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A conjugate heat transfer problem of a second-grade viscoelastic fluid past a stretch-
ing sheet has been studied. Governing equations include heat conduction equation of
a stretching sheet, continuity equation, momentum equation, and energy equation of a
second-grade fluid, analyzed by a combination of a series expansion method, the sim-
ilarity transformation, and a second-order accurate finite-difference method. These so-
lutions are used to iterate with the heat conduction equation of the stretching sheet to
obtain distributions of the local convective heat transfer coefficient and the stretching
sheet temperature. Ranges of dimensionless parameters, the Prandtl number Pr, the elas-
tic number E and the conduction-convection coefficient Ncc are from 0.001 to 10, 0.0001
to 0.01, and 0.5 to 2.0, respectively. A parameter G, which is used to represent the dom-
inance of the buoyant effect, is present in governing equations. Results indicated that
elastic effect in the flow could increase the local heat transfer coefficient and enhance the
heat transfer of a stretching sheet. In addition, same as the results from Newtonian fluid
flow and conduction analysis of a stretching sheet, a better heat transfer is obtained with
a larger Ncc, G, and E.

Copyright © 2007 K.-L. Hsiao and G.-B. Chen. This is an open access article distributed
under the Creative Commons Attribution License, which permits unrestricted use, dis-
tribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

The flow of an incompressible viscous over a boundary layer is important to industrial
applications. For instance, it is in the extrusion of a polymer sheet from a die or in the
drawing of plastic films. For some of dilutes polymer solutions or polymer fluids, they be-
long to second-grade fluids, and it is a well-known fact in the studies of non-Newtonian
fluid flows [1]. Thus, if we use a non-Newtonian fluid as the coolant of the cooling sys-
tem, heat exchangers might greatly reduce the required pumping power. Therefore, a
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fundamental analysis of the flow field of non-Newtonian fluids in a boundary layer adja-
cent to a stretching sheet or an extended surface is very important, and is an essential part
in the area of the fluid dynamics and heat transfer. Especially, understanding boundary
layer flows and heat transfer of non-Newtonian fluids has become important in recent
year. Srivatsava [2], and Rajeswari and Rathna [3] studied the non-Newtonian fluid flow
near a stretching sheet. Mishra and Panda [4] analyzed the behavior of second-grade vis-
coelastic fluids under the influence of a sidewall injection in an entrance region of a pipe
flow. Rajagopal et al. [5] studied a Falkner-Skan flow field of a second-grade viscoelastic
fluid. Massoudi and Ramezan [6] studied a wedge flow with suction and injection along
walls of a wedge by the similarity method and finite-difference calculations. Hsu et al. [7]
also studied the flow and heat transfer phenomena of an incompressible second-grade
viscoelastic fluid past a wedge with suction or injection. Rajagopal [8] recently wrote
an excellent review of boundary layers in nonlinear fluids. These are related studies to
the present investigation about second-grade fluids. The viscoelastic nature of a second-
grade fluid is found in some dilute polymer solutions or in polymer fluids. These fluids
exhibit both the viscous and elastic characteristics. Same as Newtonian fluids, the viscous
property is due to the transport phenomenon of the fluid molecules. The elastic property
is due to the chemical structure and configuration of the polymer molecule. The term
“elastic” means that the viscoelastic fluid “remembers” where it was. Macromolecules act
as small rubber band and tend to snap back when the external forces have removed, and
hence produce “elastic recoil” of the fluid. Detailed information of viscoelastic fluid can
be found in books of rheology. Rajagopal et al. [5] studied the Falkner-Skan flow of a fluid
of second grade. They used the perturbation procedure and finite-difference method for
simplifying a nonlinear problem to a quasilinearization problem. All of the above are
dealing with forced convection problems. Vajravelu and Soewono [9] solutions to the
fourth-order nonlinear systems arise in combined free and forced convection flow of a
second-order fluid, over a stretching sheet. The stretching sheet flow of a non-Newtonian
fluid is also one of the important flow fields in real world, Garg and Rajagopal [10] had
studied its flow fields and Raptis and Takhar [11] had studied the heat transfer of a visco-
elastic fluid. Boundary layer flow over a moving continuous solid surface is an important
type of flow occurring in several engineering processes. Heat-treated materials traveling
between a feed roll and a wind-up roll or materials manufactured by extrusion. Since
the pioneering work of Sakiadis [12], many authors have investigated various aspects of
the problem. Crane [13] and P. S. Gupta and A. S. Gupta [14] have analyzed the stretch-
ing problem with constant surface temperature while Soundalgekar [15] investigated the
Stokes problem for a viscoelastic fluid. Siddappa and Khapate [16] for a special class of
non-Newtonian fluids known as second-order fluids that are viscoelastic in nature exam-
ined this flow. Danberg and Fansler [17] studied the solution for the boundary layer flow
past a wall that stretched with a speed proportional to the distance along the wall.

Rajagopal et al. [18] independently examined the same flow as in [16] and obtained
similarity solutions of the boundary layer equations numerically for the case of small vis-
coelastic parameter. It is shown that skin friction decreases with increase in viscoelastic
parameter. Dandapat and Gupta [19] examined the same problem with heat transfer. In
[19], an exact analytical solution of the nonlinear equation, governing a self-similar flow



K.-L. Hsiao and G.-B. Chen 3

that is consistent with the numerical results in [18], is given and the solutions for the
temperature for various values are presented. Later, Cortell [20] extended the work of
Dandapat and Gupta [19] to study the heat transfer in an incompressible second-order
fluid caused by a stretching sheet with a view of examining the influence of the viscoelas-
tic parameter on heat-transfer characteristics. In the case of fluids of differential type
[21], the equations of motion are in general one-order higher than the Navier-Stokes
equations and, in general, they need additional boundary conditions to determine the
solution completely. These important issues were studied in detail by Rajagopal [21, 22],
Rajagopal and Gupta [23] and Rajagopal and Kaloni [24]. In order to clarify these points,
a critical review on the boundary conditions, existence, and uniqueness of the solution
has been provided by Dunn and Fosdick [25] and Girault and Scott [26]. On the other
hand, Abel and Veena [27] investigated a viscoelastic fluid flow and heat transfer in a
porous medium over a stretching sheet. Abel et al. [28] studied the effect of heat transfer
on MHD viscoelastic fluid over a stretching surface and an important finding was that the
effect of viscoelasticity is to decrease dimensionless surface temperature profiles in that
flow. Furthermore, Char [29] studied MHD flow of a viscoelastic fluid over a stretch-
ing sheet, however, only the thermal diffusion is considered in the energy equation; later,
Sarma and Rao [30] analyzed the effects of work due to deformation in that equation.
Cortell [31] studied flow and heat transfer of a viscoelastic fluid over a stretching sheet.
Sanjayanand and Khan. [32] studied heat and mass transfer in a viscoelastic boundary
layer flow over an exponentially stretching sheet. Khan [33] analyzed heat transfer in a
viscoelastic fluid flow over a stretching surface with heat source/sink, suction/blowing,
and radiation.

The system analyzed in the present study was a stretching sheet in a second-grade vis-
coelastic fluid flow. Due to the coupling nature between the stretching sheet and the fluid,
the present analysis is different from previous researches concerning forced convection
about a flat-plate fin. Those studies have dealt primarily with a plate having prescribed
convective heat transfer coefficient that yields similar or nonsimilar solutions [34]. There
are some related conjugate problems concerning a fin in a Newtonian flow, for instance,
a complete model study about the forced convection on a rectangular fin has been inves-
tigated by Sparrow and Chyu [35]; the effect of the Prandtl number on the heat transfer
from a rectangular fin has been studied by Sundén [36]. In addition, Luikov et al. solved
the conjugate forced convective problem along a flat plate both numerically [37] and
analytically [38–41]. The analysis of conjugate heat transfer problem encompasses simul-
taneous solutions for the heat conduction equation for the fin and the boundary layer
equations for the adjacent fluid. These solutions are governed by two dimensionless pa-
rameters, one of which is termed the conduction-convection number Ncc and the other
the Prandtl number Pr.

The above provides the motivation for the present analysis in which we study the flow
and heat transfer in an incompressible second-grade fluid caused by a stretching sheet
with a view of examining the influence of viscoelasticity on flow and heat transfer char-
acteristics for forced and free convection phenomena. We present a similar analysis using
Rajagopal et al.’s [5] method to solve the nonlinear problem. Therefore, in the present
investigation, a study has been undertaken to provide a result for the mixed convection
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flow of a second-grade fluid adjacent to a stretching sheet. The buoyant force is important
in the present problem due to the differences between the stretching sheet temperature
and the fluid temperature. A complicated flow pattern might occur because of the in-
teraction of the buoyancy and the viscoelasticity of the fluid. Thus, considerable efforts
directed towards the analysis and the understanding of the problem that characterized
by a set of highly nonlinear, coupled partial differential equations. A similar derivation
technique has been used and the resulting similar equations have been solved by using the
method of similarity. The effects of the viscoelastic parameter E, the buoyancy parameter
G, and the Prandtl number Pr to the momentum and heat transfer on the stretching sheet
are discussed in the present study.

2. Theory and analysis

An incompressible, homogeneous, non-Newtonian, second-grade fluid having a consti-
tutive equation based on the postulate of gradually fading memory which is suggested by
Rivlin and Ericksen [42] is used in the present flow. Furthermore, a thorough discussion
of these issues can be found in the critical review of Dunn and Rajagopal [43]. If the fluid
of second grade modeled by (2.1) is to be compatible with thermodynamics and is to
satisfy the Clausius-Duhem inequality for all motions and the assumption that the spe-
cific Helmholtz free energy of the fluid is a minimum when it is locally at rest, the model
equation is expressed as follows:

T=−PI +μA1 +α1A2 +α2A2
1, (2.1)

where T is the stress tensor, P is the pressure, μ is the dynamic viscosity, α1 and α2 are
first and second normal stress coefficients that relate to the material modulus and for the
present second-grade fluid

μ≥ 0, α1 > 0, α1 +α2 = 0. (2.2)

The kinematic tensors A1 and A2 are defined as

A1 =∇V + (∇V)T,

A2 = dA1

dt
+ A1(∇V) + (∇V)TA1,

(2.3)

where V is velocities and d/dt is the material time derivative. As mentioned by Markovitz
and Coleman in [44] and by Acrivos in [45], this model is applicable to some dilute poly-
mers. In the present analysis, we consider the flow of a second-grade fluid obeying (2.1)
adjacent to a stretching sheet coinciding with the plane y = 0, the flow being confined
to y > 0. Two equal and opposite forces are applied along the x-axis (a positive x-axis
has been taken vertically and parallel to the direction of gravity). The geometric model is
depicted in Figure 2.1.
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Figure 2.1. A sketch of the physical model.

The steady two-dimensional boundary-layer equations for this flow and heat transfer,
in usual notation, are

∂u

∂x
+
∂v

∂y
= 0, (2.4)

u
∂u

∂x
+ v

∂v

∂y
= ν

∂2u

∂y2
+ k0

[
∂

∂x

(
u
∂2u

∂y2

)
+
∂u

∂y

∂2v

∂y2
+ v

∂3u

∂y3

]
+ gxβ

(
T −T∞

)
, (2.5)

ρcp

(
u
∂T

∂x
+ v

∂T

∂y

)
= k

∂2T

∂y2
+ q
(
T −T∞

)
. (2.6)

In (2.5), we use the Oberbeck-Boussinesq approximation. This has not been rigorously
justified even in the case of the classical Navier-Stokes fluid and definitely not in the case
of the second grade fluid. Rajagopal at al. provided a justification for the approxima-
tion within the full thermodynamical theory for Navier-Stokes fluids [46]. We follow its
concept and assume that the form for the Helmholtz potential is similar to that for a
Navier-Stokes fluid and that we are ignoring terms due to the normal stress coeffient α1

at a small value. It is similar to a Navier-Stokes fluid. At last, (2.5) can use the Oberbeck-
Boussinesq approximation to calculate the free convection problem, in which u, v are the
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velocity components in the x and y directions, T is the temperature, gx is the magnitude
of the gravity, ν is the kinematic viscosity, k0 = α1/ρ is coefficient of viscoelasticity, β is the
coefficient of thermal expansion, T∞ is the temperature of the ambient fluid, ρ is the den-
sity, cp is the specific heat at constant pressure, k is the conductivity, and q is the specific
heat generation rate. The well-known Boussinesq approximation ρ− ρ∞ =−ρβ(T −T∞)
is used to represent the buoyancy mixed term. The boundary conditions to the problem
are

u= Bx, v = vw =−(Bυ)1/2
(
m− 1

m

)
y = 0, B > 0,

u−→ 0,
∂u

∂y
−→ 0 as y −→∞,

T = Tw = T∞ +A
(
x

L

)
at y = 0, T = T∞ as y −→∞,

(2.7)

where Tw and T∞ are constant wall temperature and ambient fluid temperature, A and B
are the proportional constants, and L is the characteristic length, respectively. It should
be noted that m> 1 corresponds to suction (vw < 0), where m< 1 corresponds to blowing
(vw > 0). In the case when the parameter m = 1, the stretching sheet is impermeable. In
this study, parameter m = 1 to simplify the problem in the conjugate heat transfer. A
similarity solution for velocity will be obtained if a set of transformations is introduced,
such that

u= Bx f ′(η), v =−(Bν)1/2 f (η),

η =
(
B

ν

)1/2

y, θ = T −T∞
Tw −T∞

.
(2.8)

Equation (2.8) has satisfied the continuity equation (2.4), Substituting (2.8) into (2.5),
we have

f ′2− f f ′′ = f ′′′ + k1(2 f ′ f ′′) + k1
(
2 f ′ f ′′′ − f ′′2− f f IV

)
+Gθ, (2.9)

where k1 = α1B/μ is the viscoelastic parameter and G = gxβA/B2L is the free convection
parameter, where L is the thickness of the stretching sheet. The corresponding boundary
conditions become

f = 0 f ′ = 1 at η = 0,

f ′ −→ 0, f ′′ −→ 0 as η −→∞ (2.10)

for the prescribed surface temperature. We introduce the dimensionless temperature

θ(η)= T −T∞
Tw −T∞

. (2.11)
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Combining the transformations from (2.8), the energy equation (2.6) becomes

θ′′ + Pr f θ′ −Pr f ′θ = 0, (2.12)

where Pr = μcp/k is the Prandtl number. The corresponding thermal boundary condi-
tions are

θ = 1 at η = 0,

θ −→ 0 as η −→∞.
(2.13)

The parameters k, E, Pr, and G are the conductivity of the fluid, the viscoelastic param-
eter, the Prandtl number, and the free convection parameter, respectively. These param-
eters control variations of the flow and the heat transfer characteristics. In the present
study, isothermal condition was considered along the sheet, and it does not admit simi-
lar solutions. It should be noted that as a special case, Vajravelu and Shoewono [9] used
Tw = T∞ +Ax/L a linearly varying temperature distribution as the wall temperature, ob-
tained similar boundary layer equations, and studied the uniqueness and existence of
solutions for the mixed convection flow of a second-order fluid adjacent to a stretching
sheet. Among the present available approaches for treating such problems, the similarity
method is perhaps the one most frequently employed, owing to its conceptual and com-
putational simplicity. Another advantage of the method is that the governing equations
encountered in the course of its application can be treated as ordinary differential equa-
tions and are easy for solving. These equations become uncoupled when G= 0, and the
flow is regarded as a pure forced convective flow. We assume that a set of similar solutions
of (2.9) and (2.12) can expand as power series in E. Following Bear and Walters [47], and
assuming a small E, Let us define a parameter E as

E = k1

1 + k1
, k1 > 0. (2.14)

Equation (2.14) gives

k1 = E

1−E
, E > 0. (2.15)

From mathematical analysis, it is well known that

k1 = E

1−E
= E+E2 +E3 + ··· . (2.16)

When E� 1, which is valid from (2.14), we assume that

f (η)= f0(η) +E f1(η) +E2 f2(η) + ··· ,

θ(η)= θ0(η) +Eθ1(η) +E2θ2(η) + ··· .
(2.17)

Substituting (2.17) into (2.9)–(2.13) and equating coefficients of E0 and E1 (because E is
small, computing equations up to first-order of E is adequate) result in
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(i) order E0:

f ′′′0 + f ′0 f
′′

0 −
(
f ′0
)2

+Gθ0 = 0,

θ′′0 + Pr f0θ′0−Pr f ′0 θ0 = 0,

f0 = 0, f ′0 = 1, θ0 = 1 at η = 0,

f ′0 = 0, f ′′0 = 0, θ0 = 0 as η −→∞.

(2.18)

(ii) order E1:

f ′′′1 + f1 f
′′

0 + f0 f
′′

1 − 2 f ′0 f
′

1 − f0 f
′′′′

0 − ( f ′′0

)2
+ 2 f ′0 f

′′′
0 +Gθ1 = 0,

θ′′1 + Pr f0θ′1 + Pr f1θ′0−Pr f ′0 θ
′
0−Pr f ′1 θ0 = 0,

f1(0)= 0, f ′1 (0)= 0, f ′1 = 0 at η = 0,

θ1(0)= 0, θ1 = 0 as η −→∞.

(2.19)

From the numerical solution of the system for (2.18)-(2.19), we know the velocity and
temperature fields and it is interesting to study the effects of the parameter E on the rate
of heat transfer. In terms of similarity parameters and dimensionless quantities defined
by (2.8) and (2.11), the heating rate on the wall as

qw =−k
(
∂θ

∂y

)
y=0
=−kB

√
Rex

u∞

(
Tw −T∞

)
θ′(0). (2.20)

And the local Nusselt number Nux is defined by

Nux = hx

k
= qw

Tw −T∞
x

k
. (2.21)

This expression can be written as

Nux =−Bx

u∞
θ′(0)Re1/2

x =−Peθ′(0). (2.22)

The formulation of the first analysis principle for forced convection along a stretching
sheet involves the energy conservation for the stretching sheet and the boundary layer
equations for the flow. For a slender stretching sheet, ample evidence based on finite-
difference solutions shows that a one-dimensional model is adequate. The stretching
sheet temperature at any x location serves as the wall temperature for the adjacent fluid
and is denoted as Tf (x). The energy equation for the stretching sheet may be written
in two different forms, depending on how the coupled-fin/boundary-layer problem is
solved. The method used here involves a succession of consecutive iteration solutions for
the stretching sheet and the boundary-layer flow, with the sequence continued until there
is no change (within a preset tolerance) between the nth iteration and the (n− 1)th it-
eration. Each iteration information data must be transferred from the boundary-layer
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solution, which is current for that period and is used as input to update the stretching
sheet solution. This information may be either in the form of the local heat flux q(x) or
the local forced convective heat transfer coefficient h(x). Both q(x) and h(x) are available
from the current boundary layer solution. The stretching sheet energy equation can be
expressed as

d2Tf

dx2
= q

k f t
, (2.23)

or

d2Tf

dx2
=
(

h

k f t

)(
Tf −Te

)
, (2.24)

in which k f is the thermal conductivity of the stretching sheet. For the solutions of either
(2.23) or (2.24) at a given cycle of the iterative procedures, h and q can be regarded as
known quantities. At first glance, it appears advantageous to use (2.24) rather than (2.23)
because it is easier to solve; however (2.24) is employed in the solution scheme. This
choice is made based on experience which has shown that at any stage of an iterative cycle
h is closer to the stretching sheet final converged result than q. Thus, (2.24) chooses to
obtain rapid convergence of the iterative procedure, whereby this objective is satisfactorily
fulfilled, as will be documented shortly. Equation (2.24) recasts in a dimensionless form
by the substitutions

X = x

L
, Y = y

L
, θ f =

Tf −Te

T0−Te
, (2.25)

where T0 is the base temperature of the stretching sheet, so that

d2θ f

dx2
+
d2θ f

dy2
= ĥNccθ f (2.26)

with boundary conditions

θ f = 1 (X = 0)
dθ f

dX
= 0 (X = 1), (2.27)

where Ncc is the conduction-convection number and is defined as

Ncc =
(
kL

k f

)
Pe. (2.28)

The quantity ĥ is a dimensionless form of the local convective heat transfer coefficient
and can be written as

ĥ=
(
hL

k

)
P−1
e . (2.29)
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3. Numerical technique

In the present problem, the set of similar equations (2.18)-(2.19) is linearlized by a per-
turbation analysis. These ordinary differential equations are discretized by a second-order
accurate central difference method and a computer program has developed to solve these
equations. To avoid errors in discretization and calculation processing and to ensure the
convergence of numerical solutions, some conventional numerical procedures have been
applied in order to choose a suitable grid size Δη = 0.05− 0.1, a suitable η range, and a
direct Gauss elimination method with Newton’s method [48] used in the computer pro-
gram to obtain solutions of the resulting difference equations. The Biot number is not an
appropriate parameter in the present problem because the heat transfer coefficient varies
with x and is also unknown priorly at the beginning of the computations. These conju-
gate ordinary differential equations discretized by a second-order accurate central are as
follows: difference method, and a computer program developed to solve these equations.
Calculation steps of the entire conjugate system are as follows:

(1) estimate the stretching sheet temperature distribution Tf (x);

(2) solve flow fields (2.18)-(2.19) and the local convective heat-transfer coefficient
(2.29) according to the local Prandtl number, elastic parameter, and the local
stretching sheet temperature from the related equations;

(3) solve the heat-conduction equation of the stretching sheet (2.26) with the re-
newed local convective heat-transfer coefficient;

(4) compute thermodynamic fluid properties from the stretching sheet temperature
and free-stream temperature.

The sequences 2 to 4 are repeated until an acceptable convergence for stretching sheet
temperature had been reached. The conditions of continuity in the heat flux and temper-
ature at the fluid-solid interface are then satisfied and all relevant heat transfer character-
istics can be calculated.

4. Results and discussion

The objective of the present analysis is to study the conjugate heat transfer of a stretch-
ing sheet cooled or heated by a high or low Prandtl number, second-grade viscoelastic
fluid with various parameters. An extension of previous work is performed to investigate
the conjugate heat transfer of a second-grade viscoelastic fluid past a stretching sheet.
The model for grade-two fluids that is used in the momentum equations, the effects of
dimensionless parameters, the Prandtl number (Pr), the elastic number (E), and the free-
convection parameter (G) are main interests of the study. Flow and temperature fields of
the stretching sheet flow are analyzed by utilizing the boundary layer concept to obtain a
set of coupled momentum equations and energy equations. A similarity transformation
and a series expansion method are used to convert the nonlinear, coupled partial differen-
tial equations to a set of nonlinear, coupled ordinary differential equations. A generalized
derivation to analyze a stretching sheet flow has been studied. A second-order accurate
finite-difference method has been used to obtain solutions of these equations. Table 4.1
is compared to θ′(0) versus Pr, G, and m (E = 0.0) with [49].
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Table 4.1. Comparison θ′(0) versus Pr, G and m (E = 0.0).

Pr G m θ′(0) [49] θ′(0) present

0.73 0.1 0.5 −0.470710 −0.470446

0.73 0. 0.5 −0.462114 −0.462378

0.73 −1.0 0.5 −0.452505 −0.452799

0.73 −1.0 1.0 −1.288098 −1.288420

0.73 −1.0 1.5 −2.023746 −2.023430

3.00 0.1 0.5 −0.603917 −0.603772

3.00 0. 0.5 −0.599768 −0.599364

3.00 −0.1 0.5 −0.595436 −0.595454

3.00 −0.1 1.0 −1.783017 −1.783570

3.00 −0.1 1.5 −3.489231 −3.489070

From the comparison, we get very closely computation results with each other. Figure
2.1 is a sketch of the physical model for the conjugate heat transfer of a stretching sheet
past a second-grade viscoelastic fluid. Figure 4.1 shows dimensionless velocity and ve-
locity gradient, f0, f ′0 , f ′′0 versus η as G = 1, E = 0.001, and Pr = 1. Figure 4.2 shows
dimensionless velocity and velocity gradients f1, f ′1 , f ′′1 versus η as G = 1, E = 0.001,
and Pr= 1. Figures 4.1 and 4.2 are the dimensionless velocity and dimensionless velocity
gradient distributions for the stretching sheet flow. For a mixed convection, the mo-
mentum and the energy are interacting with each other and the figure curves are all
having a strong variation with η along the boundary layer for different G, Pr, and E.
Figure 4.3 shows dimensionless temperature profiles θ′(0) versus η as G = 1, E = 0.001,
and Pr= 0.001, 0.7, 2, 10. Figure 4.4 shows dimensionless temperature profiles θ(0) ver-
sus η as G = 1, E = 0.0001, and Pr = 0.001, 0.7, 2, 10. Figure 4.5 shows dimensionless
temperature gradient profiles θ′(0) versus η as G = 1, E = 0.001, and Pr = 0.001, 0.7,
2, 10. Figure 4.6 is shown dimensionless temperature profiles θ(0) versus η as G = 1,
E = 0.001, and Pr= 0.001, 0.7, 2, 10. Figures 4.4 and 4.6 still indicate that for Pr= 0.001,
the boundary layer thickness η = 13 is not large enough. However, this being an extreme
case, the dimensionless temperature profiles θ(0) are a little not smooth, we may use a
larger η to improve this problem. In this study, we have presented a nearly value η = 13
for an extreme small η case using only. Sometime may use a larger η � 13 to obtain a more
smooth curve for the small Prandtl number Pr � 0.001, it is an important phenomena in
this study. Figure 4.7 shows dimensionless temperature gradient profiles θ′(0) versus η
as G = 1, E = 0.01, and Pr = 0.001, 0.7, 2, 10. Figure 4.8 shows dimensionless tempera-
ture profiles θ(0) versus η as G= 1, E = 0.01, and Pr= 0.001, 0.7, 2, 10 Figure 4.9 shows
dimensionless temperature gradient profiles θ′(0) versus η as G= 1–25, E = 0.001–0.15,
and Pr= 1. Figures 4.3–4.9 show the dimensionless temperature and dimensionless tem-
perature gradient distribution for different parameters G, Pr, and E. along the thermal
boundary layer η. According to (2.22), θ′(0) is an important factor for heat transfer
phenomena. The value of θ′(0) increased when G, Pr, and E increase. Therefore, the
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Figure 4.1. Dimensionless velocity and velocity gradients f0, f ′0 , f ′′0 versus η as G= 1, E = 0.001, and
Pr= 1.

heat transfer rate is positive proposing G, Pr, and E clearly. Figure 4.10 shows conjugate
stretching sheet temperature distribution profiles Tw − T∞/T0 − T∞ versus X as G = 1,
E = 0.0001; Figure 4.11 is shown conjugate stretching sheet temperature distribution pro-
files Tw − T∞/T0 − T∞ versus X as G = 10, E = 0.0001. Figure 4.12 is shown conjugate
stretching sheet temperature distribution profiles Tw − T∞/T0 − T∞ versus X as G = 1,
10, 50, E = 0.0001, and m= 1. The conjugate stretching sheet temperature distributions
along the stretching sheet with E = 0.0001 are shown in Figures 4.10, 4.11, and 4.12 re-
spectively. The tip temperature is lower and temperature gradients along the stretching
sheet are higher with larger values of Ncc and G. These figures again indicate that the
elastic nature of the fluid and a higher conductivity of the stretching sheet material can
enhance the heat transfer performance of the stretching sheet. In addition, these figures
indicate that higher G values can enhance the heat transfer performance (higher local
heat transfer coefficient), no matter how the Ncc varies. However, variations of Ncc from
0.5 to 2 have insignificant effect to the local heat transfer coefficient.

5. Conclusion

A steady two-dimensional mixed convection of an incompressible second-grade fluid ad-
jacent to a stretching sheet is studied. A similar solution is obtained and results indi-
cate that the buoyant force can accelerate the fluid speed in the boundary layer and en-
hance the heat transfer performance. The variation of the magnitude of dimensionless
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Figure 4.3. Dimensionless temperature profiles θ′(0) versus η as G = 1.0, E = 0.001 and Pr =
0.001,0.7,2.0,10.0.

wall shear stress important factor f ′′(0) depends on relative quantities of E, G, f ′0 (0),
and f ′1 (0). Dimensionless heat transfer important factor−θ′(0) increases with increasing
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Figure 4.4. Dimensionless temperature profiles θ(0) versus η as G= 1, E = 0.0001, and Pr= 0.001,10.
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Figure 4.5. Dimensionless temperature gradient profiles θ′(0) versus η as G= 1, E = 0.001, and Pr=
0.001,0.7,2,10.

values of Pr and/or G, −θ′(0) is also increasing with increasing E. In the present study,
we have introduced into analyses of a conjugate heat transfer problem of conduction in



K.-L. Hsiao and G.-B. Chen 15

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

η

θ
(0

)

G= 1
E = 0.001

Pr = 0.001
Pr = 0.7

Pr = 2
Pr = 10

Figure 4.6. Dimensionless temperature profiles θ(0) versus η as G= 1, E = 0.001, and Pr= 0.001,10.
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Figure 4.7. Dimensionless temperature gradient profiles θ′(0) versus η as G= 1, E = 0.01, and Pr=
0.001,0.7,2,10.

a solid stretching sheet and a free convection in flow. The present conjugate problem is a
hybrid system of the ordinary convective problem with a constant wall temperature. A lo-
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Figure 4.8. Dimensionless temperature profiles θ(0) versus η as G = 1, E = 0.01, and Pr =
0.001,0.7,2,10.
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Figure 4.9. Dimensionless temperature gradient profiles θ′(0) versus η as G= 1–25, E = 0.001–0.15,
and Pr= 1.

cal heat transfer coefficient is obtained from numerical solutions. Numerical results in the
present study indicate that elastic effect E in the flow can increase the local heat transfer
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Figure 4.10. Conjugate stretching sheet temperature distribution profiles Tw −T∞/T0−T∞ versus X
as G= 1, E = 0.0001.
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Figure 4.11. Conjugate stretching sheet temperature distribution profiles Tw −T∞/T0−T∞ versus X
as G= 10, E = 0.0001.

coefficient and enhance the heat transfer of a stretching sheet. In addition, a better heat
transfer is obtained with a larger Ncc, G, and a larger E.
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Figure 4.12. Conjugate stretching sheet temperature distribution profiles Tw −T∞/T0−T∞ versus X
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