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The basic idea of this new method resides in the fact that the major part of the relative
information to the solution to calculate is contained in the small modes of a development
of Fourier series; the raised modes of which the coefficients associated being small, being
negligible to every instant, however, the effect of these modes on a long interval of time is
not negligible. The nonlinear Galerkin method proposes economical treatment of these
modes that permits, in spite of a simplified calculation, taking into account their interac-
tion correctly with the other modes. After the introduction of this method, we elaborate
an efficient strategy for its implementation.

1. Introduction

The numerical integration of the Navier-Stokes equations on large intervals of time yields
new problems and new challenges with which we will be faced in the coming years.
Indeed, the considerable increase in the computing power during the last years makes
it thinkable to solve these equations and similar ones in dynamically nontrivial situa-
tions.

In relation with the recent developments in the theory of dynamical systems and its ap-
plication to the theoretical survey of the turbulent phenomena (attractors, inertial man-
ifolds), new algorithms have been introduced by Foias et al. in [6], as well as Marion and
Temam in [12].

These methods of multiresolution, also named nonlinear Galerkin methods, essen-
tially apply to the approximation of nonlinear dissipative systems, as the equations of
Navier-Stokes. Based on a decomposition of the unknowns, as the velocity field, into
small and large eddies, Foias, Manley, and Temam defined new objects: the approximate
inertial manifolds [6]. These manifolds define an adiabatic law, modeling the interac-
tion of the different structures of the flow, the small structures are in fact expressed as a
nonlinear function of large scales. Moreover, these Manifolds enjoy the property that they
attract all the orbits exponentially fast in time and that they contain the attractor in a thin
neighborhood. They provide a good way to approach the solutions of the Navier-Stokes
equations.
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These approximate inertial manifolds are subsets of the phase space and consist of an
approximation form of the small scale equations.

The nonlinear Galerkin method, proposed by Marion and Temam [12], consists of
looking for a solution lying on these specific subsets of the phase space.

The first computational tests of this new method were conducted by Jauberteau [10],
Jauberteau et al. [11] in the bidimensional case, where the exact solutions of the equations
were known, they seem appropriate for long time integration of Navier-Stokes equations.

Numerical simulation of turbulent flows being performed at a small fraction of the
computational effort is usually required by traditional methods, see [4].

Our aim in this article is to study the implementation of the nonlinear Galerkin
method in the context of pseudospectral discretization for the three-dimensional Navier-
Stokes equations. Other aspects of multilevel methods of Galerkin type appear in [5] by
Dubois et al.

After describing the method, we report on numerical computations based on this ap-
proach. They show an improvement in stability and precision and a significant gain in
computing time.

The calculations of Examples 1 and 2 have been, respectively, carried out on the Cray-2
and Titan.

2. The nonlinear Galerkin method

In this part, we consider the incompressible flows of which the velocity field u= (u1,u2,
u3) in dimension 3 verifies the Navier-Stokes equations:

∂u

∂t
− ν�u+ (w×u) +

1
2
∇|u|2 +∇p = f , (2.1)

∇·u= 0, (2.2)

u(x, t = 0)= u0(x), (2.3)

where ν is the kinematic viscosity, w(x, t)=∇× u(x, t) the vorticity, p the pressure, and
f the external force.

Here, |− | stands for the Euclidean norm in R3.
Moreover, we impose u and p to be periodic in space. Hence, they can be expanded in

Fourier series, namely,

u(x, t)=
∑
k∈Z3

ûk(t)eik·x, (2.4)

and similarly for f (x, t) and p(x, t).
We now introduce the orthogonal projection Pdiv onto the divergence free space; Pdiv

can be easily expressed as

Pdivφ(x)=
∑
k∈Z3

(
φ̂k − k

|k|2
(
k · φ̂k

))
eik·x, (2.5)

where φ(x)=∑k∈Z3 φ̂keik·x.
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Assuming that u and p lie in the proper Hilbert spaces and applying Pdiv to the Navier-
Stokes equations (2.1) can be put then under the following abstract form:

∂u

∂t
− ν�u+B(u,u)= g, (2.6)

where g = Pdiv f and B(u,u) is a bilinear form defined by

B(u,u)= Pdiv(w×u)

=
∑
k∈Z3

(
̂(w×u)k − k

|k|2 k ·
̂(w×u)k

)
eik·x. (2.7)

The numerical procedures are directly applied to this last form of the Navier-Stokes equa-
tions. This formulation is very useful in practice and allows to reduce the memory size of
the codes.

Based on the limit conditions, it is natural to approach (2.6) by a pseudospectral
Galerkin method [2], based on a development of u in Fourier series.

We introduce the following decomposition:

uN = yN1 + zN1 with N1 ≤N , (2.8)

where

yN1 = PN1uN ,

zN1 =QN1uN.
(2.9)

PN1 and QN1 are operators of projection onto the space of Fourier. yN1 represents the
large scales (structures) of the flow, zN1 the small scales.

After projection of (2.6) on the spaces PN1 and QN1 , the variables yN1 and zN1 are then
solution of the coupled system according to

dyN1

dt
− ν�yN1 +PN1B

(
yN1 + zN1 , yN1 + zN1

)= PN1g,

dzN1

dt
− ν�zN1 +QN1B

(
yN1 + zN1 , yN1 + zN1

)=QN1g.

(2.10)

Due to the bilinearity of B, we can split the nonlinear term B(uN ,uN ) into

B
(
uN ,uN

)= B
(
yN1 + zN1 , yN1 + zN1

)
= B

(
yN1 , yN1

)
+Bint

(
yN1 ,zN1

)
,

(2.11)

where B(yN1 , yN1 ) is the nonlinear term associated to yN1 , and Bint(yN1 ,zN1 )= B(yN1 ,zN1 )
+B(zN1 , yN1 ) +B(zN1 ,zN1 ) is the coupling term and interaction between small and large
structures.

In [6], Foias et al. showed that for N and N1 sufficiently large and after one period of
transition depending on the data, some quantities functions of z are negligible in relation
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to the other terms of the equation. On the other hand, since the evolution of z, compared
to y, is quasistatic, we will study the approached system according to

dyN1

dt
− ν�yN1 +PN1B

(
yN1 , yN1

)
+PN1Bint

(
yN1 ,zN1

)= PN1g, (2.12)

−ν�zN1 +QN1B
(
yN1 , yN1

)=QN1g. (2.13)

The nonlinear Galerkin method introduced by Marion and Temam [12] and Foias
et al. [6] consists of looking for an approximation of the solution u given by

uN = yN1 + zN1 with N1 ≤N (2.14)

and uN satisfied the system (2.12), (2.13).
We recall that the classical (usual) Galerkin method of u consists of putting zN1 = 0 in

(2.12), therefore PN1Bint(yN1 ,zN1 ) is neglected.
Equation (2.13) provides a nonlinear interaction law between large and small struc-

tures. It is the equation of approximate inertial manifold [6].
The small scales are explicitly (approximately) given in terms of the large scales by

zN1 = φ
(
yN1

)= (ν�)−1(QN1B
(
yN1 , yN1

)−QN1g
)
. (2.15)

3. Description of the multilevel method

The small scales and the coupling terms can be fixed in time during few iterations. How-
ever, the order of their size can change rigorously during one period of time. So the cutoff

N1 defining the separation of the small and large scales cannot be fixed in time. We pro-
pose a multilevel adaptative procedure valuing the appropriate levels of the refinement
in time, by using the theoretical arguments in [6]. The implementation is achieved then
by a succession of cycles defined by two levels of the cutoff Ni1 and Ni2 as in the classical
multigrid methods [1, 8].

One chooses a number N that represents the total number of the modes retained of
the solution u by truncation

uN =
∑
k∈IN

ûk(t)eik·x, (3.1)

where IN = [1−N/2,N/2]3.
N is valued according to the following criteria:

(i) convergence of the truncated series uN : the energy spectrum having a zone of
strong decrease for k large (viscous zone in turbulence);

(ii) for nonexact solutions, we have to estimate the number of degrees of liberties
required for a correct description of the attractor (evaluation via the number of
Reynolds).

Once N is determined, we choose a time step�t taking account of the restriction coming
from the numerical stability.
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Knowing the maximal number N of modes, we define values Ni determining coarse
grids

N1 < N2 < ··· < Ni < Ni+1 < ··· < N (3.2)

which are going to allow us to decompose the solution uN under the form

uN = yNi + zNi . (3.3)

One must have Ni under the form 2p × 3q × 5r , p ≥ 2, q, r ∈N, to permit the use of the
fast Fourier transform (FFT).

The scheme of temporal integration for the nonlinear Galerkin method is based on a
multigrid cycle and a quasistatic integration of the most high modes of the approximation
uN .

In the beginning of the cycle, we suppose that the approximation uN is known at the
time tn−1 = (n− 1)�t. The computation of uN at the instant tn is done by the integration
of the system (2.6) as for the pseudospectral Galerkin method, that is, without separation
of the scales, by a method of quadrature for the linear term and an explicit Runge-Kutta
method of order 3 for the nonlinear term.

Knowing uN at the instant tn, we define two coarse levels Ni1 (tn) and Ni2 (tn) by the
following tests: i1 is determined by the condition

∣∣zNi

(
tn
)∣∣

2∣∣yNi

(
tn
)∣∣

2

< Tol0 ∀i≥ i1, (3.4)

i2 is determined by the condition

∣∣zNi

(
tn
)∣∣

2∣∣yNi

(
tn
)∣∣

2

< Tol1 ∀i≥ i2, (3.5)

where Tol0 and Tol1 are two constants given and fixed in the beginning of the cycle. | · |2
is the norm in L2.

The test (3.5) assures us that |zNi2
|2 is the order of the precision of the numerical

scheme of integration in time (�t3).
The test (3.4) assures us a predominance of yNi before zNi for all i≥ i1. Ni1 defines the

minimal level also on which we can use the quasistatic approximation again for the high
modes z and justify the fact to choose the nonlinear terms of interaction with their value
to the last instant of integration of z. The refinement of the levels between Ni1 (tn) and
Ni2 (tn) is

Ni1 < Ni1+1 < ··· < Ni < ··· < Ni2−1 < Ni2 (3.6)

which corresponds to (i2− i1 + 1) levels.
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As in the classical multigrid methods, we use the concept of V-cycle to improve the
integration of (2.6) on the interval [tn, tn + Maxinc�t]. A multigrid cycle is divided on
some subcycles (V-cycles) including each a phase of coming down and a phase of ascent.

(i) Phase of coming down. On the interval [tn, tn + (i2− i1)�t], the level Ni(t) is de-
fined by

Ni(t)=Ni2− j , j = 0, . . . , i2− i1, (3.7)

Ni(t) decreases from Ni2 (tn) to Ni1 (tn).
(ii) Phase of ascent. On the interval [tn + (i2− i1)�t, tn + (2(i2− i1) + 1)�t], the level

Ni(t) is defined by

Ni(t)=Ni1+( j−i2+i1−1), j = i2− i1 + 1, . . . ,2
(
i2− i1

)
+ 1, (3.8)

Ni(t) increases from Ni1 (tn) to Ni2 (tn).
Then, a V-cycle consists of [2(i2− i1) + 1] temporal iterations.
Maxinc is the maximal number of iterations to make a complete cycle (it is a

multiple of [2(i2− i1) + 1]). Let t be an intermediate value in time on the interval
[tn, tn + Maxinc�t], then the current level Ni(t) is given by

Ni(t)=
Ni2−r+1, si1≤ r ≤ i2− i1,

Ni1+(r−(i2−i1+1)), si i2− i1 + 1≤ r ≤ 2
(
i2− i1

)
,

(3.9)

where r is given by

t− tn =
(
2p
(
i2− i1

)
+ r
)�t. (3.10)

Knowing the size Ni of the coarse level at the instant t, we decompose uN (t) into

uN (t)= yNi(t) + zNi(t), (3.11)

where yNi(t) represents the large scales and zNi(t) the small scales.
The computation of both components yNi(t) and zNi(t) are performed as follows.

(i) Computation of zNi(t).

zNi(t)= zNi(t−�t), (3.12)

zNi(t) is frozen and set to its last value, that is, its temporal variations are ne-
glected.

(ii) Computation of yNi(t). In order to evaluate yNi(t), we integrate (2.12) over the
interval [t−�t, t], then we obtain

ŷk(t)= e−ν|k|2�t ŷk(t−�t)

+
∫ t

t−�t
e−ν|k|2(t−τ)[ĝk(τ)− B̂k

(
yNi(τ), yNi(τ)

)]
dτ

−
∫ t

t−�t
e−ν|k|2(t−τ)B̂int,k

(
yNi(τ),zNi(τ)

)
dτ

(3.13)

for all k ∈ INi = [1−Ni/2,Ni/2]3.
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The first integral of (3.13) is approached by an explicit Runge-Kutta scheme of order
3.

With this scheme, the interval [t −�t, t] is divided into 3 subintervals of the form
[ti, ti+1] where t0 = t−�t and t3 = t. The second integral carrying on the terms of in-
teractions is calculated by making a quasistatic approximation on these terms, which is
equivalent to approaching this integral by an explicit Euler scheme of order 1 on the
subintervals [ti, ti+1], i= 0,1,2. At the end the cycle, that is, at t = tn + Maxinc�t, zNi2

(t)
is revalued by projecting the solution on the approximate inertial manifold of the form

zNi(t)= φ
(
yNi(t)

)
(3.14)

for every intermediate level, Ni ∈ [Ni1 ,Ni2 ], the coupling nonlinear terms Bint(yNi ,zNi) are
frozen on the interval [tn, tn + Maxinc�t], revalued then at the end of the cycle.

At the end of the cycle, we evaluate new values of the two levels Ni1 and Ni2 by the tests
(3.4) and (3.5) and we start again the procedure.

The interaction between the different scales of the flow is taken then into account of
simplified manner. We define 3 dynamical zones on the whole of the excited modes:

(1) a zone entirely included in the zone of dissipation named quasistatic zone (k ≥
Ni2 ) defining the small scales frozen and then relaxed (these small scales and their
interactions with the large ones are indeed negligible locally in time but not long-
term);

(2) a transition zone (Ni1 ≤ k ≤Ni2 ) or intermediate zone; use of a multigrid V-cycle
strategy between the two levels Ni1 and Ni2 to assure a transition between a sta-
tionary approximation (zone (1)) and an integration in time with a time step�t
(zone (3));

(3) dynamical zone defining the large scales (k ≤ Ni1 ) calculated to every time step
�t by a quadrature method for the exact integration of the linear part, by an
explicit Runge-Kutta scheme of order 3 for the nonlinear term B(y, y), and by
one quasistationary approximation for the coupling nonlinear terms Bint(y,z).

The multigrid methods permit to accelerate the convergence of an iterative method by
obtaining the same precision that if one had only used the fine grid. In the same way, the
nonlinear Galerkin method permits to accelerate the process of evolution, with the same
precision of the classical Galerkin method (usual) to N modes (N being the number of
modes on the fine grid).

4. Numerical results

We compare the two methods: usual Galerkin (UG) and nonlinear Galerkin (NGL) on
examples of which we know the exact solution (uex). We can compare then the precision
of the two methods and the time CPU consumed by iteration in time.

4.1. Example 1

4.1.1. Simplified description of the example. The goal is to find a periodic solution in space
of the equations of Navier-Stokes in dimension 3 having an energy spectrum with an
inertial zone of slope k−5/3 (Kolmogorov) with a predominant peak centered in one mode
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and a viscous zone to fast decrease of the energy. In spite of the fact that this type of
solutions is artificial, these solutions present the structures of different sizes. We impose,
moreover, that the small structures do not follow the same temporal evolution as the large
structures.

Such example can be considered as one approach in three-dimensional turbulence.
We give the equation of Navier-Stokes:

∂u

∂t
− ν�u+B(u,u)= f , (4.1)

u is periodic in space in the 3 directions. We can decompose u in Fourier series:

u(x, t)=
∑
k∈Z3

ûk(t)eik·x. (4.2)

For a fixed N ∈N, we define the truncated series

uN (x, t)=
∑
k∈IN

ûk(t)eik·x, (4.3)

where IN = [1−N/2,N/2]3 is a subspace of Z3. uN = PNu where PN is the operator of pro-
jection on the subspace spanned by (eik·x)k ≤N/2. uN possesses energy spectrum E(k, t)
having the following form (see Figure 4.7):

E(k, t)=
∑

l=(k1,k2,k3), k2
1 +k2

2 +k2
3=k2

∣∣û1,l
∣∣2

+
∣∣û2,l

∣∣2
+
∣∣û3,l

∣∣2
, k ∈

[
1,
N

2

]
. (4.4)

With the help of E(k, t), we determine the coefficients of Fourier ûk of uN .
So PN f is determined by

PN f = duN
dt

− ν�+PNB
(
uN ,uN

)
. (4.5)

The energy spectrum is written as

E(k, t)= c1k
−5/3, k ≤ KN1, KN1 <

N

2
,

E
(
kF , t

)= CF(t)c1k
−5/3, kF ≤ KN1,

E(k, t)=G(k, t), k > KN1, KN1 <
N

2
,

G(k, t)= exp
[

Log(10)g
(

Log10(k), t
)]

,

(4.6)

where

g(x, t)= g
(
x1, t

)− 5
3

(
x− x1

)
eα(t)(x−x1) (4.7)
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(with G(KN1, t)= E(KN1, t), g function of class C1),

x1 = Log10

(
KN1

)
,

x2 = Log10

(
KN2

)
,

α(t)= 1
x2− x1

Log
(

3
5

−Log10

(
C2(t)

)
+ g
(
x1, t

)
x2− x1

)
,

E
(
KN2, t

)=G
(
KN2, t

)= C2(t),

(4.8)

C2 is one bounded function (C2 ∈ [c2min,c2max]).
In this example,

CF(t)= 1
10

(
cos(t)sin

(√
2t
)

+ 2.5exp
(− 0.5(t− 5)2)

+ exp
(− 0.25(t− 7)2)+

sin
(
2
√

7t
)

5

)
+ 1,

(4.9)

C2(t) is determined by

F(t)=
15∑
k=1

exp
(

cos
(

2π
10

(
k
√
k(2.5 + 0.25t)

))− 0.3sin
(

0.80
2π
10

k
√
kt
))

+ 10exp
(− (t− 5)2), (4.10)

Fmin =min(F(t)) and Fmax =max(F(t));

Dev = c2max− c2min

Fmax−Fmin
,

C2(t)= c2min + Dev
(
F(t)−Fmin

)
,

(4.11)

CF(t) contributes to the evolution of the low modes of the solution. C2(t) contributes to
the evolution of the high modes of the solution.

4.1.2. Significance of the parameters.
(i) �t denotes time step (= 0.2510−2).

(ii) ν denotes viscosity (= 0.110−1).
(iii) N denotes the total number of modes used for the spectral discretisation in space

(= 48), that is, 483 unknown.
(iv) Tol0 denotes parameter intervening in the multigrid strategy to define the min-

imal level of the coarse grids Ni1 (= 0.210−6).
(v) Tol1 denotes parameter intervening in the multigrid strategy to define the max-

imal level Ni2 of the coarse grids during a cycle (= 0.210−8).
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Figure 4.1. Relative error in norm L2(‖u−uex‖L2 /‖uex‖L2 ).

(vi) Maxinc denotes parameter fixing the number of temporal iterations of a multi-
grid cycle.

(vii) KN1 denotes parameter in the energy spectrum defining the solution (= 4).
(viii) KN2 denotes parameter in the energy spectrum defining the solution (= 12).

(ix) c1 denotes parameter in the spectrum (= 5).
(x) c2min and c2max denote the bounds of the temporal function C2(= 0.510−5 and

0.510−4).

4.1.3. Commentary on the figures. Figures 4.1 and 4.2 compare the precision of the two
methods: UG and NGL. Figure 4.1 measures the relative error in norm L2, that is, globally
in the whole domain. Figure 4.2 measures the relative error in norm L∞, that is, locally.
As we can note, the precision obtained with NGL remains near the one obtained with
UG. Figure 4.3 shows that the gain of computing time of NGL in comparison with UG
is between 20% and 30%, we can explain this by the fact that we calculate less often the
coefficients associated to the elevated modes by using coarse grids on which are only
valued the coefficients associated to the small modes.

Figure 4.4 represents the evolution of CPU time consumed in seconds for UG and
NGL and justify the gain of computing time of NGL in comparison with UG.

The method NGL permits to get a better numerical stability than the method UG; the
coefficients associated to the most elevated modes being the smallest. It is in the calcu-
lation of these coefficients that the relative errors made are the biggest. Contrary to the
method UG, in not valuing the coefficients associated to the raised modes to every step
of time, the method NGL permits to avoid the accumulation on every step of time of the
errors made in the calculation of these coefficients, improving the stability.
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Figure 4.2. Relative error in norm L∞(‖u−uex‖L∞ /‖uex‖L∞ ).
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Figure 4.3. Gain of computing time for NGL over UG.

Figure 4.5 shows the evolution of the lower envelope of the levels of coarse grids (Ni1 )
with the method NGL, and Figure 4.6 represents the time evolution of the ratio ‖z‖L2 /
‖y‖L2 on this lower envelope. This ratio remains lower than 0.210−6 which is Tol0. It jus-
tifies the quasistatic approximation of the raised modes and of the terms of interactions.
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Figure 4.4. Comparison of CPU times (in seconds) by NGL and UG.
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Figure 4.5. Lower envelope of the levels of discretization.

The abrupt oscillations of this ratio correspond to the changes of levels of the lower
envelope.



S. El Hajji and K. Ilias 353

43.63.22.82.421.61.20.80.40

t

0.619E − 08

0.903E − 08

0.132E − 07

0.192E − 07

0.28E − 07

0.408E − 07

0.596E − 07

0.869E − 07

0.127E − 06

0.185E − 06

0.27E − 06

G
(t

)

NGL

Figure 4.6. Time evolution of ‖z‖L2 /‖y‖L2 on the lower envelope.
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Figure 4.7. Energy spectrum at t = 4.00 by NGL.

Figure 4.7 represents the energy spectrum of the solution calculated with NGL at t = 4;
we note that this spectrum is in conformity with the data of the exact solution.

The vorticity plays an important role in the generation of small scales in space driving
to the turbulence. Figures 4.8 and 4.9 represent the isovorticity lines calculated with NGL
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2∗PI0
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0

2∗PI

Figure 4.8. Isovorticity lines at t = 0.0 by NGL.

2∗PI0

NGL

0

2∗PI

Figure 4.9. Isovorticity lines at t = 4.0 by NGL.

at t = 0 and at t = 4 on the plan z = π, we notice the distortion of the large structures un-
der the action of other large structures and of smaller structures. This distortion drives to
the shearing of these large deformed structures and to the creation of new smaller struc-
tures that finish by disappearing. Large structures are created by the action of external
force. The large structures that occupy the corners of the domain are directly supplied by
external force.

4.2. Example 2

g(t)= 1
10

(
cos(4.8t) + cos(3.2πt) + 0.5exp

(
3sin(1.6t)

)
+ 3
)
. (4.12)
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Figure 4.10. Relative error in norm L2(‖u−uex‖L2 /‖uex‖L2 ).

The exact solution uex = (u1,u2,u3),

u1 = g(t)exp(cos y),

u2 = g(t)exp(cosz),

u3 = g(t)exp(cosx).

(4.13)

The external force is written as

f (x, t)= duex

dt
− ν�uex +PNB

(
uex,uex

)
, (4.14)

the number of modes N= 24, that is, 243 unknown, �t time step = 5.10−3, and the vis-
cosity ν= 10−2.

Figures 4.10 and 4.11 measure the relative error in norms L2 and L∞ for UG and NGL.
The curves obtained with UG and NGL are practically identical: the precisions obtained
by the two methods are practically the same.

Figure 4.12 shows the gain of computing time of NGL in comparison with UG which
is the order of 30%.

Figure 4.13 shows the evolution of CPU time consumed in seconds for UG and NGL.
Figures 4.14 and 4.15 represent the time evolution, respectively, of the quantities ‖y‖L2

for UG on different levels and for ‖z‖L2 .
Figures 4.16 and 4.17 show the evolution of y and z during the time in norm L2 with

NGL. We can compare these figures with Figures 4.14 and 4.15, we note that the time
evolutions of y in these figures for UG and NGL are identical (convergence of uN ).
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Figure 4.11. Relative error in norm L∞(‖u−uex‖L∞ /‖uex‖L∞ ).
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Figure 4.12. Gain of computing time for NGL over UG.

For the evolution of z, for N1 = 12 and 16, UG and NGL are practically identical
whereas for the level 20, the difference between zNGL and zUG remains lower to the preci-
sion of the time scheme.
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Figure 4.13. Comparison of CPU times (in seconds) by NGL and UG.
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Figure 4.14. Time evolution of ‖yN1‖L2 for N1 = 12, 16, and 20 by UG.
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Figure 4.15. Time evolution of ‖zN1‖L2 for N1 = 12, 16, and 20 by UG.
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Figure 4.16. Time evolution of ‖yN1‖L2 for N1 = 12, 16, and 20 by NGL.
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Figure 4.17. Time evolution of ‖zN1‖L2 for N1 = 12, 16, and 20 by NGL.

5. Stability analysis and estimation

In [10], Jauberteau find again the CFL stability condition done in [7], for nonlinear
Galerkin method:

�tN
∣∣uN∣∣L∞ < α with α < 1. (5.1)

In [15], Temam describes some numerical schemes for the approximation of nonlinear
evolution equations, in particular, Navier-Stokes equations, and studies the stability of
the schemes, in particular, nonlinear Galerkin schemes.

We introduce two norms in L2 and H1:

|ϕ|2 =
(∫

Ω

∣∣ϕ(x, t)
∣∣2
dx
)1/2

,

‖ϕ‖ =
(∫

Ω

∣∣∇ϕ(x, t)
∣∣2
dx
)1/2

(5.2)

for any given field ϕ(x, t)= (ϕ1(x, t),ϕ2(x, t),ϕ3(x, t)),

Ω=
i=3∏
i=1

(0,2π). (5.3)
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We now aim to derive an estimate of the variations of zN1 over one time iteration. This
quantity can be represented by

�N1 =�t
∣∣żN1

∣∣
2, (5.4)

where the dot represents the differentiation with respect to t. The time step �t is given
by the CFL stability condition [7]:

�tN
∣∣uN∣∣L∞ < α with α < 1. (5.5)

We recall that N is the total number of modes in each direction. We assume that the
smallest scale lN = 1/kN , kN =N/2 is smaller than the Kolmogorov dissipation scale lη =
1/kη. We first consider the case where lN1 = 1/kN1 is lying between lη and lN (lN ≤ lN1 ≤ lη).

The time derivative żN1 is of the order of the dissipation term (remember we are in the
dissipation range): ∣∣żN1

∣∣
2 ∼ ν

∣∣�zN1

∣∣
2. (5.6)

Due to the exponential decay of the velocity spectrum in the dissipation range, we can
write

ν
∣∣�zN1

∣∣
2 ≤ c1νk2

N1

∣∣zN1

∣∣
2, (5.7)

where c1 is a nondimensional constant of order of unity.
We obtain

�N1 ≤ c2
|g|1/32∣∣uN∣∣L∞

(
kN1

kη

)
ν1/3

∣∣zN1

∣∣
2. (5.8)

Then, for sufficiently small values of the viscosity ν, the variations of zN1 over one time
iteration are much smaller than |zN1|2.

We now try to derive a similar estimate when lN1 is in the inertial range, that is, (lη ≤
lN1 ). In that case, the time derivative żN1 is of the order of the interaction nonlinear terms:∣∣żN1

∣∣
2 ∼

∣∣QN1Bint
(
yN1 ,zN1

)∣∣
2. (5.9)

As QN1 is a projection operator, we have∣∣QN1B
(
yN1 ,zN1

)∣∣
2 ≤

∣∣B(yN1 ,zN1

)∣∣
2. (5.10)

The bilinear form B can be estimated as follows (see, e.g., [13, 14]):∣∣B(yN1 ,zN1

)∣∣
2 ≤ c4

∣∣yN1

∣∣
L∞
∥∥zN1

∥∥. (5.11)

The decay of the velocity Fourier components implies that∥∥zN1

∥∥≤ c5kN1

∣∣zN1
∣∣

2, where c5 ∼ 1, (5.12)
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so that ∣∣QN1B
(
yN1 ,zN1

)∣∣
2 ≤ c4c5kN1

∣∣yN1

∣∣
L∞
∣∣zN1

∣∣
2. (5.13)

From inequality (5.7), we deduce that∣∣QN1B
(
zN1 , yN1

)∣∣
2 ≤ c8kN1

∣∣yN1

∣∣
L∞
∣∣zN1

∣∣
2. (5.14)

A similar estimate can be derived for the third term QN1B(zN1 ,zN1 ).
We finally obtain ∣∣QN1Bint

(
yN1 ,zN1

)∣∣
2 ≤ c9kN1

∣∣uN∣∣L∞∣∣zN1

∣∣
2. (5.15)

Then,

�N1 ≤ c9kN1�t
∣∣uN1

∣∣
L∞
∣∣zN1

∣∣
2. (5.16)

As

�t ≤ α

N
∣∣uN∣∣L∞ , (5.17)

we find

�N1 ≤ c9
α√
2
kN1

kN

∣∣zN1

∣∣
2, (5.18)

which also implies that�N1 < |zN1|2 in the inertial range as well. For more details on such
developments, the reader is referred to Dubois [4].

In [3], Devulder et al. provide estimates to the rate of the convergence of the nonlinear
Galerkin method, they show that the nonlinear Galerkin converges faster than the usual
Galerkin method as in the numerical examples.

We present here two theorems which give an error estimate in the norm of H for the
usual Galerkin method and nonlinear Galerkin method.

Theorem 5.1. Let u(t) be a solution of (2.6) such that∥∥u(t)
∥∥≤M1 ∀t ≥ 0. (5.19)

Suppose that ym(t) is the truncated solution of the system (2.6) as for the usual Galerkin
method, that is, without separation of the scales which satisfies ym(0)= Pmu0 and∥∥ym(t)

∥∥≤M1 ∀t ≥ 0. (5.20)

Then

∣∣u(t)− ym(t)
∣∣2 ≤

(∫ t

0
e
∫ t
s Am(τ)dτBm(s)ds+

2
Lm

)
L2
m

λ2
m+1

,

∥∥u(t)− ym(t)
∥∥2 ≤

(
2 +

∫ t

0
e
∫ t
s Ãm(τ)dτ B̃m(s)ds

)
Lm
λm+1

,

(5.21)
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where Lm = 1 + log(λm/λ1), λm denotes the mth eigenvalue of the stokes operator−�. Am(t)
and Bm(t) are variables in time depending on t, ‖u‖, ‖y‖.

For the calculation of these variables and the proof, see [3].

Theorem 5.2. Let u(t) be a solution of (2.6) such that∥∥u(t)
∥∥≤M1 ∀t ≥ 0. (5.22)

Suppose that ym(t) + φ(ym(t)) is the truncated solution of the system (2.12), (2.13) which
satisfies ym(0)= Pmu0 and ∥∥ym(t)

∥∥≤M1 ∀t ≥ 0. (5.23)

Then

∣∣u(t)− (ym(t) +φ
(
ym(t)

))∣∣2 ≤
[(

1 +
K

λ1/2
m+1

)∫ t

0
e
∫ t
s Am(τ)dτBm(s)ds+

2
Lm

]
KL3

m

λ3
m+1

,

∥∥u(t)− (ym(t) +φ
(
ym(t)

))∥∥2 ≤
[(

1 +
K

λ1/4
m+1

)∫ t

0
e
∫ t
s Ãm(τ)dτ B̃m(s)ds+ 2

]
KL2

m

λ2
m+1

,

(5.24)

where Lm = 1 + log(λm/λ1), λm denotes the mth eigenvalue of the stokes operator−�. Ãm(t)
and B̃m(t) are variables in time depending on t, ‖u‖, ‖y‖ and φ.

For the calculation of these variables and the proof, see [3].
See also Heywood and Rannacher [9] for other estimations.

6. Conclusion

The numerical tests that we have done showed significant gain in computing time of this
method in comparison with the usual Galerkin method and kept a comparable precision
to this last one.

This new scheme of resolution permits a simplification of the calculation of the coef-
ficients associated to the elevated modes of the solution and keeps the precision of their
interaction with the coefficients associated to smaller modes.

The large precision of the spectral methods is kept.
This new scheme is well adapted to the resolution of the evolutionary problems on

large intervals of time.
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