not large, we prefer to keep all the data points.

Although the model T ∼ Gamma (α= 3.64; λ= 0.31) is surely acceptable, we also try
to fit a Rayleigh distribution to the data. That is, we look for a random variable with
density function

fT(t)= t

α2
e−t

2/2α2
for t ≥ 0, (3.4)

where α is an unknown parameter. We have

E[T]
(*)=
(
π

2

)1/2

α, STD[T]
(**)=
(

2− π

2

)1/2

α. (3.5)

From (3.1), we find that (*) implies that α� 9.3265, while (**) yields α� 9.3492. Hence,
the model seems very good. Using Table 3.2, a chi-square goodness-of-fit test is per-
formed with α= 9.33. This time, we obtain D2 � 1.026, which corresponds to a p-value
of approximately 0.60. This is therefore the model that we will use for the random vari-
able T .

Remark 3.2. Actually, if we use the same intervals as in Table 3.1, we obtain that the p-
value is approximately 0.20, which is less good than with the gamma distribution. How-
ever, when the number of observations is not very large, the choice of the intervals plays
a big role in the conclusion of the test. At any rate, there is the same number of degrees
of freedom in both tests, since we only had one parameter to estimate in the case of the
Rayleigh distribution. Furthermore, there is another reason to prefer the Rayleigh distri-
bution, as will be seen below.

Next, we find that the mean value of the time between a minimum flow and the fol-
lowing maximum is approximately 4.044 days. Hence, we set

kc � 4. (3.6)

Then, we write that (see (2.15))

k � ln

(
X(t+ δ)/X(t)

)
ln
(
1 + δ/4

)− δ/4
, (3.7)

where δ is the number of days between the maximum at time t and the following mini-
mum. We obtain that the mean value of k is approximately 3.85, so that we have c � 2.16.
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Therefore, the model that we propose for the flow of the Delaware River at time t is

X(t)=
N(t)∑
n=1

Yn
(
t− τn

)1.85
e−(t−τn)/2.16. (3.8)

Remark 3.3. Let

g1(t)= t1.85e−t/2.16. (3.9)

In obtaining the formula for the parameter k, we assumed that (2.12) is valid. This implies
that we can neglect the events that occurred before time τN(t). Because the mean value of
the time elapsed since the previous event occurred, when we are at a maximum (resp.,
minimum) flow, is approximately 11.7 + 4 = 15.7 (resp., 2× 11.7 = 23.4) days, we can
indeed neglect the events before time τN(t). To see why this is true, notice that the max-
imum value of g1(t) is approximately 2 (attained around t = 4), while g1(15.7) � 0.11
(resp., g1(23.4) � 0.0067). Thus, a signal of a given size that occurred 15.7 (resp., 23.4)
days ago is almost 20 (resp., 303) times less important than one of the same size that
produced the current peak flow.

Now, because we prefer to use the Rayleigh distribution as a model for the random
variable T , and since the square root of T has an exponential distribution (see Section 2),
we should take the square root of all the time variables before estimating the parameters
k and c in the model. This is advisable, because the transformed process is then a filtered
Poisson process, for which many exact and explicit results are known (see [3]), which is
not the case when {N(t), t ≥ 0} is a general filtered renewal process.

Proceeding as mentioned above, we find that (kc � 1.93)

k � 1.983, c � 0.973, (3.10)

so that

X(t)=
N(t)∑
n=1

Yn
(
t− τn

)1.983
e−(t−τn)/0.973, (3.11)

in which t is measured in square roots of days.
To complete this work, we must find a model for the distribution of the Yn random

variables. It is often assumed that an appropriate distribution for these random variables
is an exponential one. For the years 1993–2002, we find that the mean value and the
standard deviation of the signals are

ȳ � 15468, sY � 15202. (3.12)

This tends to confirm that an exponential distribution could be adequate for the Yn’s. Per-
forming a chi-square goodness-of-fit test, we obtain D2 � 3.545, which corresponds to a
p-value of around 0.17. Thus, though not an exceptional fit, the exponential distribution
is indeed acceptable for the magnitude of the signals. Moreover, as already mentioned
above, only the mean value of the observed signals will be used to forecast the peak flows,
so that the actual distribution of the Yn’s is not needed.
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3.2. Forecasting. Based on the model fitted in the preceding subsection, the value of the
forecasted peak flow that will follow the current minimum flow is given by

�Peak1 =Max
(
1.93 +ND

)1.983
e−(1.93+ND)/0.973 + 15468, (3.13)

where 15468 is the mean difference between the peaks and the preceding minima during
the years 1993–2002 and the variable ND is measured in square roots of days. Using this
predictor, we find that the correlation coefficient between the observed and forecasted
peaks for these years is r � 0.489.

Remark 3.4. With the model (3.8), we obtain that r � 0.475. Therefore, taking the square
root of the time variables slightly improves the results.

Now, the correlation coefficient between the consecutive pairs of flows is actually ap-
proximately 0.416. Therefore, we can conclude that the model (3.11) has enabled us to
improve the forecasts of peak flow values. However, the usefulness of the model is more
apparent when we really forecast the peak flows rather than finding a model once the
observations have been gathered.

That is, if we first estimate the parameters k and c in the model by using the data from
the years 1993–1997, we obtain that

X(t)=
N(t)∑
n=1

Yn
(
t− τn

)2.178
e−(t−τn)/0.926, (3.14)

from which we deduce that the estimator �Peak1 becomes

�Peak1 �Max
(
2.02 +ND

)2.178
e−(2.178+ND)/0.926 + 18163 (3.15)

(because k̂c � 2.02 and Ī � 18163 for these years).
The correlation coefficient between the forecasted and observed peak flows obtained

for the years 1998–2002 is r � 0.347. This result is more impressive when we compute the
value of r between the observed peak flows during this time period; indeed, we obtain
that r � −0.206 (whereas r � 0.516 for the years 1993–1997). Thus, the filtered renewal
process model has been able to transform a negative correlation coefficient into a rela-
tively high (and positive) correlation coefficient.

To get a better idea of the value of the estimator �Peak1 defined in (3.15), we will com-
pute r when we use the estimator (see (2.17))

�Peak2 =Min+18163. (3.16)

We obtain that r � 0.084. Remember that this estimator is the one that corresponds to a
filtered Poisson process with a simple response function of the form e−(t−τn)/c (i.e., k = 0).

Next, if we try to forecast the peak flows observed during the years 1998–2002 by
making use of the linear regression equation obtained from the data for the 1993–1997
time period, we first compute the regression equation

�Peak3 � 0.320Max+16111. (3.17)
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The correlation coefficient between the peaks forecasted by this regression equation and
the observed peaks in 1998–2002 is r �−0.206, as should be. We can at least improve the
results by computing the regression equation

�Peak4 = 11977 + 0.241Max+0.283Min+0.283Min+1, (3.18)

where Min+1 is the value of the river flow observed one day after the current minimum
flow (i.e., the most recent data point available when we want to forecast the oncoming
peak). Although this predictor uses more variables and the most recent data point ob-
tained, the correlation coefficient computed between the forecasted and observed peaks
in 1998–2002 is only r � 0.053.

We have considered other estimators of the future peak flow values, whether based
on the previous models or not, and we were not able to beat the correlation coefficient
r � 0.347 obtained with �Peak1.

4. Conclusions

In this paper, we have developed a filtered renewal process for the flow of a river. The
estimation of the parameters in the model is based on the observed maxima and minima
of the river flow. The model is intended to be used to forecast the oncoming peak flow
when we notice that the flow has begun to increase from a minimum value.

For simplicity and/or tractability reasons, many authors have used over-simplifying
assumptions in this type of models. We have seen in the application to the Delaware River
that the fact of assuming that the response function g(t) has the form e−(t−τN )/c leads to
a poor predictor of the future peaks. Similarly, the assumption that the river flow can be
modeled as a filtered Poisson process implies that the time between the various signals is
exponentially distributed, which is clearly wrong in most applications.

We have also seen that linear regression, which has been found to provide very good
results when the aim is to forecast the river flow over a short period of time, cannot
compete with the filtered renewal process when it comes to forecasting peak flows, and
this even if we use more variables and the most recent data point in the regression model.

The data set that we used to compare the various predictors considered in this paper
is rather special. Indeed, the correlation coefficient between the consecutive peaks during
the first five years (1993–1997) is relatively high and positive (0.516), while it is small and
negative (−0.206) for the last five years (1998–2002). However, we feel that it is in such a
challenging situation that the quality of an estimator can be established.

Trying to forecast peak flow values is surely a difficult task. To be more worthwhile,
this task should only be attempted when the correlation coefficient between the peaks is
high enough. In practice, this implies that the time between the consecutive peaks should
not be too large. Moreover, we have decided to forecast the oncoming peak when we have
observed that the river flow has just moved from a minimum value.

One way of rendering the filtered renewal process even more realistic would be to
choose a response function that is not deterministic. In reality, the river flow does not
decrease in a perfectly regular way from a maximum value. Rather, the descent is more
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or less smooth. Such behavior could be obtained with a response function which is a
random variable having a given distribution.

Finally, another subject on which more work is needed is a method to estimate the
parameters in the filtered renewal process when we cannot assume that (2.14) holds, that
is, when we cannot neglect all the signals that occurred before the most recent one.
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