ON RATIONAL CLASSICAL ORTHOGONAL POLYNOMIALS
AND THEIR APPLICATION FOR EXPLICIT COMPUTATION
OF INVERSE LAPLACE TRANSFORMS

MOHAMMAD MASJED-JAMEI AND MEHDI DEHGHAN

Received 26 June 2004 and in revised form 21 August 2004

From the main equation (ax? + bx +c)y, (x) + (dx+e)y,(x) — n((n— 1)a+d)y,(x) =0,
n € Z*, six finite and infinite classes of orthogonal polynomials can be extracted. In this
work, first we have a survey on these classes, particularly on finite classes, and their cor-
responding rational orthogonal polynomials, which are generated by Mobius transform
x=pz'+q, p+0,qec R. Some new integral relations are also given in this section for
the Jacobi, Laguerre, and Bessel orthogonal polynomials. Then we show that the ratio-
nal orthogonal polynomials can be a very suitable tool to compute the inverse Laplace
transform directly, with no additional calculation for finding their roots. In this way, by
applying infinite and finite rational classical orthogonal polynomials, we give three basic
expansions of six ones as a sample for computation of inverse Laplace transform.

1. Introduction

It is known that the Jacobi, Laguerre, Hermite, and Bessel classical orthogonal polynomi-
als are special cases of the polynomial solutions of the differential equation

(ax? +bx+c)y,) (x)+(dx+e)y,(x) —n((n—1)a+d)y.(x) =0 (1.1)

inwhich a, b, ¢, d, e are real parameters and # is a positive integer number. So far, extensive
researches have been done on this equation [16, 24]. Bochner in 1929 [2] might be the
first person who was able to classify the polynomial solutions of (1.1) in the following
forms:
(i) Jacobi polynomials {PY" (x)} .y (B +f+1¢& {—1,-2,...});
(ii) Laguerre polynomials {Lf{x) ()} oo (e {—1,-2,...});
(iii) Hermite polynomials {Hy,(x)} —o;
(iv) Bessel polynomials {Bia’ﬁ)(x)},‘f:o (a ¢ {0,—1,-2,...} and 8 # 0);
(V) {x"} -
The cases (i), (ii), (iii), and (iv) are infinitely orthogonal while the case (v) is not orthog-
onal for any weighting function. Nowadays, the first four cases are known as the classical
orthogonal polynomials. But recently in [13, 14], we have showed that in fact six series of
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Table 1.1

Kind Name a b c d e
(1) Infinite PLa’ﬁ)(x) -1 0 1 —a—f-2 —a+p
(2) Infinite Lsf)(wx) 0 1 0 —-w a+1
(3) Infinite ~ H,(wx+v/2w) 0 0 1 —2w? -y
(4) Finite Map’q)((w/v)x) w v 0 (—p+2)w (g+1)v
(5) Finite NV(‘P)(wx) w 0 0 (=p+2)w 1
(6) Finite  J\" (x;a,b,¢,d) a* b* c* dr et

a*=a’+c3 b* =2(ab+cd), ¥ =02 +d?, d* =2(1 - p)(a*+c?),
e* =ql(ad —bc)+2(1 - p)(ab+cd).

classical orthogonal polynomials can be extracted from the main equation (1.1). Three
series of them, as was said, are “infinitely” orthogonal for every n and three other ones,
as we have indicated in [13, 14], are “finitely” orthogonal for limited 7.

Table 1.1 shows the values g, b, ¢, d, e from (1.1) corresponding to each six classes.

We here mention that we have called these three finite sequences as ]r(fp ’q)(x;a, b,c,d),
M (x),and NP (x) merely for following the alphabetical arrangement.

The first finite class {M\ ’q)(x)}Zif}’ is an orthogonal set with respect to the weight
function W (x, p,q) = x9/(1+x)P* on [0,0) if and only if g > —1 and p >2N +1 [13,
Section 1]. For instance, {Mf,p el (x)}7=3% is a finite orthogonal set on [0, o) with respect
to Wi(x,p,q) if and only if g > —1 and p > 201. Of course note that the finite sets of
orthogonal polynomials are usually used for the discrete orthogonal polynomials rather
than continuous cases. For example, the Krawtchouk polynomials [10, Section 1.10] that
are defined as

1
Kn(x>pyN):2F1<_n;_x;_N;;>, n:0)1)2)-..)N, (12)

and satisfy the orthogonality relation

((__113;)”! <1—p> Sum, 0<p<l, (1.3)

Y (N N-
;()(x)P (1= p)N K, (x) K (x) = ,

in which (n)y =T'(n+k)/T'(n) and

0 if ,
8n,m = o % " (14)
1 ifn=m,

are a sample of this comment.

Moreover, the Racah polynomials [10, Section 1.2] and Dual Hahn discrete polynomi-
als [10, Section 1.6] are two other finite discrete orthogonal polynomials that have been
applied in the Askey scheme of hypergeometric orthogonal polynomials.
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But the polynomials

k=n k-1
Py 1\n p—(m+1)\(q+n\ a\ 1 .
A (x) = (-1) nl}%( ! )(n—k>( x)F = (k) = k!g(a iy (L5)

satisfy the orthogonality relation [13, Section 1]

Toox ) (p-9) _ nl(p—n—1)(qg+n!)
L (e 0 M Oy = o v g —n— D1 (1.6)

ifand onlyifm,n=0,1,2,..., N<(p—-1)/2,9> 1.
For instance, the polynomial set

(202,0) 100 _ n k=n 201 —n n k 100
{ME2O)}, 2 = (=1l X (7 G (1.7)
k=0 n=0

is finitely orthogonal with respect to the weight function Wi (x,202,0) = (1 +x)2°? on
[0,00) and
~ —202 3 1(202,0) (202,2) (n)?
(1 +x)""" M () M, (x)dx = —————8pm <= m,n < 100. (1.8)
0 201 —2n 7
On the other hand, since the Jacobi polynomials have a direct relation with these polyno-
mials, that is,

PP (x) =

D" A+)" ) qpronen) (ﬂ) (1.9)

nl2n " 1+x

By replacing (1.9) in (1.6), we can here obtain a new integral relation for the Jacobi poly-
nomials straightforwardly:

2P T(n+a+ DI(n+p+1)

B Tn+)I(n+a+p+1) (1.10)

1
| a-wrenp ¢ ) ax
-1
The second finite sequence of sextuplet classes, extracted from the main equation (1.1),
is the polynomial set NV ) (x)}2=Y that is finitely orthogonal with respect to the weight
function W (x, p) = xPe~V* on [0, ) if and only if p > 2N +1 [13, Section 3].
These polynomials take the explicit form

() Y i p—(i’l—l—l) n Nk
N (x) = (1) k%k!( . )(n k)( x) (1.11)

that satisfies the orthogonality relation

S ey g AP =)
L x Pe”* Ny (x)Nm  (x)dx p—2n—1

! -1
Opm = m,n=0,1,2,...,N < pT

(1.12)
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As was seen in the fifth row of Table 1.1, these polynomials have a direct relation with the
generalized Bessel polynomials [16, 24], so that their differential equation is a special case

of B (x). Of course, it is necessary to point out that the orthogonality relation of the
generalized Bessel polynomials has been showed on “unique circle” by Krall and Frink
[12] and not on [0, c0) finitely, as we have showed in [13] and relation (1.12).

Furthermore, we can here prove that the Bessel polynomials have a direct relation with
the Laguerre polynomials too, because if the generalized Bessel equation

¥y (xX)+ (nx+r)y (x)+ry(x) =0, rn#0, (1.13)

is considered, then by considering the variable y(x) = x"F(1/x) we have F(x) = x" y(1/x),
therefore (1.13) becomes

KF (x)+x(—rx+2—r —2r)F (x) + (rrax+7r2+ (r1 = 1)r+13)F(x) = 0. (1.14)

Now if in this equation we assume that

1-r =+ (1’1—1)2—41’3

P+ —-Dr+n=0=r= 5 , (1.15)
then (1.14) changes to
2
xF" (x) + (1 FA(r — 1)2 — 43 — rzx)F'(x) +1; 1-n* (r21 akl) _4r3F(x) =0.
(1.16)
But on the other hand, it is known that the solution of
xg""(x)+ (c — bx)g' (x) — bag(x) =0 (1.17)
can be indicated by the confluent hypergeometric functions [16]
g(x) = 1Fy(a,c;b) = i“‘c’;( k!) . (1.18)

Hence, by comparing (1.16) and (1.17), one can conclude that

y(x) = x(1-n= (r1—1)2—4r3)/2 Fi (7’1 — L1y 7’1 — 1 —47’3 7’1 _ 1 _47,3) )

(1.19)
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satisfy (1.13) if and only if r, # 0. So, the Bessel polynomials can be represented in terms
of the Laguerre polynomials exactly, that is,
. —1)"n! Lo (p2ne
B,({D)(x) _ (=1)"n!(p+n) an( p-2n 1)<2)’

(p+2n)! " x (1.20)

X

where BY* (x) is the Bessel monic polynomials with the componentsa=1,b =0, ¢ =0,
d = a+2, e =2 in the main equation (1.1). Accordingly, NP (x) can be represented by
the Laguerre polynomials too, so that we have

(1
N (%) = nlxn L " ”(;). (1.21)

This relation is useful to generate a new definite integral relation for the Laguerre poly-
nomials, so that replacing (1.21) in (1.12) yields

o 1
J x"‘_le_x(Lff)(x))zdx: l(n+(x)..
0 a nl

(1.22)

Finally, the third finite orthogonal class, extracted from (1.1), is the polynomials set
{],SP ’q)(x; a,b,c,d)}"=Y that is finitely orthogonal with respect to the weight function
Wép’q) (x;a,b,¢,d) = ((ax+b)> + (cx+ d)?) P exp(qArctg((ax +b)/(cx +d))) on (—o0,0)
if and only if ¢ € R, ad — bc > 0 and P > N + 1/2. Because of a special importance, this
class was expressed in [14] separately and showed that the Rodrigues representation of
this class

1P (x;a,b,c,d) = (=1)"((ax+b)* + (cx+ d)*)F exp ( — qArctg ax+b)

cx+d
» d"(((ax+b)* + (cx+d)?)" P exp (g Arctg ((ax +b)/(cx +d))))
dxn ’
a b
s.t.det[ }—ad—bc>0
c d
(1.23)
has the explicit form
W (xsa,b,¢,d) = (=1)"((ab+cd) +i(ad — be))" (n+1—-2p),,
k=n 2. 2 k
s (n) ( al+c )
= k) \ (ab+cd)+i(ad — bc)
iq
k—n p—n—— 2(ad — bc) k
oh ( ? | (ad—bo)—iab+cd) | ©

2p—2n
(1.24)
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that satisfies the orthogonality relation

J ((ax+b)* + (cx+d)?) Pexp <qArctg +d> () (x;a,b,c, d)]pq)(x;a,b,c,d)dx

(42 2\n _ /2
_ <(adn;(zc;;—2)"£(1%é ; f)zn) J, (aCos—csin 0)2P‘2”‘26q9d6> S

(1.25)

ifand only if m,n =0,1,2,..., N<p—1/2and ad — bc >0, g € R.

In [13, Section 2], we also introduced a special case of ],(,P ’q)(x' a,b,c,d) for g =0 and
called it as I;S (x). Moreover, we proved that the finite subclass {I; P )( V3N =
{n! Zl[fz/é] (—1)k (n_k) (”kk) (2x)"-2k}n=I is orthogonal with respect to the weight function
Wa(x, p) = (1+x%)~(P1/2) on (-0, 00) if and only if p > N + 1 and the orthogonality re-
lation

J (14+x2) P10 (1P (x)dx

B nl22"=1 /ar2(p)L(2p — 2n) s
(p-n-DI(p-mIT(p-n+1/2)T2p—n—-1) """

(1.26)

holds ifand only if m,n=0,1,2,..., N< p—1.

But one of the applications of the finite classes of orthogonal polynomials, which can
be important, is to approximate the functions finitely. In other words, under the Dirichlet
conditions, one can consider any arbitrary precision degree n = N for approximating the
function f(x). For instance, we consider the finite set

A= %V (x31,0,0,1)}"20 = {1,6x—1,20x — 10x — 3,24x> — 36x> — 12x+7}  (1.27)

which is orthogonal with respect to the weight W3(4’1) (%;1,0,0,1) = (1 +x?)*exp(Arctgx)
on (—o0,00) and satisfies

J"" exp(Arctgx) (4.0 ()] (x)dx = n!(7 — n)!(2Shn/2)

Snm) > —3~
(1+x2)" " " (7-2m)Tlizh (1+(6—2n—2k)?) " =

(1.28)

This relation is valid for every values m and n less than 4.
Hence, by noting the mentioned orthogonality relation and considering the members
of set A, one can obtain a third-degree polynomial approximation for f(x) as

f(x) = co+er(6x—1)+¢2(20x* — 10x — 3) +¢3(24x° — 36x* — 12x+7) (1.29)
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which yields

(2888h%)f(x)
= (629 JZ (1+x2) " ehreex f(x)dx)
+ (SSJ_OZO(Hx ) Fehretex(6x — 1) f(x ) 6x — 1)
+ (9 J: (1+2%) M8 (202 — 10x— 3)f(x)dx> (20x? — 10x - 3)

+ <J (1+x2) *eAeer (2453 — 36x2 — 12x + 7)f(x)dx> (24x° —36x% — 12x+7).
(1.30)
It is well known that this approximation is accurate for any arbitrary third-degree poly-

nomial function, but if one wants to consider a precise expansion for an arbitrary poly-
nomial function of degree m, then, for example, we can refer to the relation

i 2n+1))(p—(n+m+2))!(q+m)!(’:)Mﬁf”q)(x) (1.31)

(p—(n+1))l(g+n)!
which is a basis space for any arbitrary polynomial function of degree m (see [13]).

2. Six rational classical orthogonal polynomials

Again, we consider the differential equation (1.1). Clearly one of the main solution of this
equation is a polynomial-like P,(x;a,b,c,d,e). In [11], we have proved that the monic
polynomial solution of (1.1) takes the form

~ d e k=n 2a k—n
P, -2 (1))
b . b+b?—4a
a C =
3 2ae — bd 1 _i
X, F " e " 2a| 20 —dac |
21 d b+ /b? — dac
2—21’1—;

(2.1)
in which P, (Z be |x) shows the form of monic polynomials P, (x;a,b,c,d,e).
Now, if the Mobius transform x = pz~' +¢, p # 0, g € R is applied for (1.1), then it
eventually changes to the general form

(b +hix+1D)y" +x(2hx* +bx+1)y —n((n+ Dl — L)y =0, (2.2)

where ly, I3, L, I, I are real parameters and # is a positive integer number.
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Obviously one of the main solution of this equation is a rational (negative power)
polynomial-like P,n(i L 5(3) [x) = Eig Cix~*, which depends on the parameters Iy, I3, L,
I, Iy, respectively. But according to the Sturm-Liouville theorem, one can find the weight

function, corresponding to the differential equation (2.2), as the generic form

Ly L\ _ J7212x2+(l3f3l1)x+(l4,210)
W<lz Lo x> —exp( x(bx?+hLx+1) dx ). (2.3)

If we assume that [L, U] is the orthogonality interval, then

U l4 l3 l4 l3 l4 13
w p_, p_,
JL (lz ll lo x) <12 ll l() x 12 l] l()

is the orthogonality relation of rational classical orthogonal polynomials, in which

A —JUW . b x||P L b x 2dx (2.5)
" L lg l] l() - lz l] lo ’

is the norm square value. There are six cases, corresponding to the main differential equa-
tion (2.2), that are orthogonal for some specific values of s, I, I, I1, Io.

As was mentioned, the connection between (1.1) and (2.2) is the Mobius transform
x = pz~! +q for different values of p and q. So, as an example, we here consider the Mo-

x) dx = Au0nm (2.4)

bius transform for Jacobi rational polynomials P(_“,;ﬁ ) (x). If p=—2, g =1, is considered,
then we define

k=n
P () = PEF2 (g 1) = S (1 <n+rx—2+k) (n+(x—2+[3>xk.
pur k n—k
(2.6)
For instance, n =0,1,2 in (2.6) gives
PP () = 1,
P(,afm(x) =—ax '+ (a-p-1), (2.7)
P () = %(mz)(m Dx? — (a+ D(a—Px' + %((x CR)a—B-1)

Since the orthogonality relation of Jacobi polynomials is known, the orthogonality rela-
tion of P(_a,;ﬁ ) (x) will be

Jw x%(x = DEPP ()PP (x)dx
1
(n+ta—-p-2)(n+p)!

= Onm >0, >—1.
2n+a—-nl(n+a—2)! " = B

(2.8)
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The differential equation of y = P(_“,;ﬁ ) (x) is a special case of the main equation (2.2) for
h=a-2,5=F-a+3,,=0,1; =1,y = —1, that is, we have

-1y +x((B-—a+3)x+a—2)y +n(n+a+1)y =0. (2.9)

Easily one can apply the Mobius transforms for five other classes of classical orthogonal
polynomials. However, note that all differential equations of these transforms must be
special cases of the main equation (2.2). For instance, the Laguerre rational orthogonal

polynomials L9x) =L (x1-1) satisfy the equation

(1-x)y" —x2*+ax—1)y +ny =0 (2.10)
which is clearly a special case of (2.2), or the equation
xty" +2x(x* +afx+at)y +2na’y =0 (2.11)

is the differential equation of the Hermite rational orthogonal polynomials, defined by
H_,(x) = Hy(ax ' + ).

3. Evaluation of inverse Laplace transform using rational
classical orthogonal polynomials

It is known that the Laplace transformation provides a powerful method for analyzing
linear systems, however, many physical problems lead to Laplace transforms whose in-
verses are not readily expressed in terms of tabulated functions. Hence, so far extensive
researches have been done on evaluating this matter and its applications.

For instance, Chandran [3] has recently computed inverse Laplace transforms of a
class of nonrational fractional functions, and Evans and Chung [7] have obtained Laplace
transform inversions by applying optimal contours in the complex plane, see also [1].
Also, a classroom note regarding Fourier method for inversion of Laplace transform has
been stated by Igbal in [9]. The problem of inverse two-sided Laplace transform for prob-
ability density functions is another topic that has been stated by Tagliani in 1998 [25].

On the other hand, the problem of numerical inversion of Laplace transform has been
studied by several authors. For example, Cunha and Viloche [5] have presented an itera-
tive method for the Numerical inversion of Laplace transform, and Dong [6] has intro-
duced a regularization method for this purpose. In [4], Crump has used Fourier series
approximation (see also [8] in this regard) while Miller and Guy in [15] have used Jacobi
polynomials, and Sidi [23] has applied a window function for Laplace transform inver-
sion. Finally, Piessens’ works [19, 20] are a good bibliography that one can refer to it for
the Laplace transform numerical inversion.

But in cases where the inverse Laplace transform is required for many values of the
independent variable, it is convenient to obtain the inverse as a series expansion in terms
of a set of linearly independent functions. Procedure based on this idea can be calcu-
lated by solving a system of equations that can be reduced to a triangular system if one
chooses to use “orthogonal polynomials.” Such a method, using orthogonal polynomials,
gives an approximate evaluation of the inversion integral using “Gauss quadrature” in
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the complex plane [17, 18, 21, 22]. Of course, the chief disadvantage of this method is
the necessity of finding all roots, real and complex, of a polynomial of high degree, and
of the calculation of a set of complex Christoffel numbers [26, page 419]. So, here we
would like to insist that the orthogonal polynomials with negative powers are a suitable
tool to compute the inverse Laplace transform without any problem in finding the roots
of orthogonal polynomials. To reach this goal, we refer to the orthogonality properties in-
troduced in Section 2 and give three basic expansions, as a sample, for Laplace transform
inversion.

3.1. Inverse Laplace transform using the Jacobi rational orthogonal polynomials
(_“,;ﬁ ) (x). We consider the Laplace transform along with its inverse
Atico

F(s) = Lf(x)] = J: e f(x)dx < f(x) = L' [F(s)] = zim | SF@ds Vs>0,
(3.1)

We can find a solution for the integral equation (3.1) provided that F(s) is known and
expandable. By noting the orthogonality relation (2.8), first it is concluded that

(nta—-p-2)(n+p)!

2n+a—-nln+a-2)

J (t+1)- PP (14 )PP (+ + 1)dt = S (32)
0 H

Now suppose F(s) satisfies the Dirichlet conditions and

0

_ N o p@h) v A
F(s) = ;cnpfn (s+1) = go Gl (3.3)

Applying (3.2) to (3.3), the coefficients C,, will be

_ @nt+a-Daln+a—-2)! (% N
“ = va—p-2in P L (s+ D)TSPo (s DE(s)ds: (3.4)

On the other hand, taking inverse transform from (3.3) gives
f@) =L [Fs)] = > CL PP (s+1)]. (3.5)
n=0

But according to the definition (2.6), we have

k=n
L PP (s 1)] = Z(—nk(””;“") <”+‘j‘1:i"3)L—1[<s+1>-k]
k=0

_ (n+ta-2-p S (nva—2+k) (na—2—B) (—x)k!
e
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in which §(x) = Lim,_¢ fe(x) s.t.

l 0<x<eg,
fe(x)=1¢
0

X >E&

is the Dirac function. So the special series

Flx) = (% r (s+ 1)“"sﬁF(s)d5> 5(x)
Z ( 2n+a—nl(n+a—2)!

+
(n+a—p-2)(n+p)!

J (s+1)%sPP%P) (54 l)F(s)ds)

nta—2- S nta—2+k\ (n+a-2-P
oL (P LEEE (i [

(3.7)

(=0t
(k—1)!

(3.8)

is an expansion solution for (3.1). It should be noted that this solution is valid if and
only if its definite integrals are convergent and the function F(s) is expandable in (3.3)
under the Dirichlet conditions. The function (s + 1)~%s? is in fact a weight distribution for
computation of the definite integrals of (3.8) on [0, % ). Hence, if the weight distribution
changes, we will reach another expansion to compute the inverse Laplace transform. Next

section will show this matter.

3.2. Inverse Laplace transform using the Laguerre rational orthogonal polynomials

L(_“n) (x). First, we define the sequence

k=n
1 (-DF (n+a) _
o _7@f2) = k
L5005 = L (s) Kl (n—k)s

that satisfies the orthogonality relation

J s (@)= Usp @ (1@ (g5 =
0
Now if the expansion
Yo=Y 4
n=0 n=0 $
is considered, then by applying (3.10) to (3.11), the coefficients C,, will be

' [e°]
- ﬁ JO s~ (@) o= Vs @ () B(5)ds,

(3.9)

(3.10)

(3.11)

(3.12)
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Therefore,
flx)=L'[F(s)] = i C.L ' [L%)(5)]. (3.13)
n=0

But on the other hand, we have

IO <Z+i>L l[slk] (3.14)

So, the special series

flx)= (% J: s*("‘”)e*l/sF(s)ds)S(x)
S (1 (7w n+a 3 ()"
+%<(n+“)ljo (e ta (s>F(s)ds><( > Z( >k|(k_l))

(3.15)

would be a solution for Laplace transform inversion. Again, we mention that (3.15) is
valid only if its definite integrals are convergent and the function F(s) is expandable un-
der the Dirichlet conditions. In relation (3.15), the function s~(**? ¢~/ plays the weight
distribution role on [0, o).

By noting Section 1, finite rational classical orthogonal polynomials can also be ap-
plied for approximate computation of inverse Laplace transform, because one can ex-
pand the function F(s) by them finitely, and just some limit conditions impose on their
parameters. For example, if we consider the sequence

k=n
MED(s) = P”q)<1) :(—1)ﬂn!2(—1)k<P“_”> (‘””)gk (3.16)
s = k n—k
that satisfies the orthogonality relation

vooosh (Pq) nl(p+1—n)l(g+n)!
Jo (1+S)p+q+2M (s)M (S) (p+1—2n)(p+q+1—n) 5n,m, (3.17)

provided that ¢ > —1, p >2N — 1, N = Max{m, n}, then by taking the approximation

N

N
A +1
Z Pq (S ?:, N < pT (318)
n=0 n=0

IIZ

and applying (3.17) to (3.18), we have

MED($)E(s)ds. (3.19)

B (p+1—2n)(p+q+1—n)!J’°° sP
B nl(p+1—-n)l(qg+n)! o (1+s)pra+2
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Therefore,
N
) =L [Fe]= > L M52 (s)] (3.20)
n=0
in which
k=n
PO N qyn k(Pt+1- gtn) 41
1M 9) = (-1 3 (1) ( . )(n_k>L IF (3.21)
Hence,

[ (p+g+D) (= sP
f(x)=< o4 L (1+S)P+q+2F(s)ds>8(x)

(p+1-2n)(p+gq+1—n)! sP (r0)
+Z< nl(p+1-n)l(g+n)! L rrmatts <S>F<s>ds) (322)

g+n —(p+1—n\[g+n)(—x)<!
(- com g () G

is an approximate solution for the equation L[ f (x)] = F(s). We mention that one can also

n=1

propound the inversion problem for the negative power polynomials N (x), H_,(x),
and ]E‘z,’q)(x; a,b,¢,d) similarly. Here is a good position to propound two practical exam-
ples for Section 3.

4. Special examples of Section 3

Example 4.1. We consider a special case of Jacobi rational polynomials for a« = 1, § =
—1/2. This case is defined as

_ -1
P(—lﬁ 1/2)(x+ 1) = Tn<x—) = Cos(nArccosx
x+1 X

) =

and called the Chebyshev rational polynomials of first kind [24]. Now by noting the ex-
pansion (3.8) suppose, for instance, F(s) = 1/(1 +s). This implies that the integrals of
(3.8) are simplified as

o 12
{ ST gs— E’
0o (1+5)2 2

_ 1
© 571/2 (1,-1/2) _ ken n+k—1 n—— i 571/2
L (1 +s)2P7” ()ds= 2, k " _]2< 0 (1+s)ks2 ds (4.2)

k=0

\/—l"(n+1/2) z P(-Dkn+k-1)!12k+1)

A(n) & K- k)k+1)!
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Therefore, the inverse Laplace transform for the given F(s) takes the form

Y R N |
L <1+s)_e =50

n\/—r(n+1) < (-Din+i—DIQi+1)
+Zl< 2T(n) > in—iG+1) )

i=0

_ 1
r(n+1/2 ' (n+k-1 (—x)k-1
X( J/mn! Z( )(n_i) (k—l)!)'

(4.3)

Clearly the above relation is valid if it is expanded.

Example 4.2. For this example, we use the analytical expansion (3.15), mentioned in
Section 3.2, and consider the equation L[ f (x)] = /7/2s+/s. To derive the solution of this
equation, first we have to evaluate the definite integrals of (3.15). Hence, we have

E(s) = 25\[ :J ~(@t2) o= 15E(5)ds = ?F<a+g>,

J @) 1L @ (O B(6)ds
0

£ S (=Df (n+a J —(0+7/2+K) ,—1/s
§ ko \n—k)Jo* ¢ s (4.4)

Val(n+1+a)T(a+5/2) -n oc+E
= 2F1 211
I'(n+1)I'(a+1) a1

_30(=n-3/2)T(a+1+n)(a+5/2)
T8 I'n+DI'(a+1—n)

Note that for the latter integral, we have used the well-known Gauss identity [24], that is,

a b I'(c)[(c—a-b)
2F1< c ‘1):1"(6—(1)1"(c—b)’ c#0,—-1,-2,..., c>a+b. (4.5)

Consequently the expansion (3.15) becomes

N JET(a+5/2)
L1<25J> VA= T OW

+Z(3r( n—13/2)T (0c+5/2)>

T(a+1—n) (4.6)

(7= £ )

This relation holds ifand only if « > —1 and a+1-n ¢ Z~.
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5. Conclusion

In this paper, first we had a survey on classical orthogonal polynomials, particularly on fi-
nite classes, and their corresponding rational orthogonal polynomials. Then we presented
some integral relations for Jacobi, Laguerre, and Bessel orthogonal polynomials. Finally,
in Section 3, by using the rational classical orthogonal polynomials, we applied a direct
approach to compute the inverse Laplace transforms explicitly and presented three basic
expansions as a sample. In this way, two practical examples were also given.
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