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Functionally graded materials have gained considerable attention in the high-temperature
applications. A study of parametric vibrations of functionally graded plates subjected
to in-plane time-dependent forces is presented. Moderately large deflection equations
taking into account a coupling of in-plane and transverse motions are used. Material
properties are graded in the thickness direction of the plate according to volume fraction
power law distribution. An oscillating temperature causes generation of in-plane time-
dependent forces destabilizing the plane state of the plate equilibrium. The asymptotic
stability and almost-sure asymptotic stability criteria involving a damping coefficient and
loading parameters are derived using Liapunov’s direct method. Effects of power law ex-
ponent on the stability domains are studied.

1. Introduction

Functionally graded materials have gained considerable attention in the high-temperature
applications. Functionally graded materials are composite materials, which are micro-
scopically inhomogeneous, and the mechanical properties vary smoothly or continuously
from one surface to the other. It is this continuous change that results in gradient proper-
ties in functionally graded materials (FGM). Commonly, these materials are made from
a mixture of ceramic and metal or a combination of different metals. The ceramic ma-
terial provides high temperature resistance due to its low thermal conductivity while the
ductile metal component prevents fracture due to thermal stresses and secures a suitable
strength and stiffness. Many studies have examined FGM as thermal barriers. With the
increased usage of these materials it is also important to understand the dynamics of FGM
structures. A few studies have addressed this. Transient thermal stresses in a plate made of
functionally gradient material were examined by Obata and Noda [5]. Vibration analysis
of functionally graded cylindrical shells was performed by Loy et al. [3]. Recently, Lam
et al. [4] presented dynamic stability analysis of functionally graded cylindrical shells un-
der periodic axial loading. In this paper, the parametric vibrations or dynamic stability of
functionally graded rectangular plate described by geometrically nonlinear partial differ-
ential equations is studied using the direct Liapunov method. Moderately large deflection

Copyright © 2005 Hindawi Publishing Corporation
Mathematical Problems in Engineering 2005:4 (2005) 411–424
DOI: 10.1155/MPE.2005.411

http://dx.doi.org/10.1155/S1024123X05403105


412 Dynamic stability of functionally graded plate

equations taking into account a coupling of in-plane and transverse motions are used.
Due to a small thickness coupling and rotary, inertia terms are neglected. Material prop-
erties are graded in the thickness direction of the plate according to volume friction power
law distribution. The viscous model of external damping with a constant coefficient is as-
sumed. An oscillating temperature causes generation of in-plane time-dependent forces
destabilizing plane state of the plate equilibrium. The asymptotic stability and almost sure
asymptotic stability criteria involving a damping coefficient and loading parameters are
derived. Effects of power law exponent on the stability domains are studied.

2. Problem formulation

Consider the thin functionally graded rectangular plate with in-plane dimensions a and
b. In-plane and transverse displacements are denoted by u, v, and w, respectively. Taking
into account the Kirchhoff hypothesis on nondeformable normal element and Kármán-
type geometric nonlinearity, the governing partial differential equations are given as fol-
lows (Whitney [8]):

Nx,x +Nxy,y = 0, (2.1)

Nxy,x +Ny,y = 0, (2.2)

w,tt + 2dw,t +
(
N̄x + N̄0x

)
w,xx +

(
N̄x + N̄0y

)
w,yy −Mx,xx − 2Mxy,xy

+−My,yy −Nxw,xx −Nyw,yy − 2Nxyw,xy = 0, (x, y)∈Ω≡ (0,a)× (0,b),
(2.3)

where d is a damping coefficient, N̄x and N̄y are time-dependent components of mem-
brane forces, N̄0x and N̄0y are constant components of membrane forces divided by ρh,
ρ is the equivalent density of the plate, h is the total thickness. The membrane forces are
stochastic with means equal to zero and known probability distributions. The processes
are physically realizable and sufficiently smooth in order for the solution of dynamics
equations to exist. We use the extensional, coupling, and bending stiffnesses Aij , Bij , and
Dij (i, j)= 1,2,6 which are defined as follows:

{
Aij ,Bij ,Dij

}=
∫ h/2

−h/2
Qij
{

1,z,z2}dz. (2.4)

The reduced stiffnesses Qij , divided by ρh, for isotropic materials are given by

Q= 1
ρh

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Eeff

1− ν2
eff

νeffEeff

1− ν2
eff

0

νeffEeff

1− ν2
eff

Eeff

1− ν2
eff

0

0 0
Eeff

2
(
1 + νeff

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (2.5)

Therefore matrix Q has the same form as the stiffness matrix of isotropic plate, but we
should keep in mind its spatial dependency on z. In-plane and moments are expressed by
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displacements as follows:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Nx

Ny

Nxy

Mx

My

Mxy

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A11 A12 0 B11 B12 0
A12 A22 0 B12 B11 0
0 0 A66 0 0 B66

B11 B12 0 D11 D12 0
B12 B11 0 D12 D22 0
0 0 B66 0 0 D66

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

u,x +
1
2
w2

,x

v,y +
1
2
w2

,y

u,y + v,x +w,xw,y

−w,xx

−w,yy

−2w,xy

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (2.6)

Using (2.5), the constitutive equation (2.6) can be rewritten in the form

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Nx

Ny

Nxy

Mx

My

Mxy

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A11 A12 0 B11 B12 0

A12 A11 0 B12 B11 0

0 0
A11−A12

2
0 0

B11−B12

2
B11 B12 0 D11 D12 0

B12 B11 0 D12 D11 0

0 0
B11−B12

2
0 0

D11−D12

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

u,x +
1
2
w2

,x

v,y +
1
2
w2

,y

u,y + v,x +w,xw,y

−w,xx

−w,yy

−2w,xy

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

(2.7)

The effective elastic modulus and the effective Poisson ratio of the functionally graded
plate are denoted by Eeff and νeff , respectively. In order to model precisely the material
properties of functionally graded materials, the properties must be both temperature and
position dependent. This is achieved by using a rule of mixtures for the mechanical pa-
rameters (Eeff , νeff , ρ). The volume fraction is a spatial function and the properties of the
constituents are functions of the temperature. The combination of these functions gives
the effective material properties of functionally graded materials and can be expressed
as follows:

Feff (T ,z)= Fc(T)V(z) +Fm(T)
(
1−V(z)

)
, (2.8)

where Feff is the effective material property of the functionally graded material, Fc and
Fm are the properties of the ceramic and the metal, respectively, and V is the volume
fraction of the ceramic constituent of the functionally graded material. A simple power
law exponent of the volume fractions is used to describe the amount of ceramic and metal
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in the functionally graded material as follows:

V(z)=
(
z+h/2

h

)q
, (2.9)

where q is the power law exponent (0 ≤ q <∞). The plate is assumed to be simply sup-
ported along each edge. The conditions imposed on displacements and internal forces
and moments, called according to Almroth’s [1] classifications S2, can be written down as

w = 0, Mx = 0, Nx = 0, v = 0, at x = 0,a,

w = 0, My = 0, Ny = 0, u= 0, at y = 0,b.
(2.10)

It is assumed that the plate is subjected to the time-varying in-plane axial forces N̄x

and N̄y leading to parametric vibrations. The transverse motion of the plate is described
by the nonlinear uniform equations (2.1), (2.2), and (2.3) with the trivial solution w = 0
corresponding to the plane (undisturbed) state. The trivial solution is called almost sure
asymptotically stable if

P
{

lim
t→∞

∥∥w(·, t)∥∥= 0
}
= 1, (2.11)

where ‖w(·, t)‖ is a measure of disturbed solution w from the equilibrium state, and P
is a probability measure. The crucial point of the method is a construction of a suitable
Liapunov functional, which is positive for any motion of the analyzed system. It follows
that the measure of distance can be chosen as the square root of Liapunov functional
‖w(·, t)‖ =V 1/2.

3. Stability analysis

The energy-like Liapunov functional has the form of a sum of modified kinetic energy �
and potential energy of the plate, and can be chosen in the form similar to the functional
involved in stability analysis of laminated plates (Tylikowski [6]):

�n =� +
1
2

∫
Ω

[
−Mxw,xx −Myw,yy − 2Mxyw,xy +Nx

(
u,x +

1
2
w2

,x

)

+Ny

(
v,y +

1
2
w2

,y

)
+Nxy

(
u,y + v,x +w,xw,y

)

− N̄0xw
2
,x − N̄0yw

2
,y

]
dΩ,

(3.1)

where � expressed by w and the transverse velocity v =w,t is given by

�= 1
2

∫
Ω

(
v2 + 2dvw+ 2d2w2)dΩ. (3.2)
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It may be observed that contrary to the linear or linearized case, �n is the fourth-order
functional. Substituting constitutive equation (2.6), we have

�n =� +
1
2

∫
Ω

[
A11

(
u,x +

1
2
w2

,x

)2

+ 2A12

(
u,x +

1
2
w2

,x

)(
v,y +

1
2
w2

,y

)

+A22

(
v,y +

1
2
w2

,y

)2

+A66
(
u,y + v,x +w,xw,y

)2

− 2B11

(
u,x +

1
2
w2

,x

)
w,xx − 2B12

(
u,x +

1
2
w2

,x

)
w,yy

− 2B12

(
v,y +

1
2
w2

,y

)
w,xx − 2B11

(
v,y +

1
2
w2

,y

)
w,yy

− 4B66
(
u,y + v,x +w,xw,y

)
wxy +D11w

2
,xx

+ 2D12w,xxw,yy +D11w
2
,yy + 4D66w

2
,xy − N̄0xw

2
,x − N̄0yw

2
,y

]
dΩ.

(3.3)

It is assumed that the in-plane forces are periodic or a stochastic nonwhite station-
ary and sufficiently smooth ergodic process. Therefore, it is legitimate to use the classi-
cal differentiation rule. Upon differentiation with respect to time, substituting dynamic
equations (2.1), (2.2), and (2.3) and using the boundary conditions, we obtain the time
derivative of functional in the form

d�n

dt
=−2λ�n + 2�n, (3.4)

where the auxiliary functional �n is defined as follows:

�n =�− d

2

∫
Ω

[
Nx

(
u,x +

1
2
w2

,x

)
+Ny

(
v,y +

1
2
w2

,y

)
+Nxy

(
u,y + v,x +w,xw,y

)]
dΩ,

(3.5)

�= 1
2

∫
Ω

[
2d2ww,t + 2d3w2 +

(
w,t +dw

)(
N̄xw,xx + N̄yw,yy

)]
dΩ. (3.6)

Eliminating in-plane forces by means of (2.7) we have

�n =�− d

2

∫
Ω

[
A11

(
u,x +

1
2
w2

,x

)2

+ 2A12

(
u,x +

1
2
w2

,x

)(
v,y +

1
2
w2

,y

)

+A22

(
v,y +

1
2
w2

,y

)2

+A66
(
u,y + v,x +w,xw,y

)2

−B11

(
u,x +

1
2
w2

,x

)
w,xx −B12

(
u,x +

1
2
w2

,x

)
w,yy

−B12

(
v,y +

1
2
w2

,y

)
w,xx −B11

(
v,y +

1
2
w2

,y

)
w,yy

− 2B66
(
u,y + v,x +w,xw,y

)
wxy

]
dΩ.

(3.7)
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Therefore, the stability analysis of the nonlinear system depends on the construction
of the bound

�n ≤ λ�n, (3.8)

or we look for a function λ defined as a maximum over all admissible functions u, v, w,
w,t and satisfying the boundary conditions of the ratio �n/�n. As a maximum is a par-
ticular case of stationary point, we put to zero a variation of �n/�n. The associate Euler
equations are nonlinear in the case of the fourth-order functionals. It complicates a sta-
bility analysis and in order to obtain the analytical form of function λ, we have to modify
the variational problem. Therefore, our object is to find such second-order functionals
V∗ and U∗ that the inequality

U∗ ≤ λV∗ (3.9)

will make inequality (3.8) be true. In order to do this we express functional (3.1) in the
form

�n =V +Vp− 1
2

∫
Ω

[
D11

(
w,xx

2k

)2

+ 2D12
w,xx

2k

w,yy

2k
+D22

(
w,yy

2k

)2

+ 4D66

(
w,xy

2k

)2

−B11
(
u,xw,xx + v,yw,yy

)

−B12
(
u,xw,yy + v,yw,xx

)− 2B66w,xy
(
u,y + v,x

)]
dΩ,

(3.10)

where V is the second-order Liapunov functional for a linearized problem

V =� +
1
2

∫
Ω

[
D11w

2
,xx + 2D12w,xxw,yy +D22w

2
,yy

+ 4D66w
2
,xy −B11

(
u,xw,xx + v,yw,yy

)
−B12

(
u,xw,yy + v,yw,xx

)− 2B66w,xy
(
u,y + v,x

)
− N̄0xw

2
,x − N̄0yw

2
,y

]
dΩ.

(3.11)

Vp is a positive definite fourth-order functional

Vp = 1
2

∫
Ω

zTCz dΩ, (3.12)
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and k is a number greater than 1 chosen so that we will obtain the greatest stability region.
The matrix C is given as follows:

C(k)=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A11 A12 0 2kB11 2kB12 0

A12 A11 0 2kB12 2kB11 0

0 0
A11−A12

2
0 0

2k
(
B11−B12

)
2

2kB11 2kB12 0 D11 D12 0

2kB12 2kB11 0 D12 D11 0

0 0
2k
(
B11−B12

)
2

0 0
D11−D12

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (3.13)

where (·)T denotes a transposition of matrix and the z is a modified state of strain defined
by a column matrix

z=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

u,x +
1
2
w2

,x

v,y +
1
2
w2

,y

u,y + v,x +w,xw,y

−w,xx

2k

−w,yy

2k

−2w,xy

2k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (3.14)

The functional Vp is positive definite if the Sylvester conditions of positive definiteness
for matrix C are satisfied (see Gantmacher [2]):

det

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A11 A12 0 2kB11 2kB12 0

A12 A11 0 2kB12 2kB11 0

0 0
A11−A12

2
0 0

2k
(
B11−B12

)
2

2kB11 2kB12 0 D11 D12 0

2kB12 2kB11 0 D12 D11 0

0 0
k
(
B11−B12

)
2

0 0
D11−D12

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

> 0, (3.15)
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det

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A11 A12 0 2kB11 2kB12

A12 A11 0 2kB12 2kB11

0 0
A11−A12

2
0 0

2kB11 2kB12 0 D11 D12

2kB12 2kB11 0 D12 D11

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

> 0, (3.16)

det

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A11 A12 0 2kB11

A12 A11 0 2kB12

0 0
A11−A12

2
0

2kB11 2kB12 0 D11

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
> 0. (3.17)

Solving Sylvester’s inequalities we obtain the number k as a function of exponent q.
Omitting the fourth-order functional Vp, we obtain the lower estimation of functional
�n by the second-order functional

�n ≥V∗ =V − 1
4k2

Vb, (3.18)

where

Vb = 1
2

∫
Ω

[
D11w

2
,xx + 2D12w,xxw,yy +D22w

2
,yy + 4D66w

2
,xy

]
dΩ. (3.19)

In the way similar to derivation of estimation (3.18), we can rewrite (3.6) in the form

�n =�− d

2

∫
Ω

[
A11

(
u,x +

1
2
w2

,x

)2

+ 2A12

(
u,x +

1
2
w2

,x

)(
v,y +

1
2
w2

,y

)

+A22

(
v,y +

1
2
w2

,y

)2

+A66
(
u,y + v,x +w,xw,y

)2

− 4kB11

(
u,x +

1
2
w2

,x

)(
w,xx

4k

)
− 4kB12

(
u,x +

1
2
w2

,x

)(
w,yy

4k

)

− 4kB12

(
v,y +

1
2
w2

,y

)(
w,xx

4k

)
− 4kB11

(
v,y +

1
2
w2

,y

)(
w,yy

4k

)

− 8kB66
(
u,y + v,x +w,xw,y

)(wxy

4k

)
+D11

(
w,xx

4k

)2

+ 2D12

(
w,xx

4k

)(
w,yy

4k

)
+D22

(
w,yy

4k

)2

+ 4D66

(
w,xy

4k

)2
]
dΩ

+
d

32k2

∫
Ω

[
D11w

2
,xx + 2D12w,xxw,yy +D22w

2
,yy + 4D66w

2
,xy

]
dΩ.

(3.20)



Andrzej Tylikowski 419

Omitting as negative the second integral, we have upper estimation of functional �n

�n ≤U +
d

16k2
Vb. (3.21)

Now we see that if a function λ satisfies the following condition for the second-order
functionals:

U +
d

16k2
Vb ≤ λ

(
V − 1

4k2
Vb

)
, (3.22)

then the same function λ will satisfy inequality (3.8).
Solving the associated Euler problem, we find the function λ as follows:

λ= max
i, j=1,2,...

{{
d

4k2
Ω2

i j

+

√√√ d2

16k4
Ω4

i j+4
[

4d2 +
(

4− 1
k2

)
Ω2

i j + 4κi j

][
2d2 + N̄x

(
iπ

a

)2

+ N̄y

(
jπ

b

)2]2
}

×
(

2
[

4d2 +
(

4− 1
k2

)
Ω2

i j + 4κi j

])−1
}

,

(3.23)

where Ωi j denotes the eigen frequency of the plate without couplings between in-plane
and bending effects:

Ω2
i j =D11

(
iπ

a

)4

+ 2
(
D12 + 2D66

)( iπ
a

)2( jπ

b

)2

+D22

(
jπ

b

)4

. (3.24)

The bending-extension coupling and the influence of constant forces N̄0x and N̄0y are
represented by κi j :

κi j =−B11

[(
iπ
a

)2
+
(

jπ
b

)2]2[
α22

(
iπ
a

)2− 2α12
iπ
a

jπ
b +α11

(
jπ
b

)2]
α11α22−α2

12

− N̄0x

(
iπ

a

)2

− N̄0y

(
jπ

b

)2

,

(3.25)

where

α11 = A11

(
iπ

a

)2

+
A11−A12

2

(
jπ

b

)2

, α12 = A11 +A12

2
iπ

a

jπ

b
,

α22 = A11

(
jπ

b

)2

+
A11−A12

2

(
iπ

a

)2

.

(3.26)
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Table 4.1. Mechanical properties of constituents of the FGM.

Material Steel-zirconia Nickel-SiN Aluminum-TiC
ρ, kg/m3 8166 5700 8900 2370 2700 4920
E, N/m2 2.01× 1011 2.44× 1011 2.24× 1011 3.48× 1011 0.69× 1011 4.80× 1011

ν 0.33 0.288 0.31 0.24 0.33 0.2

Table 4.2. Numbers kmax for crucial stability condition (3.22).

q 0.5 1 5 10 100
Steel-zirconia 9.85 7.69 10.23 15.79 119.75

Nickel-SiN 4.70 3.56 4.40 6.63 48.22
Aluminum-TiC 1.65 1.10 0.912 1.123 5.23

Using the property of function λ in equality (3.2) leads to the first-order differential
inequality, the solution of which has the form

�n(t)≤�n(0)exp
[
−
(
d− 1

t

∫ t

0
λ(τ)dτ

)
t
]
. (3.27)

Therefore, the sufficient criterion of the asymptotic stability has the form

d ≥ lim
t→∞

1
t

∫ t

0
λ(τ)dτ. (3.28)

If the processes N̄x and N̄y satisfy an ergodic property, the sufficient condition of the
almost sure asymptotic stability can be written as follows:

d ≥ Eλ, (3.29)

where E denotes the mathematical expectation.

4. Numerical results

The functionally graded materials used in this study are steel-zirconia, nickel-silicon ni-
tride, and aluminum-titanium carbide. Mechanical properties are given in Table 4.1.

The plate dimensions are as follows: h= 0.005 m, a= b = 0.5 m. The number k max-
imizing stability region calculated from the Sylvester inequalities is given in Table 4.2 for
q = 0.5,1,5,10,100. Formulae (3.23) and (3.29) give us the possibility to calculate a maxi-
mal excitation intensity (e.g., square root of variance) of modified in-plane forces (N̄x/ρh
[m2/s2], N̄y/ρh [m2/s2]) guaranteeing the almost sure asymptotic stability for given values
of power law exponent q. The stability regions are calculated for Gaussian and harmonic
forces with variance s2 [m4/s4] and d[1/s]. Stability domain boundaries of FGM plate, are
shown in Figures 4.1, 4.2, 4.3, and 4.5 for the following exponents: q = 0.5, q = 1, q = 5,
q = 10, and q = 100. Stability domain boundaries of FGM plate for the different values of
in-plane force are shown in Figure 4.4.
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Figure 4.1. Influence of the power law exponent on stability domains for the steel-zirconia FGM.
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Figure 4.2. Influence of the power law exponent on stability domains for the nickel-SiN FGM.



422 Dynamic stability of functionally graded plate

0 0.5 1 1.5 2
0

10

20

30

40

50

60

70

q = 0.5
q = 1 q = 10

q = 5

Lo
ad

in
g

va
ri

an
ce

Viscous damping coefficient

Figure 4.3. Influence of the power law exponent on stability domains for the aluminum-TiC FGM.
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Figure 4.4. Influence of the constant component of in-plane force on stability domains for the steel-
zirconia FGM (q = 0.5): (1) N̄0x = 0, (2) N̄0x = 10000, (3) N̄0x = 12000, and (4) N̄0x = 12600.



Andrzej Tylikowski 423

0 0.5 1 1.5 2
0

5

10

15

20

25

30

35

40

45

50

q = 0.5
q = 1
q = 5

q = 10
q = 100

Lo
ad

in
g

va
ri

an
ce

Viscous damping coefficient

Figure 4.5. Influence of the power law exponent on stability domains for the steel-zirconia FGM.

5. Conclusions

The applicability of the direct Liapunov method has been extended to geometrically non-
linear functionally graded plates subjected to time-dependent, in-plane forces. The major
conclusion is that the linearized problem should be modified to ensure the stability of
nonlinear problem. The influence of the power law exponent and the constant compo-
nent of in-plane force on the critical value of stability domains (expressed by the variance
of time-dependent force component) is shown. Stability domains depend essentially on
the constant compressive force. The influence of probability distribution on stability do-
mains is merely noticeable.

References

[1] B. O. Almroth, Influence of edge conditions on the stability of axially compressed cylindrical shells,
AIAA J. 4 (1966), 134–140.

[2] F. R. Gantmacher, The Theory of Matrices. Vols. 1, 2, Chelsea Publishing, New York, 1959.
[3] C. T. Loy, K. Y. Lam, and J. N. Reddy, Vibration of functionally graded cylindrical shells, Int. J.

Mech. Sci. 41 (1999), no. 3, 309–324.
[4] T. Y. Ng, K. Y. Lam, K. M. Liew, and J. N. Reddy, Dynamic stability analysis of functionally graded

cylindrical shells under periodic axial loading, Internat. J. Solids Structures 38 (2001), no. 8,
1295–1309.

[5] Y. Obata and N. Noda, Transient thermal stresses in a plate of functionally gradient material,
Functionally Gradient Materials (J. B. Holt, et al., eds.), Ceram. Trans., vol. 34, American
Ceramic Society, Ohio, 1993, pp. 403–410.



424 Dynamic stability of functionally graded plate

[6] A. Tylikowski, Dynamic stability of nonlinear antisymmetrically-laminated cross-ply rectangular
plates, ASME J. Appl. Mech. 56 (1989), 375–381.

[7] , Stability of functionally graded plate under in-plane time-dependent compression, Int. J.
Mech. Mech. Eng. 7 (2004), no. 2, 5–12.

[8] J. M. Whitney, Structural Analysis of Laminated Anisotropic Plates, chapter 2.7, Technomic Pub-
lishing, Lancaster, 1987.

Andrzej Tylikowski: Warsaw University of Technology, Narbutta 84, 02-524 Warszawa, Poland
E-mail address: aty@simr.pw.edu.pl

mailto:aty@simr.pw.edu.pl

