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We demonstrate a specific power series expansion technique to solve the three-dimen-
sional homogeneous and inhomogeneous wave equations. As solving functions, so-called
wave polynomials are used. The presented method is useful for a finite body of certain
shape. Recurrent formulas to improve efficiency are obtained for the wave polynomials
and their derivatives in a Cartesian, spherical, and cylindrical coordinate system. For-
mulas for a particular solution of the inhomogeneous wave equation are derived. The
accuracy of the method is discussed and some typical examples are shown.

1. Introduction and notation

A linear wave equation can be solved using different methods. Some of them are better
for infinite bodies and others for finite bodies but of simple shape. The method presented
here is useful for finite bodies but the shape of the body can be more complicated. The
key idea of the method is to find functions (polynomials) satisfying a given differential
equation to be fitted to the governing initial and boundary conditions. In this sense it is a
variant of the Trefftz method [13, 15]. Especially, in spherical and cylindrical coordinate
system, this method avoids Bessel functions for solution.

The method originates from [12] but only for the case of one-dimensional heat-
conduction problems in the Cartesian coordinate system. In the same case, the heat poly-
nomials were applied for solving unsteady heat conduction problems in [14]. The method
is continued in the Cartesian coordinate system by the contributions [8, 9], describing
heat polynomials for the two- and three-dimensional case. Application of the heat poly-
nomials in polar and cylindrical coordinates is shown in [5, 6, 7]. A slightly different
approach for one-dimensional heat polynomials is presented in [10].

The applications of this method for inverse heat conduction problems are described in
[3, 4, 5, 6, 7, 8, 9]. The paper [1] contains a highly interesting idea using heat polynomials
as a new type of finite element base functions.

All papers described above refer to the heat conduction equation. The work [2] deals
with a lot of other cases involving other differential equations, such as the Laplace, Pois-
son, and Helmholtz equations. Also the one-dimensional wave equation is solved there.

Copyright © 2005 Hindawi Publishing Corporation
Mathematical Problems in Engineering 2005:5 (2005) 583–598
DOI: 10.1155/MPE.2005.583

http://dx.doi.org/10.1155/S1024123X05404044


584 Three-dimensional wave polynomials

The solution for two-dimensional wave equation by using wave polynomials is shown in
[11].

Important for the application of the method are the properties of Taylor series

f (x+ dx, y + dy,z+ dz, t+ dt)= f (x, y,z, t) +
d f

1!
+

d2 f

2!
+ ···+

dN f

N !
+RN+1, (1.1)

where

dn f =
(
∂ f

∂x
dx+

∂ f

∂y
dy +

∂ f

∂z
dz+

∂ f

∂t
dt

)n

. (1.2)

Based on this, in Section 2 three-dimensional wave polynomials and their properties in
the Cartesian coordinate system are considered. Section 3 contains three-dimensional
wave polynomials in the spherical and cylindrical coordinate system. In Section 4, the so-
lution of the wave equation using wave polynomials is obtained. Section 5 discusses the
accuracy of the method. Section 6 contains solution for inhomogeneous wave equation
and in Section 7 some examples are considered.

2. Wave polynomials in the Cartesian coordinate system

They are two ways to obtain wave polynomials. The first one is to use a “generating func-
tion.” The second is to develop the function satisfying wave equation in Taylor series.

2.1. Generating function. We consider the nondimensional wave equation

∂2w

∂t2
= ∂2w

∂x2
+
∂2w

∂y2
+
∂2w

∂z2
. (2.1)

The function

g = ei(ax+by+cz+dt) (2.2)

satisfying (2.1) when d2 = a2 + b2 + c2 is called a generating function for wave polynomi-
als. The power series expansion for (2.2) is

ei(ax+by+cz+dt) =
∞∑
n=0

n∑
k=0

n−k∑
l=0

n−k−l∑
m=0

R̃(n−k−l−m)klm(x, y,z, t)an−k−l−mbkcldm, (2.3)

where R̃(n−k−l−m)klm(x, y,z, t) are polynomials of variables x, y, z, t.
Substituting d2 = a2 + b2 + c2 in (2.3) we obtain

ei(ax+by+cz+dt) =
∞∑
n=0

n∑
k=0

n−k∑
l=0

n−k−l∑
m=0
m<2

R(n−k−l−m)klm(x, y,z, t)an−k−l−mbkcldm. (2.4)
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The real and imaginary parts of polynomials R satisfy (2.1) and are called wave polyno-
mials:

P(n−k−l−m)klm(x, y,z, t)= Re
(
R(n−k−l−m)klm(x, y,z, t)

)
,

Q(n−k−l−m)klm(x, y,z, t)= Im
(
R(n−k−l−m)klm(x, y,z, t)

)
,

(2.5)

for example,

P0000 = 1,

Q1000 = x, Q0100 = y, Q0010 = z, Q0001 = t,

P2000 =−x2

2
− t2

2
, P1100 =−xy, P1010 =−xz, P1001 =−xt, P0200 =− y2

2
− t2

2
,

P0110 =−yz, P0101 =−yt, P0020 =−z2

2
− t2

2
, P0011 =−zt, . . . ,

Q0000 = P1000 = P0100 = P0010 = P0001 =Q2000 =Q1100 =Q1010 =Q1001 = ··· = 0.
(2.6)

Note that there is no R0002 because m< 2.

2.2. Partial derivatives of wave polynomials. To obtain recurrent formulas for partial
derivatives for wave polynomials we differentiate (2.4):

∂g

∂x
= iag =

∞∑
n=0

n∑
k=0

n−k∑
l=0

n−k−l∑
m=0
m<2

∂R(n−k−l−m)klm

∂x
an−k−lmbkcldm. (2.7)

Hence

∞∑
n=0

n∑
k=0

n−k∑
l=0

n−k−l∑
m=0
m<2

iR(n−k−l−m)klma
n−k−l−m+1bkcldm

=
∞∑
n=0

n∑
k=0

n−k∑
l=0

n−k−l∑
m=0
m<2

∂R(n−k−l−m)klm

∂x
an−k−l−mbkcldm,

∂R(n−k−l−m)klm

∂x
= iR(n−k−l−m−1)klm,

(2.8)

so that finally

∂P(n−k−l−m)klm

∂x
=−Q(n−k−l−m−1)klm,

∂Q(n−k−l−m)klm

∂x
= P(n−k−l−m−1)klm. (2.9)
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Similarly, we have

∂P(n−k−l−m)klm

∂y
=−Q(n−k−l−m)(k−1)lm,

∂Q(n−k−l−m)klm

∂y
= P(n−k−l−m)(k−1)lm, (2.10)

∂P(n−k−l−m)klm

∂z
=−Q(n−k−l−m)k(l−1)m,

∂Q(n−k−l−m)klm

∂z
= P(n−k−l−m)k(l−1)m, (2.11)

∂P(n−k−l)kl0
∂t

=−Q(n−k−l−2)kl1−Q(n−k−l)(k−2)l1−Q(n−k−l)k(l−2)1,

∂P(n−k−l−1)kl1

∂t
=−Q(n−k−l−1)k0,

∂Q(n−k−l)kl0
∂t

= P(n−k−l−2)kl1 +P(n−k−l)(k−2)l1 +P(n−k−l)k(l−2)1,

∂Q(n−k−l−1)kl1

∂t
= P(n−k−l−1)kl0.

(2.12)

Starting values for the derivatives (2.9), (2.10), (2.11), and (2.12) are obtained either from
(2.6) or directly by putting zero instead of the polynomial in which any of its subscripts
takes a negative value.

2.3. Recurrent formulas for wave polynomials. Recurrent formulas are most useful in
numerical calculations. The following theorem enables one to get the wave polynomials
P(n−k−l−m)klm and Q(n−k−l−m)klm.

Theorem 2.1. Let P0000 = 1 and let Q0000 = 0. Let P(n−k−l−m)klm =Q(n−k−l−m)klm = 0 when
any subscript is negative. Then, the polynomials

P(n−k−l)kl0 =−1
n

(
xQ(n−k−l−1)kl0 + yQ(n−k−l)(k−1)l0 + zQ(n−k−l)k(l−1)0

+ tQ(n−k−l−2)kl1 + tQ(n−k−l)(k−2)l1 + tQ(n−k−l)k(l−2)1
)
,

(2.13)

P(n−k−l−1)kl1 =−1
n

(
xQ(n−k−l−2)kl1 + yQ(n−k−l−1)(k−1)l1

+ zQ(n−k−l−1)k(l−1)1 + tQ(n−k−l−1)kl0
)
,

(2.14)

Q(n−k−l)kl0 = 1
n

(
xP(n−k−l−1)kl0 + yP(n−k−l)(k−1)l0 + zP(n−k−l)k(l−1)0

+ tP(n−k−l−2)kl1 + tP(n−k−l)(k−2)l1 + tP(n−k−l)k(l−2)1
)
,

(2.15)

Q(n−k−l−1)kl1 = 1
n

(
xP(n−k−l−2)kl1 + yP(n−k−l−1)(k−1)l1

+ zP(n−k−l−1)k(l−1)1 + tP(n−k−l−1)kl0
) (2.16)

satisfy the wave (2.1).
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Proof. For relation (2.13), we assume that all polynomials on the right-hand side satisfy
(2.1). Substituting (2.13) in (2.1) we get

∂Q(n−k−l−2)kl1

∂t
+
∂Q(n−k−l)(k−2)l1

∂t
+
∂Q(n−k−l)k(l−2)1

∂t

= ∂Q(n−k−l−1)kl0

∂x
+
∂Q(n−k−l)(k−1)l0

∂y
+
∂Q(n−k−l)k(l−1)0

∂z
,

(2.17)

hence according to (2.9), (2.10), (2.11), and (2.12) we have

P(n−k−l−2)kl0 +P(n−k−l)(k−2)l0 +P(n−k−l)k(l−2)0

= P(n−k−l−2)kl0 +P(n−k−l)(k−2)l0 +P(n−k−l)k(l−2)0.
(2.18)

This proves the theorem. The proof for (2.14), (2.15), and (2.16) is similar.
Similarly as before, starting values for the polynomials (2.13)–(2.16) can be obtained

either from (2.6) or directly by putting zero instead of the polynomial in which any of its
subscripts takes a negative value. �

2.4. Expansion of the function satisfying wave equation in Taylor series. Similarly as
for other equations [2], the wave polynomials can be obtained using Taylor series (1.1)
for function w. Let function w(x, y,z, t) satisfy wave equation (2.1), given boundary and
initial conditions. We assume thatw is differentiable in the neighborhood of (x0, y0,z0, t0).
Let x̂ = x− x0, ŷ = y− y0, ẑ = z− z0, t̂ = t− t0. Then, the Taylor series for function w and
for N = 2 is

w(x, y,z, t)=w
(
x0, y0,z0, t0

)
+
∂w

∂x
x̂+

∂w

∂y
ŷ +

∂w

∂z
ẑ+

∂w

∂t
t̂+

∂2w

∂x2

x̂2

2
+
∂2w

∂y2

ŷ2

2
+
∂2w

∂z2

ẑ2

2

+
∂2w

∂t2

t̂2

2
+

∂2w

∂x∂y
x̂ ŷ +

∂2w

∂x∂z
x̂ẑ+

∂2w

∂x∂t
x̂t̂+

∂2w

∂y∂z
ŷẑ+

∂2w

∂y∂t
ŷt̂+

∂2w

∂z∂t
ẑt̂+R3.

(2.19)

Eliminating the derivative ∂2w/∂t2 by (2.1) yields

w(x, y,z, t)=w
(
x0, y0,z0, t0

)
+
∂w

∂x
x̂+

∂w

∂y
ŷ +

∂w

∂z
ẑ+

∂w

∂t
t̂+

∂2w

∂x2

(
x̂2

2
+
t̂2

2

)

+
∂2w

∂y2

(
ŷ2

2
+
t̂2

2

)
+
∂2w

∂z2

(
ẑ2

2
+
t̂2

2

)
+

∂2w

∂x∂y
x̂ ŷ +

∂2w

∂x∂z
x̂ẑ

+
∂2w

∂x∂t
x̂t̂+

∂2w

∂y∂z
ŷẑ+

∂2w

∂y∂t
ŷt̂+

∂2w

∂z∂t
ẑt̂+R3.

(2.20)

The coefficients succeeding the derivation terms on the right-hand side represent the
nonzero wave polynomials (2.6). Similarly, we get polynomials for N = 3,4, . . . .
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3. Wave polynomials in a spherical and cylindrical coordinate systems

3.1. Spherical coordinate system. To obtain wave polynomials in a spherical coordinate
system

x = r cosθ cosφ, y = r cosθ sinφ, z = r sinθ, (3.1)

we substitute (3.1) in (2.1) to get

∂2w

∂t2
= 2

r

∂w

∂r
+
∂2w

∂r2
− 1
r2ctgθ

∂w

∂θ
+

1
r2

∂2w

∂θ2
+

1
r2 cos2 θ

∂2w

∂φ2
. (3.2)

Then, to find the wave polynomials in polar coordinates, it is sufficient to substitute (3.1)
in polynomials expressed in the Cartesian coordinate system. The polynomials obtained
in that way satisfy (3.2), for example, for the nonzero polynomials (2.6),

P0000(r,φ,θ, t)= 1, Q1000(r,φ,θ, t)= r cosθ cosφ,

Q0100(r,φ,θ, t)= r cosθ sinφ, Q0010(r,φ,θ, t)= r sinθ,

Q0001(r,φ,θ, t)= t, . . . .

(3.3)

It is obvious that we can use the recurrent formulas (2.9)–(2.12) and (2.13)–(2.16) also
in a spherical coordinate system, keeping in mind that x = r cosθ cosφ, y = r cosθ sinφ,
z = r sinθ.

3.2. Cylindrical coordinate system. To obtain wave polynomials in a cylindrical coordi-
nate system

x = r cosφ, y = r sinφ, z = z, (3.4)

we substitute (3.4) in (2.1) to get

∂2w

∂t2
= ∂2w

∂r2
+

1
r

∂w

∂r
+

1
r2

∂2w

∂φ2
+
∂2w

∂z2
. (3.5)

Then, to find the wave polynomials in cylindrical coordinates, it is sufficient to substi-
tute (3.4) in polynomials expressed in the Cartesian coordinate system. The polynomials
obtained in that way satisfy (3.5), for example, for the nonzero polynomials (2.6),

P0000(r,φ,z, t)= 1, Q1000(r,φ,z, t)= r cosφ,

Q0100(r,φ,z, t)= r sinφ, Q0010(r,φ,z, t)= z,

Q0001(r,φ,z, t)= t, . . . .

(3.6)

Similarly, it is obvious that we can use the recurrent formulas (2.9)–(2.12) and (2.13)–
(2.16) in a cylindrical coordinate system, keeping in mind that x = r cosφ, y = r sinφ,
z = z. In a spherical and cylindrical coordinate system, we avoid Bessel functions in the
solution.
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4. Wave polynomial method

We denote the nonzero polynomials as

V1 = P0000, V2 =Q1000, V3 =Q0100, V4 =Q0010, V5 = P0001,

V6 = P2000, V7 = P1100, V8 = P1010, V9 = P1001, . . . .
(4.1)

Obviously, we have one polynomial of order zero, four polynomials of order one, nine
polynomials of order two, and so on.

The wave polynomial method discussed in this paper belongs to the class of the Trefftz
methods. As an approximation of solution for the wave (2.1), we take a linear combina-
tion of wave polynomials

w ≈ u=
N∑
n=1

cnVn. (4.2)

Because all polynomials Vn satisfy (2.1), their linear combination satisfies this equation
too. The coefficients cn of linear combination (4.2) are chosen such that the error for
fulfilling given boundary and initial conditions corresponding to (2.1) is minimized (see
Section 7).

5. Accuracy of approximation

The wave polynomial method is an approximation method. It is very important to know
how big is the error of approximation. Moreover, this method should be convergent. It
is easy to specify the error when in approximation (4.2) all polynomials of order zero to
K are taken, for example, for K = 0, N = 1, for K = 1, N = 1 + 4 = 5, for K = 2, N =
1 + 4 + 9 = 14, and so on. Then the error of approximation is equal to the remainder
term in the Taylor series for function w (see relations (2.19) and (2.20)). This means
that the wave polynomial method is convergent if limN→∞RN = 0 in the Taylor series of
function w.

6. Solution for an inhomogeneous wave equation

We consider

L(w)=Q(x, y,z, t), (6.1)

where L= ∂2/∂t2− ∂2/∂x2− ∂2/∂y2− ∂2/∂z2. As an approximation of the solution we take

w ≈ u=
N∑
n=1

cnVn +wp. (6.2)

Because all polynomials Vn satisfy the wave equation (2.1), a linear combination of them
satisfy (2.1). Additionally, wp denotes the particular solution for the inhomogeneous
wave equation. Boundary and initial conditions determine the coefficients cn.
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6.1. Particular solution. When Q ∈ CS+1, we can use a power series for Q and the solu-
tion wp can be calculated as

wp = L−1(Q)≈ L−1

( S∑
s=0

∑
n+k+l+m=s

∂(n+k+l+m)Q
(
x0, y0,z0, t0

)
∂xn∂yk∂zl∂tm

x̂n ŷkẑl t̂m

n!k!l!m!

)

=
S∑

s=0

∑
n+k+l+m=s

anklmL
−1(x̂n ŷkẑl t̂m),

(6.3)

where x̂ = x− x0, ŷ = y− y0, ẑ = z− z0, t̂ = t− t0.
The coefficients anklm are known, when function Q is given. Theorem 6.1 enables to

get the particular solution.

Theorem 6.1. Denote Znklm = L−1(xnykzltm). Then recurrent formulas for particular solu-
tions are as follows:

Z1
nklm =

1
(n+ 2)(n+ 1)

[− xn+2ykzltm +m(m− 1)Z(n+2)kl(m−2)

− k(k− 1)Z(n+2)(k−2)lm− l(l− 1)Z(n+2)k(l−2)m
]
,

(6.4)

or

Z2
nklm =

1
(k+ 2)(k+ 1)

[− xnyk+2zltm +m(m− 1)Zn(k+2)l(m−2)

−n(n− 1)Z(n−2)(k+2)lm− l(l− 1)Zn(k+2)(l−2)m
]
,

(6.5)

or

Z3
nklm =

1
(l+ 2)(l+ 1)

[− xnykzl+2tm +m(m− 1)Znk(l+2)(m−2)

−n(n− 1)Z(n−2)k(l+2)m− k(k− 1)Zn(k−2)(l+2)m
]
,

(6.6)

or

Z4
nklm =

1
(m+ 2)(m+ 1)

[
xnykzltm+2 +n(n− 1)Z(n−2)kl(m+2)

+ k(k− 1)Zn(k−2)l(m+2) + l(l− 1)Znk(l−2)(m+2)
]
.

(6.7)
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Proof. For relation (6.4) we assume that L(Znklm)= xnykzltm for all Z on the right-hand
side of relation (6.4). Then we have

L
(
Znklm

)= L

(
1

(n+ 2)(n+ 1)

[− xn+2ykzltm +m(m− 1)Z(n+2)kl(m−2)

− k(k− 1)Z(n+2)(k−2)lm− l(l− 1)Z(n+2)k(l−2)m
])

= 1
(n+ 2)(n+ 1)

[−m(m− 1)xn+2ykzltm−2 + (n+ 2)(n+ 1)xnykzltm

+ k(k− 1)xn+2yk−2zltm + l(l− 1)xn+2ykzl−2tm

+m(m− 1)xn+2ykzltm−2− k(k− 1)xn+2yk−2zltm

− l(l− 1)xn+2ykzl−2tm
]= xnykzltm.

(6.8)

This proves the theorem. The proof for (6.5), (6.6), and (6.7) is similar.
In formulas (6.4)–(6.7), a term on the right-hand side is put to be zero if the corre-

sponding subscript takes a negative value. �

7. Examples

7.1. Example 1 (cylindrical coordinate system)

7.1.1. Formulation of the problem. We consider the testing problem described in a cylin-
der by

(i) equation

∂2w

∂t2
= ∂2w

∂x2
+
∂2w

∂y2
+
∂2w

∂z2
(x, y,z)∈D, t ≥ 0, (7.1)

where D = {(x, y,z) : x2 + y2 ≤ 1, 0≤ z ≤ 1},
(ii) initial conditions

w(x, y,z,0)= sin(x+ y + z),
∂w(x, y,z,0)

∂t
=√3cos(x+ y + z), (7.2)

(iii) boundary conditions

w(x, y,0, t)= sin(x+ y +
√

3t), w(x, y,1, t)= sin(x+ y + 1 +
√

3t),

w(x, y,z, t)|x2+y2=1,0≤z≤1 = sin(x+ y + z+
√

3t).
(7.3)

The exact solution for this problem is w(x, y,z, t)= sin(x+ y + z+
√

3t), but we solve this
problem by using wave polynomials in a cylindrical coordinate system. In a cylindrical
coordinate system (3.4) we get

(i) equation

∂2w

∂t2
= ∂2w

∂r2
+

1
r

∂w

∂r
+

1
r2

∂2w

∂φ2
+
∂2w

∂z2
(r,φ,z)∈D, t ≥ 0, (7.4)

where D = {(r,φ,z) : 0≤ r ≤ 1, 0≤ φ≤ 2π, 0≤ z ≤ 1},
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(ii) initial conditions

w(r,φ,z,0)= sin(r cosφ+ r sinφ+ z)= d(r,φ,z), (7.5)

∂w(r,φ,z,0)
∂t

=√3cos(r cosφ+ r sinφ+ z)= h(r,φ,z), (7.6)

(iii) boundary conditions

w(r,φ,0, t)= sin(r cosφ+ r sinφ+
√

3t)= p(r,φ, t), (7.7)

w(r,φ,1, t)= sin(r cosφ+ r sinφ+ 1 +
√

3t)= q(r,φ, t), (7.8)

w(r,φ,z, t)|r=1,0≤z≤1 = sin(cosφ+ sinφ+ z+
√

3t)= s(φ,z, t). (7.9)

The exact solution for this problem is

w(r,φ,z, t)= sin(r cosφ+ r sinφ+ z+
√

3t). (7.10)

7.1.2. Solution by using wave polynomials. The solution w(r,φ,z, t) is approximated ac-
cording to (4.2). Here Vn are the wave polynomials in a cylindrical coordinate system. We
look for an approximate solution in the time interval (0,∆t). The coefficients cn have to
be chosen appropriately to minimize the functional

I =
∫ 1

0
dr
∫ 2π

0
dφ
∫ 1

0

([
u(r,φ,z,0)−d(r,φ,z)

]2︸ ︷︷ ︸
cond.(7.5)

+
[
∂u(r,φ,z,0)

∂t
−h(r,φ,z)

]2

︸ ︷︷ ︸
cond.(7.6)

)
dz

+
∫ 1

0
dr
∫ 2π

0
dφ
∫ ∆t

0

([
u(r,φ,0, t)− p(r,φ, t)

]2︸ ︷︷ ︸
cond.(7.7)

+
[
u(r,φ,1, t)− q(r,φ, t)

]2︸ ︷︷ ︸
cond.(7.8)

)
dt

+
∫ 2π

0
dφ
∫ 1

0
dz
∫ ∆t

0

[
u(1,φ,z, t)− s(φ,z, t)

]2︸ ︷︷ ︸
cond.(7.9)

dt.

(7.11)

A necessary condition to minimize the functional I is

∂I

∂c1
= ··· = ∂I

∂cN
= 0. (7.12)

From a linear system of equations (7.12), we obtain coefficients cn.
In time intervals (∆t,2∆t),(2∆t,3∆t), . . . , we proceed analogously. Here, the initial

condition for time interval ((m− 1)∆t,m∆t) is the value of function u at the end of in-
terval ((m− 2)∆t, (m− 1)∆t). All results below have been obtained for ∆t = 1.

Figure 7.1 shows for r = 0.5, z = 0.5 (a) the exact solution, (b) an approximation by
polynomials from order 0 to 4, and (c) the difference between (a) and (b). It is obvious
that the presented approximation is very accurate.
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Figure 7.1. Solution for r = z = 0.5: (a) exact, (b) approximation, and (c) difference.

Figure 7.2 shows the exact result as a function of the angle for x = 0.5, y = 0.5, t = 1
and the approximation by polynomials from degree 0 to (a) 2, (b) 3, and (c) 4. Again it
is obvious that the approximation is very accurate. Figure 7.2 also shows that in a wave
polynomial method the error decreases when the degree of polynomials increases.

7.2. Example 2 (inhomogeneous wave equation)

7.2.1. Formulation of the problem. We consider the testing problem described in a tetra-
hedron by

(i) equation

∂2w

∂t2
= ∂2w

∂x2
+
∂2w

∂y2
+
∂2w

∂z2
+ 20sin(πt) (x, y,z)∈D, t ≥ 0, (7.13)
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Figure 7.2. Exact solution versus angle for x = 0.5, y = 0.5, t = 1 and approximation by polynomials
from degree 0 to (a) 2, (b) 3, and (c) 4.

where D = {(x, y,z) : x ≥ 0, y ≥ 0, z ≥ 0, x+ y + z ≤ 1}, here

Q(x, y,z, t)= 20sin(πt), (7.14)

(ii) initial conditions

w(x, y,z,0)= cos(x+ y + z)= d(x, y,z), (7.15)

∂w(x, y,z,0)
∂t

=−√3sin(x+ y + z)− 20
π
= h(x, y,z), (7.16)
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(iii) boundary conditions

w(0, y,z, t)= cos(y + z+
√

3t)− 20sin(πt)
π2

= p(y,z, t), (7.17)

w(x,0,z, t)= cos(x+ z+
√

3t)− 20sin(πt)
π2

= q(x,z, t), (7.18)

w(x, y,0, t)= cos(x+ y +
√

3t)− 20sin(πt)
π2

= r(x, y, t), (7.19)

w(x, y,z, t)|x+y+z=1 = cos(1 +
√

3t)− 20sin(πt)
π2

= s(x, y, t). (7.20)

The exact solution for this problem is

w(x, y,z, t)= cos(x+ y + z+
√

3t)− 20sin(πt)
π2

, (7.21)

but we solve this problem by using wave polynomials in the Cartesian coordinate system.

7.2.2. Solution by using wave polynomials. The solution w(x, y,z, t) is approximated ac-
cording to (6.2) using (6.3) and (6.4). We look for an approximate solution in the time
interval (0,∆t). The coefficients cn have to be chosen appropriately to minimize the func-
tional

I =
∫ 1

0
dx
∫ 1−x

0
dy
∫ 1−x−y

0

[
u(x, y,z,0) +wp(x, y,z,0)−d(x, y,z)

]2︸ ︷︷ ︸
cond.(7.15)

dz

+
∫ 1

0
dx
∫ 1−x

0
dy
∫ 1−x−y

0

[
∂u(x, y,z,0)

∂t
+
∂wp(x, y,z,0)

∂t
−h(x, y,z)

]2

︸ ︷︷ ︸
cond.(7.16)

dz

+
∫ 1

0
dy
∫ 1−y

0
dz
∫ ∆t

0

[
u(0, y,z, t) +wp(0, y,z, t)− p(y,z, t)

]2︸ ︷︷ ︸
cond.(7.17)

dt

+
∫ 1

0
dx
∫ 1−x

0
dz
∫ ∆t

0

[
u(x,0,z, t) +wp(x,0,z, t)− q(x,z, t)

]2︸ ︷︷ ︸
cond.(7.18)

dt

+
∫ 1

0
dx
∫ 1−x

0
dy
∫ ∆t

0

[
u(x, y,0, t) +wp(x, y,0, t)− r(x, y, t)

]2︸ ︷︷ ︸
cond.(7.19)

dt

+
√

(3)
∫ 1

0
dx
∫ 1−x

0
dy
∫ ∆t

0

[
u(x, y,1− x− y, t) +wp(x, y,1− x− y, t)− s(x, y, t)

]2︸ ︷︷ ︸
cond.(7.20)

dt.

(7.22)

A necessary condition to minimize functional I is relation (7.12). Similar to Section 7.1,
from linear system of equations (7.12) we obtain coefficients cn. All results below are
obtained for ∆t = 1.
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Figure 7.3. Solution for x = y = 0.1: (a) exact, (b) approximation, and (c) difference.

Figure 7.3 shows for x = 0.1, y = 0.1 (a) the exact solution, (b) an approximation by
polynomials from order 0 to 4, and (c) the difference between (a) and (b). It is obvious
that the presented approximation is very accurate.

Figure 7.4 shows the exact result for the vibration as a function of time for the location
x = 0.1, y = 0.1, z = 0.1 and the approximation by polynomials from degree 0 to (a) 1,
(b) 2, and (c) 4.

Again, it is obvious that the approximation in time coincides very well. Figure 7.4
shows that in a wave polynomial method for an inhomogeneous wave equation the error
decreases when the degree of polynomials increases.

8. Concluding remarks

A new technique for solving three-dimensional wave equation has been developed. The
main result is to derive formulas for the wave polynomials (satisfying a wave equation)
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Figure 7.4. Exact solution versus time for points x = 0.1, y = 0.1, z = 0.1 and approximation by poly-
nomials from degree 0 to (a) 1, (b) 2, and (c) 4.

and their derivatives. The wave polynomial method presented in this paper is a straight-
forward method for solving wave equations in finite bodies. This method is also useful
when the shape of the body is more complicated. The coefficients cn are determined by
calculating integrals—for most shapes it does not create any problem. The method is
convergent and the error is equal to the remainder term in the Taylor series. The sim-
ple examples presented in the paper show that the obtained approximations of the exact
solutions are very good both in the Cartesian and the cylindrical coordinate system. Espe-
cially, in the polar and cylindrical coordinate system this method avoids Bessel functions
for solution. The solution, as a linear combination of wave polynomials, exactly satisfies
the wave equation, approximately initial and boundary conditions. It is important that
this method can be used for extrapolation. Therefore, the wave polynomial method can
also be applied to inverse problems. Wave polynomials can be used as finite element base
functions which will be the subject of another paper.
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