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We consider a dynamic model that simulates the interaction of TCP sources with ac-
tive queue management system (AQM). We propose a modified version of an earlier dy-
namic model called RED. This is governed by a system of stochastic differential equations
driven by a doubly stochastic point process with intensity as the control. The feedback
control law proposed observes the router (queue) status and controls the intensity by
sending congestion signals (warnings) to the sources for adjustment of their transmis-
sion rates. The (feedback) control laws used are of polynomial type (including linear)
with adjustable coefficients. They are optimized by use of genetic algorithm (GA) and
random recursive search (RRS) technique. The numerical results demonstrate that the
proposed model and the method can improve the system performance significantly.

1. Introduction

Congestion is one of the most significant problems in Internet traffic engineering. To
avoid congestion collapse, the Internet Engineering Task Force (IETF) recommended de-
ployment of active queue management (AQM) in routers [2] in 1998. Random early de-
tection (RED), a widely used congestion avoidance mechanism originally proposed in
1993 [7], has proved to be capable of detecting the inception of congestion and avoiding
global synchronization. Well-tuned routers can improve queuing delay and provide high
throughput.

As illustrated in left side of Figure 1.1, the original RED algorithm has four parame-
ters: minth, maxth, maxp, and α [7]. minth and maxth are defined as two-packet dropping
thresholds. The average queue size qa is calculated by applying a lowpass filter (exponen-
tially weighted moving average). No packets are dropped if qa is less than minth. For qa
between minth and maxth, the packet dropping probability is increased linearly with qa
up to maxp. When qa exceeds maxth, all arriving packets are dropped. The first three pa-
rameters determine the dropping decision: when and how aggressively to drop. The last
parameter α is the weight given to the current value for average queue size estimation.
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Figure 1.1. RED mechanism.

It controls the cutoff frequency of the lowpass filter, which provides a tradeoff for de-
tecting manageable traffic variations and filtering out transient traffic oscillations [11].
By invoking the TCP congestion avoidance mechanisms, TCP traffic sources respond to
packet drops by reducing window sizes as dictated by the router congestion as shown in
right side of Figure 1.1. However, RED’s parameters are sensitive to traffic load; network
operators are required to constantly tune those parameters based on current network
conditions. Multiplicity of parameters (here 4) makes adjustment of configuration com-
plicated.

Recently, several algorithms have been proposed to reduce the number of RED’s pa-
rameters, and adjust the parameters in varying conditions [4, 5, 6]. Considering large-
delay variation, and throughput sensitivity to traffic load, and parameter setting, Floyd
et al. [6] suggested automatic adjustment of maxp value in order to keep the average
queue size qa around (minth +maxth)/2. The parameter minth was set as a function of the
link bandwidth and maxth was chosen as 3 times of minth. Determination of the values
of minth and maxth is an open question. Cnodder et al. [4] proposed a rate-based RED
algorithm which reduced the number of parameters to one. It considers the packet drop-
ping rate as a function of the long-term average arrival rate and the average queue size.
However, it has two weaknesses. (1) It may drop packets when the queue is almost empty,
which is not necessary. (2) The estimated traffic which is used for calculation of drop
probability is based on an exponential function. Recent studies show that network traf-
fic has long-range dependence property [3, 8, 10], and therefore the estimates based on



N. U. Ahmed and C. Li 479

short-range assumptions are not accurate. To analyze an active queue management sys-
tem, Poisson-process-driven stochastic differential equations (SDEs) are used to model
the behaviors of TCP flows and queues of routers [9]. The methodology and model are
helpful for analyzing the dynamics of AQM. However, the approximations, based on as-
sumptions such as E{1/R(q)} = E{(1/R(E(q)))}, (where R is the round trip time, q is
current queue size) are seriously questionable. In this paper, we propose a revised model
based on the earlier model. We replace the fixed propagation time ai by a nonnegative ran-
dom variable uniformly distributed over the range of values it may possibly take. For the
flow dynamics (window size), we use doubly stochastic Poisson-driven stochastic differ-
ential equation where the rate (intensity) λ is an appropriate function of the multiplexor
(router load) q size. We introduce an objective functional which includes throughput and
congestion and then minimize this functional by an appropriate choice of the rate func-
tional as mentioned above. By numerical simulation, we demonstrate how effective our
proposed technique is. Numerical computations are based on genetic algorithm (GA)
and recursive random search (RRS) algorithms [11].

The rest of the paper is organized as follows. In Section 2, system model is presented.
Objective function and state-space formulation are given in Section 3. We introduce sys-
tem model with delays in Section 4. Numerical results are presented in Section 5. The
paper ends with conclusion in Section 6.

2. System model

To present the system model, we frequently make use of indicator functions. Let S denote
any logical or mathematical statement and define the indicator function of S as follows:

I(S)≡

1 if S is true,

0 otherwise.
(2.1)

The basic philosophy behind the TCP congestion control algorithm constitutes additive
increase and multiplicative decrease (AIMD) of window size. For each round-trip time,
the system increases the window size by one packet while, if a packet is lost, it halves the
window size. For simplicity, here we ignore the slow start and retransmit timer mecha-
nisms. Let n− 1 denote the number of TCP flows connected to the router. The dynamics
of the TCP congestion control system can then be described in terms of window size of
the sources (users) and q size of the router. Note that the larger the window size is the
larger TCP flow rate is. The window size is governed by the following equation:

dwi(t)≡ 1
Ri
(
q(t)

)dt− I
(
wi(t) > 0

)wi(t)
2

dNλ
i (t), i= 1,2, . . . ,n− 1, (2.2)

where Ri(q(t)) is the round-trip time dependent on the router q size, wi(t) is the window
size, and the process Nλ

i (t) represents the number of packets dropped from the stream
i over the time interval [0, t]. The round-trip time is generally given by the following
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expression:

Ri
(
q(t)

)≡ ai +
q(t)
C

, (2.3)

where ai denotes the round-trip propagation time between the source i and the router in
case of no congestion. Since the round-trip routes may vary, this is considered to be a ran-
dom variable with certain distribution discussed later. The second term in this expression
represents additional time required for a complete round trip if the router is not free. In
summary, the first term on the right-hand side of (2.2) gives the window’s opening rate
and the second the closing rate.

The router queue dynamics can be described as follows:

dq ≡−CI(q(t) > 0
)
dt+

(n−1∑
i=1

wi(t)
Ri
(
q(t)

)
)
dt, (2.4)

where q(t) is the current queue size, C is the channel (or link) capacity. The first term
on the right-hand side of (2.4) represents the service rate and the second term measures
the traffic arrival rate at the router (from all the sources). The model presented above is a
modified version of a similar model proposed in [9].

The process Nλ
i for each i = 1,2, . . . ,n− 1 is a (nondecreasing) counting process with

intensity process λ which is a nonnegative function of the current q size at the router.
Since q is a random process, Nλ

i is a doubly stochastic counting process. The variable λ
can be chosen by the system designer as follows:

λ(t)≡ f
(
q(t)

)
, t ≥ 0, (2.5)

where f is a suitable nonnegative, nondecreasing function with the domain, range, and
the boundary conditions as follow:

f : [0,Q]−→ [0,∞], f (0)= 0, f (Q)= γ, (2.6)

with γ being equal to the reciprocal of the smallest propagation time. One possible choice
of the feedback policy f is given by

f (x)= g(x)I
(
g(x) > 0

)
, (2.7)

where

g(x)= anx
n + ···+ aix

i + ···+ a2x
2 + a1x+ a0 (2.8)

is a polynomial of degree n with ai, i= 1, . . . ,n, being real-valued coefficients.
Physical interpretation of λ is simple. It denotes the mean rate of congestion warnings

sent out to the users (sources). The parameter Q is the size of the (router) multiplexor
(defining it’s storage limit). The function f defines the packet dropping scheme (pro-
gramme). This is the function that can be chosen by the network designer. Once this
is chosen, (2.5) determines the intensity, and hence the dropping rate. When the cur-
rent queue size is less than qp, λ=0, no packet is dropped. Our feedback model, once
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optimized, will automatically determine qp from the first (positive) root of g on the in-
terval [0,Q]. For numerical simulation using our model, we assume that Nλ

i (t), t ≥ 0, is a
conditional Poisson process, conditioned on λ (or doubly stochastic Poisson process). In
general, λ should be a function of the current queue size q(t) as indicated above. But since
the frequency of variation of q can be very large forcing frequent changes of the window
size leading to oscillation (and instability), it is desirable to use a filtered version of this.
This can be partially achieved by using the moving average of q denoted by qa which is
determined by the following equation:

qa(t)= (1− κ)qa(t−∆t) + κq(t), t ≥ 0, (2.9)

for some κ ∈ [0,1]. The parameter κ is chosen sufficiently small to avoid unnecessary
frequent changes in congestion warnings. This frequency cannot exceed, in fact should
be sufficiently smaller than, the frequency of acknowledgement (ACK) flows.

3. Objective function and state-space formulation

For evaluation of network performance over the running period I ≡ [0,T], the objective
functional can be chosen as

J( f )≡ E
{
−
(

1
T

)(∫
I
λ1(t)CI

(
q(t) > 0

)
dt
)

+
(

1
T

)(∫
I
λ2(t)I

(
q(t)∈Qα

)
dt
)}

, (3.1)

where the set Qα ≡ [αQ,Q] and E{z} denotes the expected value of the random variable
z. The first term within the expectation gives the throughput of the router with a negative
sign. The second term is a measure of loss due to congestion at the router. The set Qα

with α∈ (0,1] defines the congestion zone. The functions λi(t), i= 1,2, are nonnegative
measurable functions used as relative weights (or importance) given to each of the costs.
These can be chosen by network designers to reflect different concerns and scenarios as
necessary. Once these are chosen and fixed, one can then attempt to choose the dropping
strategy f to minimize the cost functional J . The optimal strategy guarantees maximum
expected (average) throughput and minimum expected losses due to jitter and conges-
tion.

For further analysis, it is convenient to write the state-space model for the system.
Denoting the state of the system by ξ ≡ (w1,w2, . . . ,wn−1,q)′, one can write the system in
the state-space form as follows:

dξ = F(ξ)dt+G(ξ)dNλ(t), (3.2)

where F :Rn→Rn is given by

Fi(ξ)≡
(

1
Ri
(
ξn
)), 1≤ i≤ n− 1,

Fn(ξ)≡−CI(ξn > 0
)

+
n−1∑
i=1

(
ξi

Ri
(
ξn
)).

(3.3)
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The function G(ξ) is an n× (n− 1) matrix with entries given by

Gi, j(ξ)≡ I
(
ξi > 0

)(ξi
2

)
δi, j , i, j = 1,2, . . . ,n− 1,

Gn, j(ξ)= 0, j = 1,2, . . . ,n− 1,

Nλ ≡ (Nλ
1 ,Nλ

2 , . . . ,Nλ
n−1

)′
.

(3.4)

Since λ is determined by the choice of f , we may rewrite the system (3.2) as

dξ = F(ξ)dt+G(ξ)dN f (t), (3.5)

where f is the packet dropping scheme to be determined for optimum performance.
Clearly, the cost functional (3.2) can be compactly written as

J( f )= E
{(

1
T

)∫ T

0
�
(
t,ξ(t)

)
dt

}
, (3.6)

where � denotes the integrand of the expression (3.1). One of the objectives of the net-
work provider is to improve the system performance by using strategies that minimize
this cost functional.

Our principal objective is to determine the best feedback policy f (·), from the class
of polynomial functions modulated by indicator functions as shown in the expression
(2.7), that minimizes the cost functional (3.1) or equivalently (3.6). Our approach does
not need a priori specification of the threshold qp at which packet drops are initiated. We
let the optimization process determine this through the choice of the coefficients of the
polynomial g which determine the roots. Due to the presence of indicator functions, the
cost function versus the coefficients of the polynomial g is not smooth. Most traditional
optimization methods require computation of gradients. In a nonsmooth situation like
we have, those methods are difficult to implement and tend to get trapped in local min-
ima. Random recursive search (RRS) algorithm appears to be a good choice to solve this
kind of problems. In order to verify the simulation results, we use two different optimiza-
tion techniques: GA and RRS. The numerical results based on these two techniques are
very close. However, the computation time with RRS is approximately 50 percent of that
of GA.

4. System model with delays

The models presented above do not take into account the time delay due to information
exchange between the router and the users. Assuming an average delay of δ units of time,
the models can be rewritten as follows:

dwi(t)≡ 1
Ri
(
q(t)

)dt− I
(
wi(t) > 0

)wi(t)
2

dNλ
i (t− δ), i= 1,2, . . . ,n− 1, (4.1)

dq ≡−CI(q(t) > 0
)
dt+

(n−1∑
i=1

wi(t− δ)
Ri
(
q(t)

)
)
dt. (4.2)
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Table 5.1. Cost and loss at queue.

Order of polynomial Linear Quadratic Cube

Cost J −14301 −13085 −11263

Loss at queue 2119.8 2139.1 2179.4

In fact, the communication delay is a function of several factors such as time, the physical
distance between sources and router, and traffic condition (router queue). If one wants to
be exact, the problem becomes mathematically intractable. Therefore, for simplicity one
may view δ as the mean of a random variable having uniform distribution (considering
the worst case/maximum entropy) with a compact support D �	 0.

5. Numerical results

For numerical simulation, we consider a system comprised of three TCP traffic sources
connected to one router. The observation (measurement) time interval at router side
is taken as 10 milliseconds, the (moving average) factor κ is set as 0.02, the maximum
queue size Q = 200Kb, and the set D is taken as D ≡ [10ms,200ms]. This range is based
on recent measurement studies [1].

We use RRS to optimize the cost functional (3.1) with feedback policy given by (2.7).
For illustration, we choose only polynomials of degree 3, 2, and 1 (linear) in that order.
Figures 5.1, 5.2, 5.3 show the values of λ as functions of average queue size based on the
optimized feedback law f associated with the polynomials as mentioned above. More
precisely, we choose any given polynomial and start with an arbitrary set of coefficients
and substitute the corresponding f , and hence λ≡ f (·) given by (2.5), in the system dy-
namics (2.2) and (2.4). Then we minimize the cost functional (3.1) using RRS algorithm
by iteratively choosing the coefficients. In all of the three cases, the system does not start
dropping packets until the queue size has increased to about 125Kb, approximately 62
percent of the router size. Dropping packets too early can reduce throughput even though
there is no noticeable trend towards congestion. Comparing Figures 5.1, 5.2, 5.3 controls
based on polynomials of degree 2 and 3 lead to global traffic synchronization which is not
desirable. The reason is that, for degrees 2 and 3, with the increase of the queue size, the
λ values increase much faster than the linear case. This generates (warning) signals too
frequently, forcing the sources to cut their window sizes leading to reduced throughput
and global synchronization. In fact, when the queue size starts to build up, reducing the
traffic rates of one or two users will relieve the congestion while maintaining high level of
throughput.

To compare the results corresponding to the linear case with those based on the poly-
nomials of degree 2 and 3, we normalize the maximum values f (Q) (associated with
quadratic and cubic polynomials) to the same level γ as the linear case. Table 5.1 shows
the cost and losses at the router (queue) for different cases.

The graphs of Figures 5.4, 5.5, 5.6 show the variation of queue for the three cases.
Linear case has the smallest variation. It drops packets more aggressively in the early stages
of discard, and thereby it prevents congestion more efficiently. In contrast, the polynomial
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Figure 5.1. Cubic control law.
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Figure 5.2. Quadratic control law.
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Figure 5.3. Linear control law.
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Figure 5.4. Variation of queue for cubic control law.
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Figure 5.5. Variation of queue for quadratic control law.

controls (degree 2 and higher) drop less aggressively at the early stages, which leads to
queue build up, and hence more chances for congestion.

6. Conclusion

In this paper, we have developed a dynamic model that simulates the interaction of TCP
sources with active queue management system (AQM). We have proposed a modified ver-
sion of an earlier model called RED. This is governed by a system of stochastic differential
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Figure 5.6. Variation of queue for linear control law.

equations driven by doubly stochastic point process with intensity as the control. This
proposed model contains a feedback control law that observes the router (queue) status
and controls the intensity by sending congestion signals (warnings) to the sources for
adjustment of their transmission rates according to the router load. The control laws are
optimized by use of genetic algorithm (GA) and random recursive search (RRS) tech-
nique. It is observed from our simulation results that the linear control law is better than
the polynomial control laws. More precisely, the higher the degree of the polynomial
control law is the lower is the performance. The numerical results demonstrate that the
proposed model and the method can improve the system performance significantly. As
mentioned in the introduction, in previous studies, the choice of the critical parame-
ters such as {minth,maxth,Pmax} describing important thresholds for making discarding
decision was considered to be an unsolved problem. According to our approach, these pa-
rameters or their equivalents are automatically determined by the optimization process
itself. Thus this paper provides a technique for determination of critical parameters.
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