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The purpose of this work is to study the processing and transmission of clock signals
in networks of geographically distributed nodes, in order to derive conditions for fre-
quency and phase synchronization between the nodes. The focus is on the master-slave
architecture, which presents a priority scheme of clock distribution. One-way master-
slave (OWMS ) and two-way master-slave (TWMS) chains are studied, considering that
the slave nodes are third-order phase-locked loops (PLLs). Third-order PLLs are cho-
sen to improve the transient response but, if their parameters are not well adjusted, sta-
bility problems and chaotic behaviors appear, restricting the lock-in range of the net-
work. Lock-in range for third-order PLLs with Sallen-Key filter is determined and it is
verified whether this range is reduced when the PLLs are connected to a network. Nu-
merical experiments show how chain size changes the lock-in ranges and the acquisition
times.

Copyright © 2007 J. R. C. Piqueira and M. de Carvalho Freschi. This is an open access ar-
ticle distributed under the Creative Commons Attribution License, which permits unre-
stricted use, distribution, and reproduction in any medium, provided the original work
is properly cited.

1. Introduction

The distribution of clock signals is essential for several applications in control and com-
munication [1] establishment of a worldwide time schedule system, synchronization of
oscillators at different multiplexing points in digital telecommunication networks, con-
trol and monitoring of performance at specific instants in industrial processes and estab-
lishment of a synchronous state in a supercomputer composed of several processors.

In this work, the distribution of clock signals in telecommunications networks is con-
sidered. The problem concerns mainly to the distribution of phase and frequency signals
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through nodes distributed in a certain geographic area. There are three different im-
plementation strategies: plesiochronous, master-slave (MS), and synchronous full-con-
nected [2].

Plesiochronous networks are used when the synchronism is not critical. Oscillators
with small frequency deviation are used in each node. They are manually adjusted and
control signals are not needed. These networks are easy to implement, robust, though
costly.

In synchronous full-connected networks, all the nodes have their own oscillator inter-
changing reference signals. They are more complex to be implemented, being used only
in special applications, as in military communication networks.

Master-slave networks present a priority scheme of clock distribution, establishing a
hierarchy between the nodes. There is a node with an extremely precise atomic oscilla-
tor, called master. The other nodes are controlled by the master’s reference signal and
are called slaves. As the control is centralized, if the master fails, the performance of the
whole network is spoiled. However, due to its simple implementation and low cost, the
master-slave networks are widely used in robotics and public telecommunications net-
works.

There are two types of MS networks, OWMS and TWMS. In the OWMS architecture,
mainly used in telecommunication networks, the clock signal generated by the master
is transmitted to the nodes sequentially, not considering the state of the slaves. In the
TWMS, mainly used in process-control networks, the reference signal considers the mas-
ter and the state of the slaves.

Here, the two distribution schemes are considered and compared from the lock-in
point of view, with the slaves being third-order PLLs [3]. First, the isolated third-order
PLL is considered and modeled, with an analytical determination of its lock-in range.
Then, chains with third-order PLLs as slaves are explored by using numerical experi-
ments.

2. Third-order PLL

The phase-locked loop (PLL) is an electronic device that has been used since 1932 in
applications that demand automatic control of frequency. It is composed of a phase-
detector (PD), a lowpass filter (F) and a voltage controlled oscillator (VCO) [4], as shown
in Figure 2.1, and is used to extract the time basis in a reliable way, synchronizing the in-
put signal v;(t) with the one of its internal oscillator (VCO) v,(#).

The nonlinear behavior of the PLL is due the phase detector (PD), which is represented
by a signal multiplier that compares the phases of the input signal, v;(t), and the VCO
output, v,(t). This operation is described by

va(t) = kavi(t)vo(t), 2.1)

where k, is the PD gain, and v;(¢) and v,(t) have periodic expressions with central angu-
lar frequency wy(¢) and instantaneous phases 0;(¢) and 6,(t), respectively, as described
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Figure 2.1. PLL block diagram.

below:

V,‘(t) = V;sin [wMt+ Qi(t)],

2.2
vo(t) = V,sin[wpt + 0,(1)]. (22)
Combining (2.1), (2.2), v4(t) can be expressed as
k. ViV, . kn ViV, .
va(t) = 5 sin [2wprt+0;(8) +6,(8)] + 5 sin [6:(t) — 0,(t)], (2.3)

where k,, is the multiplier gain, being k4 = k,, V,/2.

In expression (2.3), the presence of a second-harmonic term can be noticed. The sig-
nal v4(t) passes through the lowpass filter (F) to eliminate this high-frequency term called
double-frequency jitter [5]; however, a small amplitude double-frequency term remains.
This jitter is responsible for oscillations around the synchronous state, causing distur-
bances in the network performance [6].

The VCO signal is controlled by the filter output and its frequency is given by

eo(t) = koVC(t)) (2.4)

where k, is the VCO gain.

The VCO output has a phase 0,(f). When the phase error ¢(t) = 0;(t) — 0,(t) has a
constant value or, equivalently, the frequency error ¢(t) = 0;(t) — 0,(¢) is zero, the system
is in the synchronous state.

First-order filters, implying second-order PLLs, are normally chosen due to their in-
herent stability and good lock-in range [7]. However, these PLLs frequently present high-
level double-frequency terms in the PD output, as a phase-jitter, as it is difficult to adapt a
first-order filter that eliminates these components in a satisfactory way. In order to elim-
inate this double-frequency jitter and to improve the transitory responses, higher-order
filters are chosen, implying PLLs with order greater than 2.
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Figure 2.2. Sallen-Key second-order filter.

Here, a second-order Sallen-Key filter as shown in Figure 2.2, is chosen [7], resulting
in a third-order PLL. The filter transfer function is given by

Ve(s) Kw?

His) = Vails) s+ (wo/Q)s+ w3’

(2.5)

where w} = 1/R1R,C,Cy, K = 1+ Rp/Ry and Q = 1/wy[C(R; + Ry) + R C1 (1 — K)].
Considering the normalization of the cut-off frequency, thatis, Ry, =R, =C, = C, =1,

and the PLL gain as G = kgkoV;V,/2, combining (2.3), (2.4) and (2.5), and neglecting the

high-frequency terms of (2.4), the dynamic equation of the third-order PLL becomes

P+(3-K)¢+¢+KGsing = §;+ (3 —K)b;+0,. (2.6)
Considering phase-ramp inputs, 6; = Qt + v, the dynamic equation becomes
9 +(3-K)¢+¢+KGsing = Q. (2.7)

Equation (2.7) describes the third-order PLL, considering ¢ € (—m,7] and Q > 0. The
synchronous state corresponds to a constant phase error ¢, and to frequency and acceler-
ation errors, ¢ and ¢, equal to zero.

3. Lock-in range

The set of parameters and inputs corresponding to a reachable asymptotically stable syn-
chronous state for (2.7) is called lock-in range. Consequently, the lock-in range is the set
of filter gains K, input frequencies ), and PLL gains G corresponding to the existence of
an asymptotically stable synchronous state (¢, ¢,$) = (¢*,0,0) for (2.7).

Analyzing (2.7), the synchronous state is (¢, ¢, ) = (arcsin (2/KG),0,0), implying a
first existence condition Q) < KG.

For Q = KG, there is the synchronous state (77/2,0,0) that is nonhyperbolic [8]. For
Q < KG, there are two synchronous states: (¢;, 0, 0) and (¢,,0,0), so that sing; = sing, =
Q/KG, and cos¢; = —cos@, = /1 — (0/KG)?2. The first state can be stable depending on
the parameters combination. The second one is unstable.

The stability of the synchronous states, (¢;,0,0) and (¢2,0,0) can be analyzed by using

the characteristic polynomial related to the linear approximation of (2.7), around the
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equilibrium states
P(A) =A1*+ (3 - K)A* + 1+ KGcos gss. (3.1)

The stability of the synchronous state (SS) is given by the real-part of the roots of P(1).
If they are all negative, the corresponding synchronous state is asymptotically stable. If
there is a root with positive real part, the corresponding synchronous state is unstable.

According to the Routh-Hurwitz stability criterion [9], the number of positive real-
part roots of the polynomial is equal to the number of signal changes in coefficients of
the first column of Routh-Hurwitz matrix Ry. For P(1) given by (3.1), Ry is as follows:

1 1
3-K KGcosg
Ry=|3-K-KGcosg 0 . (3.2)
3-K
KGcos¢ 0

As the synchronous state (¢,,0,0) has a negative cosine, observing Ry and according
to the Routh-Hurwitz criterion, it can be seen that the first term of the first column is
positive and the fourth term is negative. Consequently, there is at least a signal change,
and, therefore, (¢;,0,0) is unstable.

The synchronous state (¢1,0,0) has a positive cosine, consequently, the conditions for
its asymptotical stability are 3 — K >0 and 3 — K — KGy/1 — (/KG)? > 0. With these
conditions, the lock-in range for a third-order PLL is

(i) 1=K < 3;
(i) G > QO/K;
(iii) G< V9/K?2 - 6/K + 1+ Q2/K2.

Then there is only one synchronous state, (¢;,0,0) and the lock-in range results from
two bifurcations: a saddle-node, related to the existence of the synchronous state, and
Hopf, related to the stability of the synchronous state [8].

The condition G = (/K represents a saddle-node bifurcation, whose diagram is shown
in Figure 3.1. Below the surface, there is no synchronous state, and on it the state is non-
hyperbolic. Above the surface, there are two equilibrium points: (¢;,0,0) and (¢,,0,0),
so that sing; = sing, = O/KG and cos¢@, = —cos¢, = /1 — (V/KG)>.

Condition G = +/9/K? — 6/K + 1 + Q?/K? represents a Hopf bifurcation, as shown in
Figure 3.2. Below the surface, the state (¢;,0,0) is asymptotically stable, and above it,
unstable.

4. OWMS and TWMS networks

In OWMS topology, the transmission of time signals follows only one direction. The
master node has its own time basis that is independent of the other nodes. The time basis
of all slave nodes depends on only one node, which can be the master or another slave.
OWMS networks can be implemented in two topologies [10], single chain and single star.

TWMS networks have reference signals sent in the two ways of the network. The mas-
ter has its own time basis, but the time basis of each slave depends on more than one node.
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Figure 3.2. Hopf bifurcation.

They can be implemented in four topologies: double chain, double star, single loop, and

double loop [10].

Here, only the single and double chains are studied because they are the most common
architectures in commercial networks. The single chain topology is composed of a master
node, which has an independent time basis, connected to slave nodes in a sequential way,
as shown in Figure 4.1. Each slave is a third-order PLL with phase controlled by the node

that precedes it in the chain.

The double chain topology is similar to the single chain, but the reference signal, which
will be the input of a slave node n, considers the signals from nodes n — 1 and n+ 1, as

shown in Figure 4.2.
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Figure 4.1. Single-chain topology.

()

Figure 4.2. Double-chain topology.

In this topology, the time basis of the master node, called node 1, does not depend on
the other nodes and is given by a precise and reliable oscillator whose phase is:

oy = wt+y(1), (4.1)

where w represents the frequency of normal operation of master clock and /(t) is a per-
turbation term.

As delays in the main commercial networks are small related to the time constants of
the node filters, they are not considered. Consequently, the signal sent by the master to
the first slave considers its own phase and the phase of the first slave. Then, the phase of
the control signal sent for the first slave is given by the following equation:

@ (8) = 20p(8) — D2(2), (4.2)

where @, (t) represents the phase of node 2, the first slave node.
For this node, the input phase is

O (t) = Dp(t) — 0.5D;(t) +0.5D5(t). (4.3)
From (4.2) and (4.3),
O (t) = 0.50; () +0.5D5 (). (4.4)

As can be seen in (4.4), the input phase of the n-slave node depends on the phase of
the nodes n — 1 and n + 1. So, for each slave n of the chain, n = 2,3,...,N — 1,

O (1) = 0.50,_1(£) +0.5D,,,1(1). (4.5)

For node N, the last of the chain, the input signal will be the output signal of node
N-1.
5. Numerical experiments

In order to explore the several aspects of the lock-in range and performance parameters,
by using MATLAB-Simulink, single and double chain architectures, as described above,
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Figure 5.1. Phase error without synchronous state.

were mounted with periodic oscillators as master and built-in PLLs as slaves. Simula-
tions with these architectures were conducted with “Ode-45-Dormand-Prince” [11] with
variable step integration method and 10~ of relative tolerance.

The simulations aimed to study the reachability of the synchronous state and to ob-
tain acquisition parameters for the whole network. Input parameters and filter transfer
functions were varied trying to confirm the analytical results obtained in Section 3.

The master node was simulated by a periodic signal generator, and a phase ramp start-
ing at tenth second of simulation was added to the master phase in order to analyze the
networks capacity in accommodating this perturbation. The input deviation Q and the
free-running angular frequency wy were set in 1 rad/s, and the parameters K and G were
varied.

The synchronism is analyzed observing the phase error that must be constant in the
synchronous state. Network performance includes the double-frequency jitter as it is
not completely eliminated being responsible for the oscillations around the synchronous
state.

5.1. OWMS. The chains were mounted according to the single chain topology.

One-slave node chain. For K = 1, the lock-in range is analytically given by G € (1,+/5).
In the simulations, the synchronous state is reachable for G € (1.18,2.2). For G =1,
the phase error goes to infinite, as illustrated in Figure 5.1, and for G lower than this
value, the behavior is the same.
For values of G in the lock-in range, the phase error presents an equilibrium state with
a small oscillation, the double-frequency jitter, around it, as can be seen in Figure 5.2 for
G=12.
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Figure 5.2. Phase error with PLL gain in the lock-in range.
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Figure 5.3. Phase error increasing PLL gain in the lock-in range.

When the PLL gain G is increased, the acquisition time and double-frequency jitter
increase, as shown in Figure 5.3 for G = 1.7.

When the gain value approaches the lock-in range limit (G = 2.2), a large amplitude
oscillation appears around the synchronous state, as shown in Figure 5.4. With the PLL
gain out of this range, there is no synchronous state, as shown in Figure 5.5 for G = 3.5.

For K = 2, the lock-in range analytically determined is given by G € (0.5,/2/2).



10 Mathematical Problems in Engineering

Phase error

80 90 100

79 1 1 1 1 1 L 1
0 10 20 30 40 50 60 70
Time

Figure 5.4. Phase error with PLL gain in the lock-in range limit.
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Figure 5.5. Phase error with PLL gain out of lock-in range.

When the simulations are conducted, varying G for the whole theoretical lock-in
range, it is experimentally noticed that the synchronous state is not reachable for cer-
tain values of G, implying that the practical lock-in range is smaller than the theoretical
one. This fact is probably due to nonrobustness of the model in this band of gains.

According to the numerical simulations, the real lock-in range seems to be [0.5,0.59) U
(0.66,/2/2). In order to observe this fact, Figure 5.6 shows the result for G = 0.6, with
the synchronous state not reachable. For G = 0.67, reachability is recovered as shown in
Figure 5.7.
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Figure 5.6. Phase error with synchronous state not reachable, but with PLL gain in the theoretical
lock-in range.
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Figure 5.7. Phase error with PLL gain in the lock-in range.

Further experiences show that the higher the parameter K, the smaller the lock-in
range. With K next to the limit of the lock-in range (1 < K < 3), K = 2.9, for instance,
corresponding to a theoretical range (0.344,0.346), the synchronous state is not reachable
for any G.

The number of slave nodes was increased up to ten gradually and each chain was sim-
ulated in accordance with the methodology used in the previous item. It was observed
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that to each slave node added to the chain, the synchronizing ranges become smaller, and
the settling time increases.

Therefore, the reference signal of the network loses quality while it is transmitted along
the chain. Due to this fact, according to G.812 recommendation of ITU-T [12], the higher
number of sequential nodes recommended for a single chain is ten, and in the following,
results for this type of chain are presented.

Ten-slave node chain. With ten slave nodes, the synchronous state is still reachable, but
for a smaller lock-in range, as listed below:
(i) for K = 1, the theoretical lock-in range is G € (1,+/5). In the simulations, the
synchronous state is reachable for G € (1.63,1.64);

(ii) for K = 1.5, the theoretical lock-in range is G € (0.667,1.2), but the synchronous
state is reachable for G € (0.97,0.98);

(iii) for K = 2, the theoretical lock-in range is G € (0.5,+/2/2), and in the simula-
tions, the synchronous state is reachable only for G = 0.63 after 400 seconds of
simulation;

(iv) for K = 2.5, the theoretical lock-in range is G € (0.4,0.447), and the synchronous
state is reachable for the following gain values: 0.416,0.436,0.438,0.44,0.443, and
0.444.

Figure 5.8 shows the phase error for K = 2.5 and G = 0.416. For the tenth node, the
settling-time is high but the double-frequency jitter disappeared, due to the fact that the
signal passed through the ten lowpass filters of the chain.

Then, considering the lock-in ranges, the behavior of the whole network with ten slave
nodes is satisfactory, showing that the third-order PLL with a Sallen-Key filter for extrac-
tion of reference signal in OWMS provides good performance figures.

5.2. TWMS. The analysis of TWMS networks [1] strongly depends on the number of
nodes [13], consequently, the simulations follow an increasing sequence of the number
of slave nodes.

Two-slave node chain. Running the simulations, the lock-in ranges are the following:
(i) for K = 1, the synchronous state is reachable only for G = 1.3;

(ii) for K = 1.5, the synchronous state is reachable for Ge(0.8,0.9);

(iii) for K = 2, in the simulations, the synchronous state is reachable only for G = 0.6;

(iv) for K = 2.5, the synchronous state is reachable for G € (0.4,0.5), that is, for a

lock-in range greater than the theoretical one.
Figure 5.9 shows the phase error in the two slave nodes for K = 2.5 and G = 0.42. The

second node presents a higher settling-time but better double-frequency jitter perfor-
mance, as expected.

Three-slave node chain. Lock-in ranges are the following:
(i) for K = 1 there was no synchronization;
(ii) for K = 1.5 the synchronous state is reachable only for G = 0.7;
(iii) for K = 2, the synchronous state is reachable for G € (0.5,0.6);
(iv) for K = 2.5, the synchronous state is reachable for G € (0.43,0.48), surpassing
the theoretical lock-in range again.
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Figure 5.8. Phase error (a) first slave node (b) tenth slave node.

In this case, it is relevant to notice that the settling-time increased and varies from 100
to 250 seconds. Besides, the lock-in range was reduced as listed above.

Four-slave node chain. This chain approached the synchronous state only for K = 2.5
and G = 0.43, having a considerable oscillation around the synchronous state, as shown
in Figure 5.10 for the first and fourth slave nodes. Also it is noticed that a small increase
of this oscillation with the increase in the number of slaves. Jitter did not present any
significant alteration.
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Figure 5.9. Phase error (a) first slave node (b) second slave node.

Five-slave node chain. In these conditions, the synchronous state is not reachable. The
simulation time was increased to 500 seconds, but for all the values of parameters tested,
the phase error went to infinite in all the slaves.

Then it is noticed that the increase in the chain makes the synchronization of TWMS
networks difficult considerably, having a limited number of slave nodes, above which the
behavior of the network becomes totally unstable.

This result is in accordance to [13] that claims that TWMS networks present limita-
tions in the number of slave nodes that should not be higher than three when a first-order
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Figure 5.10. Phase error (a) first slave node (b) fourth slave node.

lag filter is used. Simulations have shown that the critical number of slave nodes for third-
order PLLs with Sallen-Key filter is four.

6. Conclusions

Third-order PLLs provide satisfactory conditions of synchronism, transient response and
double-frequency jitter attenuation when used as slave nodes in MS chain networks. Sim-
ulations confirmed analytical results, also showing the reliability of the usual PLL models.
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Increasing the number of nodes in a chain makes synchronization more difficult re-
ducing the lock-in range of the OWMS and the TWMS networks. As some theoretical
studies show [13], for TWMS chains there is a maximum number of nodes above which
the synchronous state is not reachable. This number, when third-order PLLs with Sallen-
Key filter are used, is four.

Comparing single-chain (OWMS) with double-chain (TWMS), the OWMS architec-
ture is more indicated for precise clock distribution, since it supports more slave nodes
and presents a larger lock-in range.

The limitation in the number of nodes and in the lock-in range for TWMS is the main
reason to use this architecture only for process-control in local area networks. In this case,
in spite of these problems, transient responses and jitter performance are considerably
improved.
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