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The methods of both analysis and modeling of contact bush-shaft systems exhibiting
heat generation and wear due to friction are presented [3–5]. From the mathematical
point of view, the considered problem is reduced to the analysis of ordinary differential
equations governing the change of velocities of the contacting bodies, and to the integral
Volterra-type equation governing contact pressure behavior. In the case where tribolog-
ical processes are neglected, thresholds of chaos are detected using bifurcation diagrams
and Lyapunov exponents identification tools. In addition, analytical Mel’nikov’s method
is applied to predict chaos. It is shown, among the others, that tribological processes play
a stabilizing role. The following theoretical background has been used in the analysis: per-
turbation methods, Mel’nikov’s techniques [7, 8], Laplace transformations, the theory of
integral equations, and various variants of numerical analysis.

Copyright © 2006 J. Awrejcewicz and Y. Pyryev. This is an open access article distributed
under the Creative Commons Attribution License, which permits unrestricted use, dis-
tribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

It should be emphasized that in bibliography devoted to this research, either tribologi-
cal processes occurring on the contact surfaces are not accounted [1], or inertial effects
are neglected [6]. In other words, both mentioned processes are treated separately. In
this work, both elements of complex contact behavior are simultaneously included into
consideration, which allow for a proper modeling of the real contact system dynamics.

A classical problem concerning the vibration of a friction pair consisting of a rotating
shaft and bush fixed to a frame by mass-less springs (a simple model of typical braking
pad or the so-called Pronny’s brake) has been investigated in [1]. In [9], the so-called
thermoelastic contact between a rotating cylinder and a fixed noninertial pad has been
studied. Next, a more complicated axially symmetric problem of chaotic self-excited vi-
brations (caused by friction) and wear of the rotating cylinder and the bush (fixed to the
frame by springs and viscous damping elements) is investigated.
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Analytical and numerical analyses are carried out in a wide range through the in-
vestigation of various types of nonlinearities, dampings, and excitations applied to the
analyzed system. A Duffing-type elastic nonlinearity, a nonlinear density of the frictional
energy stream, a nonlinear friction dependence versus velocity, and a nonlinear contact
temperature characteristic, as well as nonlinear character of wear are accounted, among
the others.

It is clear that from the engineering point of view it is important to understand and
control the dynamics occurring in kinematic pairs of the contacting bodies, it is expected
also to obtain recipes for an optimal choice of frictional materials as well as other pa-
rameters required for realization of long-term and reliable work of various elements of
machines and mechanisms. Therefore, it is highly required that progress in mathematical
modeling of processes that appears in contacting systems yields finally the results close to
those observed in the real systems.

In [4], critical values of the parameters responsible for chaos occurrence are found us-
ing Mel’nikov’s approach. Originality of the research lies in the following: (i) Mel’nikov’s
function is constructed for the case of our analyzed dissipative system; (ii) the obtained
analytical results are confirmed by extended numerical studies with the use of the Lya-
punov exponents, Poincarè maps and bifurcation diagrams; and (iii) analysis of the con-
tact characteristics is carried out.

Section 2 is devoted to a mathematical modeling of the problem of vibrations of a
friction pair consisting of a rigid body (a bush) connected with a basing by means of
springs and dampers and a rotating thermoelastic shaft. Frictional heat generation, wear
of a bush, and thermal expansion of a cylinder (shaft) are taken into account. Eventually,
the analyzed problem is expressed as the system of nonlinear differential equation and an
integral equation describing the angular velocities of a bush and contact pressure. Calcu-
lation of the Lyapunov exponents are presented in Section 3. The model of vibrations of
a rigid body (a bush) placed on a cylinder (shaft) rotating at variable speed is analyzed in
Section 4, without taking tribological processes into account. Mel’nikov’s method is ap-
plied in the analysis of chaotic phenomena of a bush for external excitations. In Section 5,
we show how important role various tribological processes play and, in particular, heat
generation due to friction and wear. Conclusions of our study are presented in Section 6.

2. Mathematical modeling of the analyzed system

Consider thermoelastic contact of a solid isotropic circular shaft (cylinder) of radius R1

with a cylindrical tube-like rigid bush of external radius R2, which is fitted to the cylinder
according to the expression U∗hU(t) (hU(t) → 1, t →∞). The internal bush radius is:
R1−U∗ (U∗/R1 � 1) (Figure 1.1). The bush is linked with the housing by springs and a
damper with viscous coefficient c.

We assume that the bush is a perfect rigid body, and that radial springs have the
stiffness coefficient k1, whereas tangent springs are characterized by nonlinear stiffness
k2 and k3 of Duffing type. In addition, the bush is subjected to a damping force action in
tangent direction. The cylinder rotates with such angular velocity Ω(t) = t−1∗ ω1(t), that
the centrifugal forces may be neglected. We assume that the angular speed of the shaft ro-
tation changes in accordance with ω1 = ωk + ζk sinω′t. We assume that between the bush
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Figure 1.1. The analyzed system.

and shaft dry friction appears defined by the function Ft(Vr), where Vr is the relative
velocity between the two given bodies Vr = ΩR1 − ϕ̇2R1. B2 denotes the mass moment
of inertia. We assume also that in accordance with the Amontos assumption, the friction
force is Ft = f (Vr)N(t) ( f (Vr) is the kinetic friction coefficient).

The friction force Ft yields heat generated by friction on the contact surface R = R1,
and wear Uw of the bush occurs. Observe that the frictional work is transformed to heat
energy. Let the shaft temperature, denoted by T1(r, t), be initially equal to T0. It is further
assumed that the bush transfers heat ideally, and that between both the shaft and bush
Newton’s heat exchange occurs and the bush has constant temperature T0.

Vibrations of the bush being in thermoelastic contact with the rotating shaft are gov-
erned by the following nondimensional equation [4]:

ϕ̈(τ) + 2hϕ̇(τ)−ϕ(τ) + bϕ3(τ)= εF(ω1− ϕ̇
)
p(τ), 0 < τ <∞, (2.1)

with the initial condition ϕ(0)= ϕ◦, ϕ̇(0)= ω◦, where the nondimensional contact pres-
sure is defined through solutions to the equation [3, 5]

p(τ)= hU(τ)−uw(τ) + 2γω̃
∫ τ

0
Ġp(τ − ξ)F

(
ω1− ϕ̇

)
p(ξ)

(
ω1− ϕ̇

)
dξ, 0 < τ < τc. (2.2)

The bush wear uw(τ) and the shaft temperature θ(r,τ) are defined through the following
equations [3]:

uw(τ)= kw
∫ τ

0

∣
∣ω1− ϕ̇(τ)

∣
∣p(τ)dτ, 0 < τ < τc, (2.3)

θ(r,τ)= γω̃
∫ τ

0
Ġθ(r,τ − ξ)F

(
ω1− ϕ̇

)
p(ξ)

(
ω1− ϕ̇

)
dξ, (2.4)
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where

{
Gp(τ),Gθ(1,τ)

}= {0.5,1}
Biω̃

−
∞∑

m=1

{
2Bi,2μ2

m

}

μ2
mω̃
(
Bi2 +μ2

m

)e−μ
2
mω̃τ , (2.5)

μm (m= 1,2,3, . . .) are the roots of characteristic equation BiJ0(μ)−μJ1(μ)= 0.
In (2.1)–(2.5), the following nondimensional quantities are introduced

τ = t

t∗
, r = R

R1
, p = P

P∗
,

θ = T1−Tot
T∗

, ϕ(τ)= ϕ2
(
t∗τ

)
, uw = Uw

U∗
, ε= P∗t2∗2πR2

1

B2
,

h= cR2
2

2B2t∗
, kw = P∗KwR1

U∗
, γ = (1−η)E1α1R

2
1

λ1(1− 2ν)t∗
,

Bi= αTR1

λ1
, τc = tc

t∗
, ω̃ = t∗a1

R2
1

,

ω0 = ω′t∗, hU(τ)= hU
(
t∗τ

)
, F

(
ω1− ϕ̇

)= f
(
V∗
(
ω1− ϕ̇

))
,

b =
(

k3R
4
2−

(
2
3

)
k2R

2
2 +
(
l1 +R2

)
R2

((
l0
l1

)(

1 + 3
(
R2

l1

)
+ 3
(
R2

l1

)2
)

− 1

)
k1

6

)(
t2∗
B2

)
,

(2.6)

where

V∗ = R1

t∗
, t∗ =

√
B2

k∗R2
2

, k∗ = k1

(
l0
l1
− 1

)(
1 +

l1
R2

)
− k2,

T∗ = U∗
α1
(
1 + ν1

)
R1

, P∗ = α1E1T∗(
1− 2ν1

) ,

(2.7)

and l0 is the no stretched spring length, l1 is the length of the compressed spring for ϕ2 =
0, (k∗ > 0), E1 is the elasticity modulus, ν1 is the Poisson coefficient, α1 is the coefficient
of thermal expansion of the shaft, αT is the heat transfer coefficient, a1 is the thermal
diffusivity, λ1 is the heat transfer coefficient, ϕ2(t) is the angle of bush rotation, Kw is the
wear coefficient, η denotes the part of heat energy associated with wear η ∈ [0,1], tc is the
time of contact (0 < t < tc, P(t) > 0).

Note that the stated problem is modeled by both nonlinear differential equation (2.1)
and integral equation (2.2) governing rotational velocity ϕ̇(τ) and contact pressure p(τ).
Temperature and wear are defined by (2.4) and (2.3), respectively.

3. Calculation of Lyapunov exponents

A particular case of our problem is further studied (γ = 0, kw = 0, p(τ)→ 1). The de-
pendence of kinematics friction on relative velocity is approximated by the function
F(y) = F0 sgn(y)− αy + βy3. Since the latter is nonsmooth due to the presence of the
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sgn(y) function in the kinematic friction, the methods commonly used to compute the
exponents require smoothness of the vector fields as a necessary condition. Nonsmooth
systems yield only approximations for the Lyapunov exponents, which can be considered
valid as long as we do not bother too much with the vicinity of the nonsmoothness points
[2]. The function sgn(y) is approximated by the following one [3]:

sgnε0
(y)=

⎧
⎪⎪⎨

⎪⎪⎩

sgn(y), |y| > ε0,

2−|y|/ε0

y/ε0
, |y| < ε0.

(3.1)

Note that while computing Lyapunov exponents, besides the following equations:

ẋ = y, ẏ = x− bx3 + ε
[
F0 sgnε0

(
vr
)−αvr +βv3

r

]− εh1y, ż = ω0, (3.2)

also three additional systems of equations (n = 1,2,3) with respect to perturbations are
solved:

˙̃x
(n)= ỹ(n), ˙̃y

(n)= x̃(n)− 3bx2x̃(n) +ε
[
F0δε0

(
vr
)−α+ 3βv2

r

]
ṽ(n)
r −εh1 ỹ

(n), ˙̃z
(n) = 0,

(3.3)

where x = ϕ(τ), y = ϕ̇(τ), z = ω0τ, vr = ωk + ζk sinz− y, ṽ(n)
r = ζkz̃ (n) cosz− ỹ(n), h1 =

2h/ε,

δε0 (y)=

⎧
⎪⎪⎨

⎪⎪⎩

0, |y| > ε0,
(

2
ε0

)(
1− |y|

ε0

)
, |y| < ε0.

(3.4)

Twelve equations of system (3.2) and (3.3) are solved using the fourth-order Runge-Kutta
method and Gram-Schmidt reorthonormalization procedure.

Let x̃0
0, ỹ0

0, z̃0
0 be initial values of perturbation vectors which are orthonormal. After

time T , an orbit x(τ) reaches the point x1 with the associated perturbations x̃1, ỹ1, z̃1.
Then, the so-called Gram-Schmidt reorthonormalization procedure is carried out and
the following new initial set of conditions is formulated:

x̃0
1 =

x̃1∥
∥x̃1

∥
∥ ,

ỹ0
1 =

ỹ′1∥
∥ỹ′1

∥
∥ , ỹ′1 = ỹ1−

(
ỹ1, x̃0

1

)
x̃0

1,

z̃0
1 =

z̃′1∥
∥z̃′1

∥
∥ , z̃′1 = z̃1−

(
z̃1, x̃0

1

)
x̃0

1−
(

z̃1, ỹ0
1

)
ỹ0

1 .

(3.5)

Next, after time interval T , a new set of perturbation vectors x̃2, ỹ2, z̃2 is defined, which
is also reorthonormalized due to the Gram-Schmidt procedure (3.5). This algorithm is
repeated M times. Note that (x̃0

1, ỹ0
1) = 0, (x̃0

1, z̃0
1) = 0, (ỹ0

1, z̃0
1) = 0, and if x = (x, y,z),

y = (x1, y1,z1), then ‖x‖ =
√
x2 + y2 + z2, and the scalar product (x,y) = xx1 + yy1 + zz1.
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Figure 3.1. Bifurcation diagrams (a), (b) and Lyapunov exponents (c), (d) using ζk as control param-
eter, h1 = 0, γ = 0, kz = 0: (a), (c) ζk ∈ (0,12); (b), (d) ζk ∈ (3.5,4.0).

Finally, a spectrum of three Lyapunov exponents is computed via formulas

λ1 = 1
MT

M∑

i=1

ln
∥
∥x̃i
∥
∥, λ2 = 1

MT

M∑

i=1

ln
∥
∥ỹ′i

∥
∥, λ3 = 1

MT

M∑

i=1

ln
∥
∥z̃′i
∥
∥, (3.6)

where the occurring vectors are taken before the normalization procedure.
Our numerical computations are carried out for the particular case (γ = 0,kw = 0).

The following nondimensional parameters are taken: F0 = α= β = 0.3, ω0 = 2, ωk = 0.4,
b = 1, ε = 0.1. Numerical analysis is carried out for the bifurcation diagram with respect
to x versus ζk, for ζk ∈ (0,12) and ζk ∈ (3.5,4.0). The obtained results are shown in Figures
3.1(a) and 3.1(b) for h1 = 0, in Figure 3.2(a) for h1 = 0.5, and in Figure 3.2(b) for h1 = 1.
The Lyapunov exponents in time interval τ ∈ (1200,1514) (x̃0

0 = (1,0,0), ỹ0
0 = (0,1,0),

z̃0
0 = (0,0,1), T = 0.005, M = 80000, ε0 = 0.01) are computed due to formulas (3.6) for

the same values of parameters. In Figures 3.1(c), 3.1(d), 3.2(c), 3.2(d), dependencies of
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Figure 3.2. Bifurcation diagrams (a), (b) and Lyapunov exponents (c), (d) using ζk as control param-
eter, γ = 0, kz = 0, b = 1, kz = 0: (a), (c) h1 = 0.5; (b), (d) h1 = 1.

Lyapunov exponents on the control parameter ζk are reported. A study of both Lyapunov
exponents and bifurcation diagrams implies that chaos begins for (i) ζk = 3.78, for h1 = 0;
(ii) for ζk = 3.8, for h1 = 0.5; (iii) for ζk = 4.25, for h1 = 1 (note that the largest Lyapunov
exponent λ1 is positive). An increase of the parameter h1 responsible for damping yields
an increase of the amplitude of the bush, where chaos is born.

Note that since our system (3.2) is autonomous, one of the Lyapunov exponents is
always zero.

4. Mel’nikov’s method

In order to estimate analytically the critical parameters responsible for chaos occurrence
Mel’nikov’s technique [8] is often used. In this case the Mel’nikov’s function is (see [4, 8])

M
(
τ0
)=−

∫ +∞

−∞
y0(t)

[
F0 sgn

(
ωr
)−αωr +βω3

r −h1y0(t)
]
dt = I(τ0

)
+ J
(
τ0
)
, (4.1)
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where ωr(t)= ωk + ζk sin(ω0(t+ τ0))− y0(t), y0(τ)=−√2/b sinh(τ)/ cosh2(τ),

J
(
τ0
)= 2C+ 2ζk

√
A2 +B2 sin

(
ω0τ0 +ϕ0

)

+ 6βζ2
k

(
I220 cos2ω0τ0 + I202 sin2ω0τ0− 2ω∗I111 sinω0τ0 cosω0τ0

)

+ 2βζ3
k

(−I130 cos3ω0τ0− 3I112 sin2ω0τ0 cosω0τ0
)
,

A= (α− 3βω2
k

)
I110− 3βI310, B = 6βωkI201,

C = βI400−
(
α−h1− 3βω2

k

)
I200, ϕ0 = arctan

(
A

B

)
.

(4.2)

In (4.1), the term I(τ0) is defined by the formula

I
(
τ0
)=−F0

∫ +∞

−∞
y0(t)sgn

(
ωr
)
dt = 2F0

√
2
b

∑

m

sgn
(
ω′r
(
tm
))

cosh tm
, (4.3)

where tm are the roots of the equation

ωr
(
tm
)= ωk + ζk sin

(
ω0
(
tm + τ0

))− y0
(
tm
)= 0,

ω′r(t)= ζkω0 cos
(
ω0
(
t+ τ0

))− x0(t) + bx3
0(t).

(4.4)

If the Mel’nikov’s function (4.1) changes sign, then chaos may occur.
In order to apply combined Mel’nikov’s and numerical methods, a perturbation of

the Hamiltonian system, where the function sgn(y) occurs, has been approximated by
a continuous perturbation with an application of a small parameter. The multivalued
relation sgn(y) is approximated by the function sgnε0

(y) defined by (3.1), where the reg-
ularization parameter ε0 is a “small” positive real number. The differential equation (in-
clusion) (2.1) is then approximated by (3.2).

In the so-called first improvement of Mel’nikov’s function M(τ0) (see the expression
standing by ε) for 0 < ε� 1 in the expression representing a distance between stable and
unstable manifolds of the critical saddle point, a transition of the parameter ε0 to zero
(ε0 → 0) can be realized. In order to be sure of neglecting the so-called second improve-
ment of Mel’nikov’s function standing by ε2 [7] (the under integral function includes the
differential of the approximated perturbation), the following condition should be satis-
fied ε/ε0 � 1. Then, if the mentioned condition is satisfied, only the first improvement of
Mel’nikov’s function can be applied to estimate the distance between stable and unstable
manifolds of the critical point.

In Figure 4.1, Mel’nikov’s function M(τ0) for different values of parameter ζk before
and after sign change of M(τ0) is reported. One may be convinced that both analytical
and numerical predictions of chaos coincide.

5. Numerical analysis

In a general case, numerical analysis is carried out of a steel-made shaft (α2=14·10−6◦C−1,
λ1 = 21 W/(m·◦C−1), ν1 = 0.3, a1 = 5.9 · 10−6 m2/s, E1 = 19 · 1010 Pa). Observe that no
accounting of tribological processes (h1 = 0.5, ζk = 3.9, γ = 0, kw = 0) yields chaotic dy-
namics (Figure 5.1, curve 2). For h1 = 0.5, ζk = 3.5, γ = 0, kw = 0, regular motion takes
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Figure 4.1. Mel’nikov’s function M(τ0) versus parameter τ0: (a) for ζk = 3.2 (solid curves) and for
ζk = 3.81 (broken curves), h1 = 0; (b) for ζk = 3.5 (solid curves) and for ζk = 3.9 (broken curves),
h1 = 0.5; (c) for ζk = 3.9 (solid curves) and for ζk = 4.2 (broken curves), h1 = 1.

place (Figure 5.1, curve 1). An account of thermal shaft extension (γ = 1.87) removes
chaotic behavior of our system (Figure 5.1, curves 3 and 4). For ζk = 3.5, a subharmonic
motion with frequency ω0/2 is obtained (Figure 5.1, curve 3), whereas for ζk = 3.9 peri-
odic motion is exhibited (Figure 5.1, curve 4).

Owing to an account of wear (kw = 0.01) and neglecting shaft thermal extension (γ =
0), contact pressure tends to zero, whereas cylinder wear approaches U∗ (p(τ) →
0, uw(τ)→ 1). The nondimensional bush wear is presented in Figure 5.2, curve 1. In addi-
tion, in Figure 5.2, curves 1 and 2 represent time histories of the nondimensional contact
pressure.

A simultaneous account of shaft extension and bush wear yields a finite time of con-
tact between both bodies. For instance, for h1 = 0.5, ζk = 3.9, γ = 1.87, kw = 0.01, contact
pressure versus time is exhibited by curve 4 in Figure 5.3. The nondimensional time con-
tact interval is τc = 72. For ζk = 3.5 time contact is τc = 65.8. In Figure 5.4, curves 3 and 4
represent the dependence of nondimensional wear on the nondimensional time in a gen-
eral case. Curve 3 corresponds to h1 = 0.5, ζk = 3.5, γ = 1.87, kw = 0.01, whereas curve 4
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Figure 5.1. Phase plane of bush motion for h1 = 0.5, kw = 0: curve 1—ζk = 3.5, γ = 0, curve 2—
ζk = 3.9, γ = 0, curve 3—ζk = 3.5, γ = 1.87, curve 4—ζk = 3.9, γ = 1.87.
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Figure 5.2. Dimensionless contact pressure p(τ) and wear uw(τ) versus dimensionless time τ: curve
1—ζk = 3.5, γ = 0, kw = 0.01, h1 = 0.5, curve 2—ζk = 3.9, γ = 0, kw = 0.01, h1 = 0.5.

is associated with the following parameters: h1 = 0.5, ζk = 3.9, γ = 1.87, kw = 0.01. Owing
to heat shaft extension, the wear of bush is increased thirty times (see curves 4 and 2 in
Figure 5.4).
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Figure 5.3. Dimensionless contact pressure p(τ) versus dimensionless time τ: curve 4—ζk = 3.9, γ =
1.87, kw = 0.01, h1 = 0.5.
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Figure 5.4. Time history of dimensionless wear uw(τ), h1 = 0.5: curve 2—ζk = 3.9, γ = 0, kw = 0.01,
curve 3—ζk = 3.5, γ = 1.87, kw = 0.01, curve 4—ζk = 3.9, γ = 1.87, kw = 0.01.

6. Conclusions

This paper extends the analysis carried out in [4]. Contrary to the previous results, a
novel mechanism of contact between the bush and shaft is proposed, a viscous damping
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is added, and an influence of tribological factors on both regular and chaotic dynamics
is analyzed. The analytical formula of the Mel’nikov’s function of the investigated system
has been first formulated, and then numerical analysis of nonlinear phenomena is carried
out.

The influence of tribological processes on dynamic behavior of the analyzed system
in the vicinity of chaos has been illustrated and discussed. An account of bush wear and
neglecting of shaft thermal expansion implies that the contact pressure tends to zero,
the bush wear approaches the values of the shaft compressing, and bush vibrations are
damped.

On the other hand, taking into account the shaft thermal extension and neglecting of
bush wear results in chaos disappearance and the occurrence of a regular motion.

In a general case (both shaft thermal extension and bush wear are taken into account),
time interval of the contact of two bodies is bounded. In the lack of contact, the bush
stops due to an extensive wear process.

Appendix

Here we report the expressions of the following functions:

I200 = 2
3b

, I400 = 8
35b2

, I201 = πω0
(
2−ω2

0

)

6b sinh
(
πω0/2

) ,

I110 =− πω0√
2bcosh

(
πω0/2

) , I112 = πω0 cosh
(
πω0/2

)

√
2b
(
1− 2cosh

(
πω0

)) ,

I111 =− πω0√
2bcosh

(
πω0

) ,

I220 = πω0
(
2ω2

0− 1
)

+ sinh
(
πω0

)

3b sinh
(
πω0

) , I202 = πω0
(
1− 2ω2

0

)
+ sinh

(
πω0

)

3b sinh
(
πω0

) ,

I310 = ω0
(
11 + 10ω2

0−ω4
0

)

120b
√

2b

{
ψ
(

1− iω0

4

)
−ψ

(
3− iω0

4

)
+ψ

(
1 + iω0

4

)
−ψ

(
3 + iω0

4

)}
,

I130 =− 3πω0

8
√

2b

{
cot

(
π
(
1− iω0

)

4

)
+ cot

(
3π
(
1− iω0

)

4

)
− cot

(
π
(
3− iω0

)

4

)

− cot
(
π
(
1− 3iω0

)

4

)}
, ψ(z)= Γ′(z)

Γ(z)
,

(A.1)
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1/15 Stefanowskiego Street, 90-924 Łódź, Poland
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