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Some important features and implications of dissipativity and passivity properties in the
discrete-time setting are collected in this paper. These properties are mainly referred to
as the stability analysis (feedback stability systems and study of the zero dynamics), the
relative degree, the feedback passivity property, and the preservation of passivity under
feedback and parallel interconnections. Frequency-domain characteristics are exploited
to show some of these properties. The main contribution is the proposal of necessary and
sufficient conditions in order to render a multiple-input multiple-output linear discrete-
time invariant system passive by means of a static-state feedback and using the properties
of the relative degree and zero dynamics of the system. A discrete-time model for the DC-
to-DC buck converter is used as an example to illustrate the passivation scheme proposed.
In addition, dissipativity frequency-domain properties are related to some feedback sta-
bility criteria.

1. Introduction

Dissipativity and its particular case of passivity were born from the observation of phys-
ical systems behaviour. They are the formalization of physical energy processes. Passivity
ideas emerged in the circuit theory field, from the phenomenon of dissipation of energy
across resistors. The abstraction of the connections between input-output behaviour, in-
ternal system description, and properties of energy functions is the basis for dissipative
systems. Precisely, due to the fact that dissipativity merges all these concepts, it acts as a
powerful tool for analyzing systems behaviour.

The study of the behaviour of a system in terms of the energy it can store or dissipate
has an extraordinary value, since it gives a rather physical and intuitive interpretation of
problems, such as the system stability. The analysis of mechanical, electromechanical, or
electrical systems, among others, by means of their associated energy is appropriate.

A dissipative system is a system which cannot store all the energy that has been given,
that is, it dissipates energy in some way. Our definition of dissipative systems is based on
the existence of a storage function (energy stored by the system) and a supply function
(external received energy). There are different kinds of dissipative systems depending on
the form of the supply function; passive systems are a special case of dissipative ones.
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Dissipative and passive systems exhibit highly desirable properties, namely, the ones re-
ferring to stability and representation properties, which may simplify the system analysis
and control design [30, 31].

Although the interest in discrete-time dynamics is important by itself, we can also
bring up for consideration discrete-time dynamics obtained from continuous-time ones.
Most discrete-time systems are sampled-data systems obtained from continuous-time
ones by means of a sample-and-hold element. Computer-controlled systems are sampled-
data systems. Sampling may transform the properties of the original system, including
passivity- and dissipativity-related ones.

The motivation of studying dissipative discrete-time systems stems from the fact that
dissipativity and passivity properties can simplify the system analysis. Furthermore, it
is adequate to translate well-known properties in the continuous-time setting into the
discrete-time framework, taking into account the increasing importance that is recently
given to discrete control for continuous-time systems or to new hybrid representations
used to describe more complex dynamical systems (see [29]) in which discrete-type sub-
systems are present.

Dissipativity and passivity implications in dynamical continuous-time systems have
been broadly studied. Nevertheless, a lot of problems concerning dissipativity and passiv-
ity in the discrete-time setting remain unsolved, or they have not attracted as significant
attention as in the continuous-time case. This is the case of the study of the frequency-
domain implications of dissipativity in the discrete-time domain, the interconnection of
passive discrete-time systems, the implications of dissipativity and passivity in the rela-
tive degree and the zero dynamics of discrete dynamics, the problem of rendering a system
passive by means of a static-state feedback, or the study of absolute stability by means of
the dissipativity approach in nonlinear discrete-time systems. This paper deals with these
appealing problems and the further research on some of these topics is motivated.

Dissipativity and passivity are properties which reflect internal properties of systems.
A comment on some of these properties for discrete-time systems is given in the following
paragraphs.

One of the most important passivity results is that a negative feedback loop consisting
of two passive systems is passive. In addition, under an additional detectability condi-
tion, this feedback system is also stable. This result is well known for continuous-time
systems [24], but it has attracted less attention in the discrete-time setting. Passivity and
dissipativity have been considered as a vehicle for producing stability criteria for inter-
connected systems. General input-output systems representations have been used in an
operator-theoretic setting. This has allowed to treat discrete- and continuous-time sys-
tems within the same framework, see [6, 32]. In the seminal work [21], among other
things, the concept of hyperstability is introduced, that is, a closed-loop system consist-
ing of a linear system with a nonlinear block in the feedback path is hyperstable when the
nonlinear block satisfies a passivity-like characteristic and the linear block is positive real.
This result is given either for the discrete-time or the continuous-time case.

The study of the properties of the relative degree and zero dynamics of a passive system
has played an important role in understanding problems such as feedback passivity or
the stabilization of passive systems in the continuous-time setting, see [2]. For general
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discrete-time systems, the implications of dissipativity and passivity in the relative degree
and zero dynamics have not been established yet, these ones have only been studied for
the losslessness case, see [3], and for the passivity case [18, 19].

The properties of the relative degree and zero dynamics of a passive system are closely
connected to its feedback passivity property. The action of rendering a system passive by
means of a static-state feedback is regarded as feedback passivity or passivation. Systems
which can be rendered passive are referred to as feedback passive systems. For the linear
case, the problem of feedback dissipativity for (Q,S,R)-dissipative systems (i.e., dissipa-
tive systems with a supply function of the form s(y,u) = yTQy +2yTSu + u’ Ru, with Q,
S, R matrices with appropriate dimensions, and Q, R symmetric) has been solved in the
framework of the positive real control [4, 5] and the (Q, S, R)-dissipative control problem
[26, 27] in connection with He, design.

This paper makes use of an important tool in order to illustrate some special properties
that dissipative and passive systems exhibit: the frequency-domain interpretation of pas-
sivity and dissipativity by means of the positive realness property of a transfer function.
Three main problems are treated. First, passivity preservation under block interconnec-
tion. Second, the relative degree and zero dynamics of passive linear discrete-time systems
are analyzed and related to the feedback passivity property. Third, the frequency-domain
characteristics of dissipativity are related to some frequency-based nonlinear feedback
stability criteria in the discrete-time domain. A preliminary study of some of these prop-
erties was made in [17].

Some of the properties analyzed for the discrete-time case are compared with the
continuous-time counterparts. This work can be considered as a results-collecting one,
however, some contributions are given and some ideas which have not been completely
exploited before are presented from another viewpoint. Two main results are highlighted,
which are compared to previous related results as follows.

(1) Referring to the study of passivity preservation under block interconnection, here,
the state-space system description is used and dissipativity and passivity are defined in
terms of energy-like functions, unlike previous works, such as [6, 24, 32] which use an
input-output description. In these works, passivity of operators, which describe the sys-
tem, is defined. The state-space description facilitates the study of qualitative behaviour
of system orbits and is computationally more feasible.

(2) Concerning the feedback passivity results for linear discrete-time invariant sys-
tems, the approach followed is different from the ones proposed previously in the litera-
ture [4, 5, 26, 27]. These works are oriented to achieve asymptotic stability of uncertain
systems exploiting dissipativity properties. Here, the conditions under which a system can
be transformed into a passive system are based on the properties of the relative degree and
zero dynamics of the nonpassive system.

Although the results presented are inspired by their continuous-time counterparts [2,
24], they are different in essence due to the particular properties of discrete-time systems.
For instance, passive continuous-time systems have relative degree one [2], while passive
discrete-time ones have relative degree zero.

The paper is organized as follows. Section 2 recall the most commonly used defini-
tions for dissipativity in the discrete-time setting in addition to its frequency-domain



602  Dissipativity in linear discrete-time systems

characteristics, which will be used in the sequel. Section 3 is devoted to the study of
the interconnection of passive discrete-time systems. Some notes on the preservation of
some classes of dissipativity under feedback and parallel interconnections are also given.
Section 4 presents the special properties that the relative degree and zero dynamics of pas-
sive discrete-time systems have. Section 5 is devoted to the feedback passivity problem.
Section 6 relates the dissipativity frequency-domain properties of discrete-time systems
to some of the most important nonlinear feedback stability criteria in the discrete-time
domain, such as Popov’s, Tsypkin’s, and some cases of the circle criteria. Conclusions are
given in the last section.

2. Definitions: dissipativity-related frequency-domain characteristics

Dissipativity can be formalized from two different points of view: considering the input-
output description of the system via an operator on a function space or via the state-
space or internal dynamical representation. The former endows the frequency-domain
characterization of dissipativity; for the discrete-time case, see, for example, [8, 21, 32].
The latter interprets dissipativity by means of an energy balance equation; for the discrete-
time case, see, for example, [3, 14, 16, 23].

The frequency-domain interpretation of passivity for linear systems is given by means
of the positive realness property of a transfer function. Passivity is equivalent to positive
realness, see for the discrete-time case [9]. (Q,S, R)-dissipativity is also equivalent to the
positive realness of a transfer function [8]. The concept of positive real transfer functions
is originated in the continuous-time setting in network theory as the frequency-domain
formulation of the fact that the time integral of the energy input to a passive network
must be positive, in other words, a linear time-invariant passive circuit, having positive
resistance, inductance, and capacitance values, has a positive real impedance function.
This property can be easily identified via the Nyquist diagram of the associated transfer
function of the system, which is confined in the right-hand side half of the Nyquist plane.
In addition, positive real transfer functions do not have poles with modulus greater than
one, and their poles lying on |z| = 1 are simple with positive real residues. These features
will be used in the sequel.

The interest in studying positive realness properties arises from their implications in
systems stability. Positive real systems have played a major role in stability theory. An in-
teresting linear control problem which has attracted broad attention is the positive real
control problem which consists in designing a controller which renders the closed-loop
transfer function positive real, see [10, 22, 25] and references therein. The study of the
positive real control problem is motivated because robust stability can be guaranteed pro-
vided that an appropriate closed-loop system is strictly positive real [1, 12]; in these last
two mentioned works, the positive real control problem is considered as a passivation
problem. The robust quadratic dissipative control problem, that is, the problem of ren-
dering an uncertain linear system (Q, S, R)-dissipative and asymptotic stable is treated
in [33]. All these works are in the framework of continuous-time systems. The discrete-
time counterpart of these results is given in [4, 5] for the positive control problem and in
[26, 27] for the quadratic dissipative control problem and the robust quadratic dissipative
control problem, respectively.
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In the present work, the state-space formalization of dissipativity and passivity will be
followed and use is made of storage and supply functions.
Let the system

x(k+1) = f(x(k),u(k)), x€®, uec,

y(k) = h(x(k),u(k)), yeY, (2.1)

where f: X XU - X and h: X XU — Y are smooth maps, with & C R”, U, Y c R™,
ke%,:=1{0,1,2,...}.

Definition 2.1. A positive definite €2 function V : & — R such that V(0) = 0 is addressed
as storage function. A 6? function denoted by s(y,u) with s: Y X U — R is addressed as
supply function.

Definition 2.2 [3]. System (2.1) with supply function s is said to be dissipative if there
exists a storage function V such that

V(x(k+1)) = V(x(k)) <s(y(k),u(k)), ¥V (x(k),u(k)) € XxU, Vk. (2.2)
Definition 2.3. System (2.1) is said to be passive if it is dissipative with respect to the
supply function s(y(k),u(k)) = yT (k)u(k).

In the linear case, the relation between the input-output and the state-space represen-
tations of passivity properties is given by the Kalman-Yakubovich-Popov (KYP) lemma,
which is proposed for the discrete-time setting in [9]. The generalized version of the KYP
lemma, also called discrete positive real lemma, for the dissipativity discrete-time case is
given in [8] for supply functions of the form

s(y,u) = yTQy + ZyTSu +u’Ru, (2.3)

where Q, S, R are appropriately dimensioned matrices, with Q and R symmetric.

Lemma 2.4 [8]. Let G(z) be a transfer function description, and M(z) = R+ G (z)S +
STG(z) + G"(2)QG(z), with GH(z) denoting the Hermitian transpose of G(z). Let
x(k+1) = Ax(k) + Bu(k),

y(k) = Cx(k) + Du(k) (2.4)

be a minimal realization of G(z). Then for all z such that |z| = 1, M(z) = 0 if and only if
there exist a real symmetric positive definite matrix P and real matrices L and W such that
ATPA-P=CTQC-L"L,
ATPB=CTQD+C"S-LW, (2.5)
B'PB=R+DTS+S"D+DTQD - WwTW.

Conditions (2.5) can be considered as the characterization of dissipativity, for storage
functions of the form V = xT(k)Px(k), with P a positive definite symmetric matrix, and
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Figure 3.1. (i) Feedback interconnection and (ii) parallel interconnection.

supply functions as in (2.3). Special cases of dissipativity can be derived choosing different
values for Q, S, and R [8]:
(1) passivity: Q=R =0, S = (1/2)I;
2) input strict passivity (ISP): Q =0, S = (1/2)I, R = —€l;
3) output strict passivity (OSP): Q = =3I, S = (1/2)I, R = 0;
4) very strict passivity (VSP): Q = =61, S = (1/2)I, R = —€l;
5) finite-gain stable (FGS): Q = -1, S =0, R = k*I,
with € and § small positive scalars, I the identity matrix, and k an arbitrary constant.

(
(
(
(

3. Implications of passivity in interconnected systems

The purpose of this section is to show an alternative to input-output approaches for
studying whether the feedback and the parallel interconnections of two discrete-time pas-
sive systems given in Figure 3.1 result in a passive system. It is inspired by the continuous
results given in [24].

THEOREM 3.1. Consider systems Gy and G, (linear or nonlinear) to be passive. Then, the
systems resulting from the feedback and the parallel interconnections of systems Gy and G,
given in Figure 3.1 are passive.

Proof. Let x; denote states of Gy, and x, denote states of G,. Taking into account the dis-
sipativity definition in (2.2), and particularizing it for the passivity case, that is, s(y,u) =
yTu, it is concluded that if G; and G, are passive, then there exist two storage functions
Vi(x1) and V,(x,) such that

Vi(xi(k+1)) = Vi(xi (k) < y{u,

3.1
Vz(Xz(k‘f‘l)) —Vz(XZ(k)) Sygblz. ( )

A new state vector is defined as x := (x1,x;), which will be the new state vector for the
interconnected system, and a new positive definite storage function V is also considered,

V(x) = Vi(x1) + Va(x2). (3.2)
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For the feedback interconnection (i) of Figure 3.1, one has
V(x(k+1)) = V(x(k) < ylu + ylu,. (3.3)

Taking into account that u, = y;, uy = r — y,, it follows that y{ (r — y,) + yI y1 = y{r.
Consequently,

V(x(k+1)) = V(x(k)) < yir, (3.4)
that is, the feedback interconnected system is passive.
For the parallel interconnection, the output of the system is y; + y, = y. If G; and G,

are passive,

Vi(x(k+1)) = Vi(xi (k) < yiu,

Va(xa(k+1)) = Va(xa(k)) < ylu (3:5)

Adding (3.5), we obtain
V(x(k+1)) — V(x(k)) < (1 +y2)Tu =yTu, (3.6)
that is, the system corresponding to the parallel interconnection is passive. O

Remark 3.2. Following the same procedure, it can be seen that the property of OSP for
supply functions of the form (2.3) is preserved under feedback block interconnection.
Besides, ISP is preserved under parallel interconnection.

3.1. Interconnection of passive linear discrete-time systems: an example. For single-
input single-output linear time-invariant dynamics, a way of illustrating that the feedback
and parallel interconnections of two passive systems result in a passive system is by means
of the positive realness property of the transfer function of the interconnected resulting
systems.

An example is considered. A normalized model of the buck converter [11], proved
to be passive with respect to the current output in the continuous-time setting, will be
discretized and connected to itself by means of a negative feedback and a parallel inter-
connection. Due to the fact that usually the implementation of control systems results
in sampled-data systems, it is adequate to study systems to control in the discrete-time
setting. This is the case of the example given in this section.

The DC-to-DC buck converter is a well-known system employed in power electronics.
The simplified scheme of this converter is depicted in Figure 3.2. This circuit is used to
produce a constant (DC) voltage in the load R lower than the power supply voltage (Viy).
This goal is achieved by means of the adequate commutation of the switch. The circuit
operates as follows: when the switch position is 1, the inductor and the capacitor store
energy, whereas if the switch position is 0, there is an exchange of energy between the
inductor, the capacitor, and the load. This circuit can be modelled by the following system
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Figure 3.2. The DC-to-DC buck converter.
of ordinary differential equations [11]:

1 v
d (i) (i ~in
FO-[ E]0)(2) o

C RC

—_— O

where i is the current flowing through the inductor, v the voltage across the capacitor, u
the switch position, u € {0,1}, and Vi, the power supply. In order to have a normalized
model, the following coordinate transformation is considered:

= — (3.8)

d X1\ 0 -1 X1 1
L6 A

with x; the normalized current and x, the normalized voltage. The paremeter y plays the
role of the normalized load. Perturbation theory may be used to obtain the continuous-
time averaged model [13]

d X1 0 -1 X1 . 1 .
& (Xz) - (1 —y) (x2> tu (0) , e[0,1]. (3.10)

Model (3.10) will be discretized by means of the trapezoidal or bilinear transfor-
mation, shown to preserve passivity under sampling in linear systems, see [28]. The
continuous-transfer function having the current through the inductor as the output, with
a normalized load of y = 0.3536, takes the form

which yields to

s+0.3536

Gu(s) = =1 22220
) = 31035365+ 1

(3.11)

Applying the trapezoidal transformation on system (3.11) and choosing the sampling
period time T = 0.35355, the following positive real transfer function in z is obtained:

0.17173(z + 1)(z — 0.8823)

G.(2) =
«(2) 22 —1.7712+0.8857

(3.12)
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Figure 3.3. Nyquist plots for the feedback and parallel interconnections of the discretized normalized
model of the buck converter obtained by means of the trapezoid-rule transformation: (i) Nyquist plot
for the feedback interconnection and (ii) Nyquist plot for the parallel interconnection.

Nyquist diagrams for the feedback and parallel interconnections of (3.12) are presented in
Figure 3.3. They both correspond to positive real transfer functions or to passive systems.

4. Implications of dissipativity and passivity in the relative degree and
the zero dynamics of a system

The characteristics of the relative degree and zero dynamics of passive linear discrete-time
systems of the form (2.4) will be analyzed. These properties give a valuable information
of the relation between the input and the output of a system.
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The basis of the analysis will be dissipativity conditions (2.5) considered for the pas-
sivity case.

ProposITION 4.1 [9]. Let a storage function of the form V = xT Px, with P a real positive
definite and symmetric matrix. A system of the form (2.4) is passive with V, if and only if,
there exist P and real matrices L, K such that

ATPA-P=-1"1, (4.1a)
ATPB = %CT - LK, (4.1b)
BTPB - %(DT +D) = -K'K. (4.1¢)

Remark 4.2. Conditions (4.1) are often presented for storage functions V' of the form
V = (1/2)x" Px. In this case, conditions (4.1b) and (4.1c) would take the following forms,
respectively:

ATPB=CT - LK,

4.2
BTPB- (DT +D) = -K'K. 42)

ProrosITION 4.3. If system (2.4) is passive, then it has relative degree zero.

Proof. Having relative degree zero is equivalent to D being nonsingular, that is, the output
depends directly on the input. From condition (4.1c), with P a positive definite matrix,
one concludes that DT + D must be a positive definite matrix, and therefore D is nonsin-
gular. O

Remark 4.4. This result has been briefly pointed out in [3, 15].

Remark 4.5. In [3], it is stated that it does not make sense to study passivity and loss-
lessness of discrete-time systems having outputs independent of u. This is the case for
s(y,u) = yTu. Indeed, dissipative systems can have relative degree greater than zero, that
is, D can be singular. For example, considering dissipative systems with supply functions
of the form (2.3), it can be concluded that ISP, VSP, and FGS systems may have relative
degree greater than zero.

If system (2.4) has relative degree zero, its zero dynamics takes the following form:
f*(x(k)) = (A—BD'C)x(k). (4.3)

Definition 4.6. A system of the form (2.4) has passive zero dynamics if there exists a
storage function V such that

V(f*(x) <V(x), Vxe, (4.4)

with f*(x) as given in (4.3).

Remark 4.7. Systems with passive zero dynamics are also referred to as weakly minimum
phase systems (see Byrnes et al. [2]).
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ProrosITION 4.8. Let a system of the form (2.4) be passive. Then, the zero dynamics of the
system exists and is passive.

Proof. Since system (2.4) is assumed to be passive, there exists P a positive definite and
symmetric matrix satisfying (4.1). Consider V = xTPx. As the system is passive, it has
relative degree zero and the zero dynamics is given by (4.3), then V(f*(x)) — V(x) =
xT Mx, where

M= (A-BD'C)"P(A-BD'C) —P. (4.5)

Thus, it is needed to be proved that M is negative semidefinite.
Considering condition (4.1b), M can be written as follows:

M= (ATPA—P)—%CT[D’I+(D’1)T]C+(LKD’1C) e
46
+(kD'C)" +cT(D")'BTPBD'C.

Taking into account that (1/2)CT(D~")T(DT + D)D~'C = (1/2)CT[D~' + (D 1)T]C, and
using (4.1c), one yields to

M = (ATPA-P) + (LKD'C) + (LKD'C)" - (D"'C)"KTK(D'C)

= (ATPA-P)—[L— (D'C)'KT][L- (D'C)"KT]" +LL". 47

Using condition (4.1a) in (4.7), M is concluded to be negative semidefinite. O

Remark 4.9. The properties of the relative degree zero and passive zero dynamics pre-
sented for linear discrete-time passive systems are accomplished by the passive or pos-
itive real transfer function (3.12) and its feedback and parallel interconnections shown
to be passive in Section 3. It is interesting to notice that continuous-time passive systems
present relative degree one, see (3.11), while discrete-time passive systems have relative
degree zero, see (3.12).

5. The feedback passivity problem

In this section, a passifying scheme for systems of the form (2.4) is proposed. Conclusions
given in Section 4 are used. The feedback passivity methodology can be considered as an
adaptation for the linear case of the feedback passivity scheme proposed for nonlinear
discrete-time systems which are affine in the control input given in [18]. A discretized
model for the DC-to-DC buck converter shown in Section 3.1 will be used in order to
illustrate the passivation method.

5.1. Passivation of a linear discrete-time system. A linear static-state feedback control
law is denoted by

u = Rx+Sv, (5.1)

with R and S constant matrices of appropriate dimensions.
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Definition 5.1. A feedback control law of the form (5.1) is regular if S is nonsingular.

THEOREM 5.2. Consider a system of the form (2.4). Suppose that there exists a storage func-
tion V such that V = xT Px, with P a real positive definite symmetric matrix. Then, system
(2.4) is feedback equivalent to a passive system with V as storage function by means of a
regular feedback control law of the form (5.1) if and only if the system has relative degree
zero and passive zero dynamics.

Proof. Necessity. If system (2.4) is feedback equivalent to a passive system by means of a
static-state feedback control law of the form (5.1), with v the new input to the system, the
feedback transformed system

x(k+1) = Ax(k) + Bv(k),

_ — (5.2)
y(k) = Cx(k) +Dv(k)
is passive for some V, with A = A+ BR, B = BS, C = C+ DR, D = DS. On the one hand,
making use of Proposition 4.3, system (5.2) has relative degree zero and D is nonsingular,
consequently, D is nonsingular and system (2.4) has relative degree zero. On the other
hand, by Proposition 4.8, system (5.2) has passive zero dynamics. It can be seen that the
zero dynamics of system (2.4) is the same as that of system (5.2).

Sufficiency. It will be shown that if system (2.4) has relative degree zero and passive
zero dynamics, it is feedback equivalent to a passive system with V = xT Px, and P a real
positive definite matrix, that is, there exists a control u(k) = Rx(k) + Sv(k) such that the
feedback system (5.2) is passive.

Since the system relative degree is zero, the matrix D! is well defined. It is chosen as

u(k) = D™Y(C - C)x(k) + D™ 'Dv(k). (5.3)
System (2.4) with (5.3) yields to (5.2) with

A =[I1-2B(B"PB) 'BTP](A-BD'C),

B=B(B"PB) 'DT,
_ . (5.4)
C=-2D(B"PB) BTP(A-BD'C),

D=D(BTPB) 'DT.

It can be seen that system (5.2) with (5.4) fullfils conditions (4.1). In order to check
condition (4.1a), the fact that the zero dynamics of system (2.4) is passive is used. Con-
ditions (4.1b) and (4.1c) are satisfied considering K = 0. In conclusion, system (2.4) is
feedback passive with the passifying control law (5.3). O

5.2. A linear example: frequency-domain interpretation. In this section, the passifying
control law (5.3) will be applied to a discrete-time model for the DC-to-DC buck con-
verter (3.10) which has been proposed in [20]. A discrete-time model of a normalized



Eva Maria Navarro-Lopez 611
averaged DC-to-DC buck converter takes the form given in (2.4) with

_[a -b _((=a+t1)y+b
A_<b C)’ B_<—5V—C+1)’ (5.5)

C=1(0,1), D=1,

with u =i, u € [0,1], x = (x1,x2)7, and a, b, ¢, constants related to physical parameters.
The storage function associated with the system is considered as the sum of the stored en-
ergy in the inductor and in the capacitor, and takes the following form for the normalized
model:

0
n|x= xTPx, (5.6)
2

V= g(xf+x§) =xT

[ SRS

with 77 = V2 C. The following parameters, obtained from a real physical system, are con-
sidered in the model:

a = 0.9406416964, b =0.3254699438, ¢ =0.8255706942,

y = 0.3535533900, n =13.25192, (57
and a sampling period of T = 0.3535533906. The corresponding transfer function of the
buck converter state-space representation is not a positive real transfer function (i.e., the
sytem is not passive) as the Nyquist diagram shows, see Figure 5.1. Although the original
system is not passive, it can be rendered passive by means of a static-state feedback law
as defined in (5.3), due to the fact that the system has relative degree zero and passive
zero dynamics. The system is passified by means of control (5.3), and the feedback trans-
formed system has an associated positive real transfer function. This fact is illustrated by
the Nyquist diagrams depicted in Figure 5.1.

6. Notes on implications of dissipativity and passivity in feedback systems stability

The study of stability of nonlinear systems using frequency criteria instead of Lyapunov’s
direct method has been proposed for linear systems with a nonlinearity in the feedback
path. These methods, mainly, Popov’s, Tsypkin’s, and the circle criteria establish stability
criteria based upon the frequency response of the linear part. Reference [21] proposes that
if the transfer function corresponding to the linear block is positive real or passive and
the nonlinearity satisfies a Popov-like inequality, that is, it is a sector bounded nonlinear
function, then the resulting closed-loop system is said to be absolutely stable (the zero
solution of the system is globally asymptotically stable).

This section presents the importance that dissipativity and passivity concepts have
in the stability analysis of nonlinear interconnected systems. The most interesting and
remarkable property of passivity is that in linear systems (either discrete or continuous),
the positive realness characteristic is equivalent to the passivity property, and in addition,
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Figure 5.1. (i) Nyquist plot of the discrete nonpassive buck converter and (ii) Nyquist plot for the
passified discrete-time buck converter.

it presents highly interesting stability properties in the frequency domain. The fact of
having a Nyquist plot on the right-half plane, means that an infinite-gain proportional
control can be introduced without destabilizing the system.

Since the geometric interpretation of stability criteria such as Popov’s, the circle, and
Tsypkin’s ones are based on the positive realness of a transfer function, and a particular
emplacement of the Nyquist plot, dissipativity formalism can be considered to have in-
teresting relations with these stability criteria. Indeed, a passive nonlinear function has
the property of falling in sector [0, 00) [7], consequently, the passivity property increases
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the validity of Popov’s, the circle, and Tsypkin’s criteria. If a sector-bounded nonlinearity
is passive, its sector boundaries are augmented in comparison to the boundaries proposed
in the mentioned stability criteria.

The generalized KYP or discrete positive real lemma is proposed for dissipative
discrete-time linear systems with supply function (3) in [8], see Lemma 2.4. In addition,
the characteristics of the Nyquist plot of G(e/*) for single-input single-output systems
are presented depending on the form of the supply function. Two cases are analyzed: Q
being negative definite and Q = 0. On the one hand, if Q < 0, the Nyquist plot of G(e/*)
lies inside the circle with center S/|Q| and radius (1/]Q])~/S* + R|Q|. On the other hand,
if Q = 0, the Nyquist plot of G(e/®) lies to the right (if S > 0) or to the left (if S < 0) of the
vertical line Rez = —R/2S.

From the characteristics of the Nyquist plot of G(e/®), dissipativity frequency-domain
properties could be considered as the generalization of the stability conditions of the
mentioned criteria for the discrete-time setting.

Tsypkin’s criterion for nonlinear sampled-data systems establishes that the closed-loop
system consisting of a linear transfer function with a nonlinear function in the feedback
path is absolutely stable if the nonlinear function falls in a sector bounded by two straight
lines with slopes 0 and b, and the Nyquist plot of the discrete transfer function lies to the
right of the vertical line Rez = —1/b [28]. Considering dissipative systems with supply
functions of the form (2.3), it can be seen that the geometric interpretation of Tsypkin’s
criterion in the framework of the frequency domain is a special case of dissipativity with
Q=0,S=1/2,R=1/b.

The circle criterion gives a sufficient condition for the absolute stability of a linear
system with a nonlinear function gain in the feedback path which falls in a sector bounded
by two straight lines with slopes a and b. This class of system will be absolutely stable if
the Nyquist plot of the transfer function associated to the linear block does not intersect
a region C defined by the points (—1/a+0j) and (—1/b+ jO). In case a,b # 0, the region
C will be a circle. On the other hand, if a =0, b # 0, or b = 0, a # 0, the critical disk is
converted into a critical line which the Nyquist plot must not cross.

The discrete-time version of the circle criterion is obtained from the continuous-time
result via the bilinear transformation, and using z = e/“T, with T the sampling period,
see [7]. Considering the frequency-domain characteristics of dissipativity, the conditions
that the linear block of the nonlinear system under consideration must accomplish can
be seen as different classes of dissipativity. For example, the case of having a =0, b # 0
corresponds to the dissipativity case considering the supply function (2.3) with Q =0,
S =1/2, R = I/b, where the Nyquist plot of the transfer function corresponding to the
linear part lies to the right of the vertical line Rez = —1/b. The case of having b = 0, a # 0
corresponds to the dissipativity case considering the supply function (2.3) with Q =0,
S = —1/2, R = —I/a, where the Nyquist plot of the transfer function corresponding to the
linear part lies to the left of the vertical line Rez = —1/a. When the critical region corre-
sponds to the interior or the outside of the circle determined by the points (=1/a+0j)
and (—1/b+ j0), the stability conditions proposed by the circle criterion may also be ob-
tained from the dissipativity frequency-domain properties, considering supply functions
of the form (2.3) with Q negative definite.
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Dissipativity characterization in the frequency domain can also be used in order to
extend Popov’s stability criterion to the discrete-time setting, however, a different analysis
than the one made for the Tsypkin’s and the circle criteria is required; probably, another
kind of supply functions different from (2.3) are suspected to be proposed.

7. Conclusions

Some implications of dissipativity and passivity properties for the discrete-time case have
been presented in the framework of state-space systems representation, mainly, the pres-
ervation of passivity under feedback and parallel interconnections, the study of the rela-
tive degree and zero dynamics of linear discrete-time passive systems, and how they can
be used in order to solve the feedback passivity problem.

Dissipativity characterization in the frequency domain has been used to illustrate by
means of an example the preservation of passivity under feedback and parallel intercon-
nections and the feedback passivity scheme proposed. The frequency-domain character-
istics of dissipative systems have also been used to present dissipativity as an interesting
tool for the study of nonlinear systems stability in the discrete-time setting, and it can be
considered as a way for obtaining frequency-based stability criteria types, such as Tsyp-
kin’s, the circle, and Popov’s criteria, for discrete-time systems.

This work has shown some of the interesting properties that dissipative and passive
systems exhibit; they motivate the transformation of a system which is not dissipative or
passive into a dissipative or passive one.
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